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Abstract—In this paper we study the computation of the Nash
bargaining solution for the two players, K frequency bands case,
under joint FDM/TDM spectrum allocations and total power
constraint. The results improve previous analysis by Han et al. We
provide a computationally efficient algorithm as well as detailed
analysis of the Karush-Kuhn-Tucker (KKT) equations necessary
for proving the correctness of the algorithm. Simulation results
demonstrating the gain of the NBS over competitive approaches
are also provided.
Keywords: Spectrum optimization, distributed coordination,
game theory, interference channel, multiple access channel, power
constraint.

I. INTRODUCTION

The interference channel is a conflict situation between the
interfering links [1]. Each link is considered a player in a
general interference game. As such it has been shown that
non-cooperative solutions such as the iterative water-filling,
which leads to good solutions for the multiple access channel
(MAC) and the broadcast channel [2] can be highly suboptimal
in interference channel scenarios [3], [4]. To solve this problem
there are several possible approaches. Our approach is based
on general bargaining theory originally developed by Nash
[5]. In his seminal papers, Nash proposed four axioms that
any solution to the bargaining problem should satisfy. He
then proved that there exists a unique solution satisfying these
axioms.

Recently, bargaining theory has gained popularity as a mean
for spectrum and resource sharing in interference limited
wireless networks. Han et al. [6] analyzed OFDMA systems
under total power constraint. In previous papers [7], [8] we
provided a computationally efficient solution for the Nash
bargaining over the frequency selective channel with power
mask constraint using TDM/FDM strategies similar to those
used by [6]. Bargaining for the MISO channel (multiple access
channel) were considered in [9]. Nockelby et al. [10] consider
the important general case of interference channel with general
PSD allocation. In this case the problem is non-convex, and a
numerical solution is proposed. Schubert and Boche [11], [12]
consider the case of log-convex utility function.

As discussed in [8] not every rate vector achievable for
the interference channel is relevant. Only rate vectors that
dominate component-wise the rates that each user can achieve,
independently of the other users coding strategy are of interest.
The best rate pairs that can be achieved independently of the
other users strategies form a Nash equilibrium [5], and we use
these rates as the disagreement point for our Nash bargaining
solution. For total power limit the Nash equilibrium is achieved
as the fixed point of the Gaussian interference game [13], [4],

[14], [15]. Extensions of the Nash bargaining proposed by
Kalai and Somorodinsky [16] are considered in [17], [18].

In this paper we study the existence of Nash Bargaining
solution under total power constraint. We limit our analysis
to the two user case and show an efficient algorithm for
computing the bargaining solution. The problem has been
previously studied by the paper of Han et al. [6]. However,
in that paper the solution of the KKT equations has been
obtained under approximation of high SNR. In this paper we
propose an alternative formulation of the problem by different
representation of the Lagrangian, using the water levels for
each user instead of the power vectors. By adding constraints
on the relation between the TDM strategies and the water
level, we can show that for each set of water levels there is a
single time/frequency allocation that can potentially solve the
KKT equations. This results in two-dimensional search over
the water levels, with direct computation of the TDM division
for any given pair of water levels. We are able to show that
there is always an optimal solution where users share at most
a single frequency.

II. MODEL FORMULATION

In this section we define the joint FDM/TDM game under
total power constraint. This game is different than the game
defined in [8] in that the power is not fixed at each band, but
the users can optimize their PSD under total power constraint.
This implies that the problem is no longer convex.

Definition 2.1: The N player FDM/TDM game
GTF (N,K, P1, ..., PN ) is a game between N players
transmitting over K frequency bins under total power
constraints for each player. Each user has full knowledge of
the channel matrices Hk. The following conditions hold:

1) Strategies for player i are vectors αi = [αi1, ..., αiK ]T

where αk is the proportion of time the player uses
the k’th frequency channel. and power vectors pi =
〈pi(k) : k = 1, ..., K〉 satisfying its power constraint∑K

k=1 αi(k)pi(k) ≤ Pi. The vector αi is the TDM part
of the strategy.

2) The utility of the i’th player is given by

Ri =
∑K

k=1 αi(k)Ri(k)
=

∑K
k=1 αik log2

(
1 + |hii(k)|2pi(k)

σ2
i (k)

)
.

