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ABSTRACT

We consider transmission scheduling by medium access control
(MAC) protocols for energy limited wireless sensor networks (WSN)
in order to maximize the network lifetime. Time-varying Oppor-
tunistic Protocol (TOP) for maximizing the network lifetime is
proposed. By executing TOP each sensor exploits local channel state
information (CSI) and local residual energy information (REI). TOP
implements opportunistic strategy in terms of favoring sensors with
better channels when the network is young, while less opportunistic
and more conservative strategy in terms of prioritizing sensors with
higher residual energy when the network is old. TOP significantly
simplifies the implementation of carrier sensing as compared to
other distributed MAC protocols. Simulation results show that TOP
achieves significant performance gains over other distributed MAC
protocols.

Index Terms—Wireless sensor networks, network lifetime, op-
portunistic Medium Access Control.

1. INTRODUCTION

Lifetime maximization is a major issue in non-rechargeable battery-
powered wireless sensor networks (WSN). We consider sensor net-
works with mobile access (SENMA) [1]. In SENMA each sensor
measures a certain phenomenon and upon request transmits its mea-
surement directly to an access point (AP) through a fading channel.
The question is which set of sensors should transmit during each
data collection in order to maximize the overall network lifetime.
It has been shown in [2] that exploiting channel state information
(CSI) and residual energy information (REI) is essential for maxi-
mizing the network lifetime. In this paper we consider distributed
protocols which exploit local CSI and REI, without sharing CSI and
REI between sensors. CSI acquisition consumes energy (due to re-
ceiver operation) which affects the network lifetime. In cases where
the energy consumed by CSI acquisition is significantly high we
should relinquish CSI acquisition. However, in most networks this
is not the case and CSI acquisition significantly increases the net-
work lifetime. The transmission scheduling problem can be formu-
lated as stochastic control problem in centralized fashion, as shown
in [3], [4]. An optimal centralized transmission scheduling exploit-
ing global CSI and REI is formulated as stochastic shortest path in
[5]. However, the overhead and computational complexity of opti-
mal centralized transmission is extremely high. Distributed MAC
protocols have been extensively analyzed in [6], and significantly re-
duce overhead and computational complexity. Therefore, they are
generally preferred over centralized protocols. As shown in [6], the
transmission scheduling is executed by selecting the sensor with the
largest energy-efficiency index for transmission at each data collec-
tion (this can be done by opportunistic carrier sensing [7]). The
energy-efficiency index is a function of the local CSI and REI and
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it is generally time-invariant1. The design principle for the energy-
efficiency index is to prioritize sensors with better channels when
the network is young, while prioritizing sensors with higher resid-
ual energy when the network is old. A common problem for pro-
tocols which determine their energy-efficiency index based on REI
is that the varying residual energy during the network lifetime re-
duces the carrier sensing performance. In this paper we propose the
Time-varying Opportunistic Protocol (TOP). By implementing TOP,
the energy-efficiency index is time-varying and it is determined by
exploiting CSI and REI. However, TOP overcomes the problem of
degraded carrier sensing performance.

2. NETWORKMODEL AND LIFETIME DEFINITION

2.1. Network Model

Consider a WSN with N sensors, each sensor n is powered by a
battery with initial energy, ein. Every sensor has fixed equal-sized
packet measurement to be transmitted through a flat fading channel
to the AP. We assume block fading channel which remains constant
during each data packet transmission. Thus, the channel gain for each
sensor n, |hn|

2, is constant within each slot and varies independently
between slots. Due to the presence of small scale fading the channel
gain is a random variable. The distance from the sensors to the AP is
typically much larger than the distance between sensors. Therefore,
we assume the path loss, and thus the channel gain mean, is approx-
imately equal for all the sensors. During each data collection, the
AP broadcasts a beacon signal and each sensor estimates its channel
state. We define ece as the energy consumed by each sensor during
channel estimation. We assume that local REI is available to each
sensor. We define the residual energy of each sensor by eres,n. Dur-
ing each data collection only a single sensor (which can represent
sensors cluster head) is allowed to transmit its measurement to the
AP (the extension to a larger number of sensors which are allowed
to transmit is straightforward). By assuming that sensor n transmits
its data to the AP during a block length of Tn seconds, the received
signal y(t) is given by:

y(t) = hn · xn(t) + v(t), 0 ≤ t ≤ Tn

where hn is the channel fading experienced by sensor n, v(t) is the
additive white Gaussian noise with power spectrum density (PSD)
N0

2
, and xn(t) is the transmitted signal using fixed power Pout equal

for all the sensors. We define the data packet length by I[bits], and
the transmission data packet time of sensor n by Tn. The total trans-
mission energy etr,n consumed by sensor n transmission during spe-
cific data collection is given by:

etr,n = Ptr · Tn = Ptr ·
I

W · log(1 + |hn|2 ·
Pout

ΓWN0
)

. (1)

1The CSI and REI values are random variables and indeed time-varying.
However, the formula for calculating the energy-efficiency index does not
change during the network lifetime.
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Where Ptr = Pc +Pout is the total transmission power consumption
of each sensor and Pc is the power consumption of the transmitter
circuitry and it is equal for all the sensors. The term W log(1 +
|hn|

2 · Pout

ΓWN0
) is the data transmission rate, where Γ andW are the

Shannon gap to capacity(which is a function of noise margin, BER
and coding gain) and the channel bandwidth, respectively.

We define the wasted energy as the total unused energy in the
network when it dies (the network functionality definition is given in
Sec. 2.2). Therefore, the total wasted energy of the network is given
by:

Ew =
N∑

n=1

ew,n , (2)

where ew,n is the residual energy across sensor n when the network
dies.

2.2. Network Lifetime Definition

We define sensor as nonfunctional when its residual energy drops be-
low the threshold energy, eth, required for transmission with prede-
termined probability. We define the network as nonfunctional when
the number of nonfunctional sensors reaches N0, where 1 ≤ N0 ≤
N. The network lifetime is defined as the number of data collections
until the network is defined as nonfunctional. Since we wish to pro-
long the network lifetime before the first sensor dies, we consider the
network lifetime whenN0 = 1. Based on lifetime analysis in [2], the
expected network lifetime is given by:

E {L} =
N · ein − E {Ew}

N · ece + E {etr}
, (3)

where E {etr} is the expected transmission energy consumed in a
randomly chosen data collection and E {Ew} is the expected wasted
energy. As explained in [2], we infer from (3) that we should reduce
the transmission energy (by exploiting CSI for selecting sensor with
a better channel) when the data collection index � is small (i.e. the
network is young), since the probability that the network lives � data
collections decreases with �. On the other hand we should reduce
the wasted energy (by exploiting REI for selecting sensor with large
residual energy) when � is increased.

3. DISTRIBUTED TRANSMISSION PROTOCOLS

3.1. Implementation via Opportunistic Carrier Sensing

By executing opportunistic carrier sensing [7], each sensor in the net-
work calculates an index γn,which can be a function of local CSI and
REI, and maps its γn to a backoff time τn based on predetermined
common function f(γ). Each sensor listens to the channel and if no
other sensor transmits before its backoff time expires, the sensor is
allowed to transmit. When the propagation delay is negligible, the
function f(γ) can be any decreasing function in order to enable the
sensor with the largest index γn to transmit, as illustrated in Fig. 1.
However, in a realistic case where the propagation delay can not be
ignored, f(γ) has to be designed judiciously. The design of f(γ)
is based on finding values range which bounds most of the energy-
efficiency index values and provides separation in backoff time only
for sensors with energy-efficiency index value in this range. Sensors
with energy-efficiency index value above this range transmit imme-
diately, while sensors with energy-efficiency index value below this
range do not listen the channel and wait for the next data collection.
Hence, the transmission scheduling can be readily implemented in a
distributed fashion via opportunistic carrier sensing. By implement-
ing opportunistic carrier sensing we define the transmission schedul-

Fig. 1. An example of decreasing function f(γ) for opportunistic
carrier sensing.

ing problem in this paper explicitly by:

n̂(�) = arg max
1≤n≤N

γn(�) s.t. eres,n(�) ≥ etr,n(�) + eth ,

(4)
where n̂(�) denotes the index of the chosen sensor in the �′th data
collection, and γn(�) is chosen according to some scheme. n and �
denote the sensor index and the data collection index, respectively.
Therefore, sensor which has the largest index γn(�) transmits only if
after the transmission it is still functional, and consequently the net-
work lifetime is prolonged. We denote the constraint in (4) as local
survivability condition. Our goal is to find a strategy for obtaining
γn(�) in problem (4) in terms of maximizing the network lifetime
according to (3).

3.2. Overview of Distributed Protocols

We now review some existing distributed protocols:

3.2.1. Pure Opportunistic Protocol

The pure opportunistic protocol has been discussed in [5], [7], [6],
and serves us in the continuation of this paper. The pure opportunis-
tic strategy is to choose the sensor with the best channel in order
to minimize the average transmission energy. Explicitly, the energy-
efficiency index in (4) at the n′th sensor selection during the �′th data
collection is given by:

γn(�) = |hn(�)|2 ∀n ∈ N . (5)

where h represents the channel state, N represents the number of
sensors in the network, and � represents the data collection index.
By implementing the pure opportunistic protocol via opportunistic
carrier sensing, the energy-efficiency indices values range does not
change during the network lifetime. Therefore, only one predeter-
mined backoff function f(γ) is needed during the network lifetime.
A backoff function f(γ) has been constructed in [7] for the pure op-
portunistic protocol which has very good performance with respect
to propagation delay. However, since the pure opportunistic protocol
does not exploit REI, the wasted energy across the sensors when the
network dies is extremely high . Therefore, the performance of the
pure opportunistic protocol in terms of network lifetime is extremely
poor.

3.2.2. Dynamic Protocol for Lifetime Maximization (DPLM)

In this protocol, proposed in [6] , γn is defined by:

γn(�) =
eres,n(�)

etr,n(�)
∀n ∈ N . (6)

We infer from (6) that this scheme selects the sensor which is able to
transmit the highest number of times under the current channel con-
dition, during each data collection. It was shown in [6] that DPLM
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is asymptotically optimal (when ein → ∞). Specifically, the rel-
ative performance loss of DPLM as compared to the optimal pro-
tocol diminishes with the initial energy. However, the implementa-
tion of DPLM via opportunistic carrier sensing is more complicated.
By implementing DPLM the energy-efficiency indices values range
is time-varying due to decreasing residual energy during each data
collection. Therefore, in order to minimize the occurrence of colli-
sions, the backoff function should vary during the network lifetime
(theoretically different backoff functions is required for each data
collection, which is impractical). Another challenge is constructing
backoff function for each realization during the network lifetime (de-
pending on channel distribution and residual energy distribution).

4. TIME-VARYING OPPORTUNISTIC PROTOCOL (TOP)

In this section we introduce the Time-varying Opportunistic Protocol
(TOP). By implementing TOP we require:
1. Opportunistic strategy in terms of favoring sensors with better
channels when the network is young, while less opportunistic
and more conservative strategy in terms of prioritizing sensors
with higher residual energy when the network is old.

2. Simple implementation via opportunistic carrier sensing.
3. Approaching the pure opportunistic protocol as ece → 0.

The first and the second requirements have been discussed in Sec.
2 and 3. The third requirement is analyzed in the complete paper
of TOP [8]. In [8] we show that selecting the sensor with the best
channel for transmission is generally preferred over other distributed
protocols in the case where ece → 0 (i.e. no energy is consumed dur-
ing channel estimation). Then, we consider the realistic case where
ece �= 0. By estimating the future energy loss due to CSI acquisition,
we design TOP strategy. We show that selecting the sensor with the
best channel for transmission as long as the sensor has sufficient en-
ergy for current transmission plus the estimated future energy loss, is
generally preferred over other distributed protocols.

4.1. The Protocol

We now present TOP algorithm. During the �′th data collection we
assume that the AP has sent the �′th beacon toward the network and
each sensor has estimated its channel gain hn(�) and calculated the
required transmission energy etr,n according to (1).
Step 1. Expected Transmission Energy Estimation: Each sensor
which has sent data within previous data collections stores the aver-
age transmission energy over all the previous transmissions and up-
dates the estimation each transmission. An alternative scheme is to
estimate the expected transmission energy by exploiting knowledge
from other sensors transmissions. This can be done by exploiting the
delay τ during the carrier sensing. The transmission energy can be
discover by f−1(τ), where f(τ) is discussed in Sec. 3.1.
Step 2. Desired Expected Wasted Energy Estimation: The desired
expected wasted energy is estimated by:

Ê {Ew}n
(�) = N

(
eth +

Ê{etr}n(�)

2

)
, (7)

where Ê {etr}n
(�) is the estimated expected transmission energy

calculated in step 1. i.e. all the sensors have been exploited when the
network is defined as nonfunctional.
Step 3. Expected Lifetime Estimation: The expected lifetime in (3)
is estimated by:

Ê {L}
n

(�) =
N·ein−Ê{Ew}n(�)

N·ece+Ê{etr}n(�)
. (8)

Notice that TOP requires each sensor to know the number of sensors
in the network, in order to estimate the network lifetime. In most net-
works this information is essential from other considerations (such as
carrier sensing). Estimating the number of sensors is often done by
the AP ([9], [10]). Therefore, the AP can transmit this information
back to the sensors.
Step 4. Expected Future Energy Loss Estimation: The expected fu-
ture energy loss consumed by future channel estimations for each
sensor, E {ef}n

(�), is given by:

Ê {ef}n
(�) =

{(
Ê {L}

n
(�) − �

)
ece, if Ê {L}

n
(�) ≥ �

0 , o.w
, (9)

where Ê {L}
n

(�) − � is the estimated remaining time until the net-
work is defined as nonfunctional.
Step 5. Transmission Scheduling: The sensor with the best channel
gain is selected for transmission as long as the sensor has sufficient
energy for current transmission plus the estimated future energy loss.
As a result each sensor updates its corrected residual energy, e∗res,n

by:
e
∗
res,n(�) = eres,n(�) − Ê {ef}n

(�) , (10)
where e∗res,n(�) is the corrected residual energy of sensor n. Hence,
each sensor transmits in the following scheme:

n̂(�) = arg max
1≤n≤N

γn(�) s.t. e∗res,n(�) ≥ etr,n(�) + eth ,

(11)
where n̂(�) denotes the index of the chosen sensor, and γn(�) is cho-
sen according to

γn(�) = |hn(�)|2 ∀n ∈ N . (12)

We denote the constraint in (11) as long term local survivability con-
dition.

4.2. TOP Characteristics

4.2.1. TOP Strategy

As long as the network is young, the long term local survivability
condition is not valid, and the chosen sensor is determined accord-
ing to the best channel during each data collection. However, as the
network becomes older, the long term local survivability condition is
valid for some sensors. In that case, the chosen sensor is determined
according to the channel gain and sufficient residual energy. Con-
sequently, sensor which has better channel gain may not transmit,
although it has sufficient energy for current transmission. This is the
first requirement which we aimed to execute.

4.2.2. Opportunistic Carrier Sensing Implementation

By implementing TOP, γn is simply the channel gain if the long term
local survivability condition is not valid and does not depend on the
decreasing residual energy. Therefore, only one predetermined back-
off function f(γ) is needed during the network lifetime (a backoff
function f(γ) for the case where the energy-efficiency indices are the
channel gain has been constructed in [7] which achieves very good
performance with respect to propagation delay). This is the second
requirement which we aimed to execute.

4.2.3. Special Case : ece → 0

By implementing TOP when ece → 0, the corrected residual energy
in (10), e∗res,n, is equal to the residual energy eres,n. Therefore, TOP
approaches the pure opportunistic protocol as ece → 0. This is the
third requirement.
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4.2.4. Asymptotic Optimality of TOP

Theorem 1 Assume the transmission energy is bounded by etr,min ≤
etr,n(�) ≤ etr,max, and the channel gains are i.i.d across data col-
lections and across sensors. Then, the relative performance loss of
TOP as compared to the optimal protocol decreases as the initial
energy across the sensors increases. Explicitly, we obtain:

lim
ein→∞

Pr

(
Lopt − LTOP

Lopt
= 0

)
= 1 , (13)

where Lopt and LTOP denote the network lifetime achieved by the
optimal protocol and TOP, respectively.
The proof is given in [8].

5. SIMULATION EXAMPLES

In this section we compare the performance of the proposed Time-
varying Opportunistic Protocol (TOP) with the following protocols
which have been proposed recently: 1) the pure opportunistic pro-
tocol; 2) Max-Min protocol ([6]); 3) Dynamic Protocol for Life-
time Maximization (DPLM). We simulated network with N sen-
sors which transmit through a flat block fading channel according to
Rayleigh fading distribution, i.i.d across data collections and across
sensors. We set the channel gain mean to 1, E

{
|hn|

2
}

= 1.We as-
sume perfect carrier sensing without collisions. The initial energy of
each sensor was set to ein = 10. We normalized the channel band-
width to 1 (W = 1), and the SNR was set to ρ � Pout

WN0
= 3dB. The

normalized required power for transmission, times the data packet
size, with respect to the normalized bandwidth is Ptr · I = 5. The
normalized energy required for a sensor for CSI acquisition is ece =
0.001. We investigate the expected network lifetime versus the net-
work size. As shown in Fig. 2, TOP achieves significant perfor-
mance gain over all other protocols. TOP achieves about 9% relative
performance gain over DPLM (TOP also has simpler implementa-
tion and achieves a better performance via carrier sensing). TOP
achieves about 45% relative performance gain over the pure oppor-
tunistic protocol (and has similar implementation and achieves simi-
lar performance via carrier sensing). DPLM outperforms Max Min,
and the pure opportunistic protocol performs the worst. In Fig. 3
we show the expected wasted energy versus the network size. As ex-
pected, the pure opportunistic performance is extremely poor, while
TOP, by balancing the opportunistic strategy when the network is
old, outperforms both DPLM and MAx-Min protocols.
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Fig. 2. Expected lifetime versus the number of sensors.
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Fig. 3. Expected wasted energy versus the number of sensors.

6. CONCLUSIONS

In this paper we considered distributed MAC protocols for wireless
sensor networks lifetime maximization. We proposed Time-varying
Opportunistic Protocol (TOP). The design principle of TOP algo-
rithm is to prioritize sensors with better channels when the network
is young, while prioritize sensors with more residual energies when
the network is old. TOP also simplifies the implementation of carrier
sensing as compared to other distributed MAC protocols. Simulation
results have shown that TOP achieves significant performance gain
over other protocols that have been proposed recently.
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