(1)

Note that interference is avoided by time sharing at each
frequency band, i.e only one player transmits at a given
frequency bin at any time.
Since at each time instance each frequency is used by a single
user, each user can perform water-filling over its bands, taking



into account the length of the time slots. Also note that if
pi(k) = 0 then necessarily αi(k) = 0 for any pareto optimal
solution. Similarly, if αi(k) = 0 we have pi(k) = 0. Since
each user performs water-filling over its band we can replace
its strategy by a choice of the relevant water level Li and the
TDM partition vector αi. Thus,

pi(k) =
[
Li − σ2

i (k)
]
+

, i = 1, 2. (2)

Therefore, the rates can be written as:

Ri (k) = log

(
1 +

[
Li − σ2

i (k)
]
+

σ2
i (k)

)
. (3)

More explicitly the rates are:

Ri (k) =

{
log

(
Li

σ2
i (k)

)
Li ≥ σ2

i

0 Li < σ2
i

. (4)

The level Li is set such that

Pi =
∑

k∈supp(αi)

αi(k)
[
Li − σ2

i (k)
]
+

. (5)

By the comments above if Li ≤ σ2
i (k) we must have pi(k) =

0 so that αi(k) = 0, and therefore αi(k)
[
Li − σ2

i (k)
]

= 0.
Hence, we can write

Pi =
K∑

k=1

αi(k)
[
Li − σ2

i (k)
]
. (6)

This will significantly simplify the analysis of the KKT
equations in the next section. Also by Pareto optimality, we
do not allocate bands that are not used to a user, so that the
following constraint must be satisfied:

αi(k)
(
Li − σ2

i (k)
) ≥ 0, k = 1, ..., K. (7)

Similarly to [8] we have from Pareto optimality that for all k:

N∑

i=1

αi(k) = 1, (8)

except when both users prefer not to use the frequency k. In
that case α1(k) = α2(k) = 0. In any case

N∑

i=1

αi(k) ≤ 1. (9)

Finally, we require that there is at least one point that is as
good as the competitive solution, i.e., for all i:

RiC ≤
K∑

k=1

αi(k)Ri(k). (10)

III. ANALYSIS OF KKT

To obtain an efficient algorithm for the power limited two
users and K frequency bands case, we explore the KKT
conditions for the problem. Since solving the KKT equations
is a necessary condition for solving the optimization problem
we will show that given water levels L1, L2 the problem can
be efficiently solved. In the generic case the solution will be
unique for each L1, L2 and the power constraints will allow
us to choose the proper L1, L2. However, in certain cases
(of probability 0) the channel might satisfy certain non-linear
constraints. In this case the problem will be reduced to a
convex optimization for solving for α that solves the KKT
equations and maximizes the Nash function given L1, L2. It
is possible to prove that even in these cases, there is an optimal
partition of the frequencies where at most a single frequency
is shared.

The Lagrangian of the problem f (α) is given by

f (α, L) = − ∑N
i=1 log (Ri(αi)−RiC)

+
∑K

k=1 λk

(∑N
i=1 αi(k)− 1

)

− ∑K
k=1

∑N
i=1 µi(k)αi(k)

− ∑N
i=1 δi

(∑K
k=1 αi (k)Ri (k)−RiC

)

+ ζi

(∑K
k=1 αi (k) {Li − σ2

i (k)} − Pi

)

− ∑N
i=1

∑K
k=1 γi,kαi (k)

(
Li − σ2

i (k)
)

.

(11)
Taking the derivative with respect to the variables αi(k) and
Li and comparing the result to zero, we get

df(α,L)
dαi(k) = − Ri(k)

Ri(αi)−RiC
+ λk − µi(k)− δi

+ ζi

(
Li − σ2

i (k)
)

− γi,k

(
Li − σ2

i (k)
) (12)

df(α,L)
dLi

= −
∑K

k=1 αi(k)

Li(Ri(αi)−RiC)

− δi

∑K
k=1 αi(k)

Li

+ ζi

∑K
k=1 αi (k)

− ∑K
k=1 γi,kαi (k)

, (13)

with the constraints
∑N

i=1 αi (k) ≤ 1,∑K
k=1 αi (k)

(
Li − σ2

i (k)
)

= Pi

, (14)

and
δi (Ri (αi)−RiC) = 0,

µi(k)αi (k) = 0,
γi,kαi (k)

(
Li − σ2

i (k)
)

= 0,
γi,k ≥ 0,

µi(k) ≥ 0, δi ≥ 0.

(15)

If there is a solution to the optimization problem, then δi = 0
for i = 1, 2. Based on (13) we obtain

1
Li (Ri (αi)−RiC)

= ζi −
∑K

k=1 γi,kαi (k)∑K
k=1 αi (k)

(16)



and when αi (k) 6= 0 and Li 6= σ2
i (k) we get based on

(12,14,15,16)

Ri (k)− (Li−σ2
i (k))

Li

Ri (αi)−RiC
= λk, (17)

or equivalently

Ri (k)− 1 + e−Ri(k)

Ri (αi)−RiC
= λk. (18)

Using equation (18) for i = 1, 2 we obtain that

g(R1 (k))
R1 (α1)−R1C

=
g(R2 (k))

R2 (α2)−R2C
, (19)

where g(x) = x + e−x − 1. Therefore

g(R1 (k))
g(R2 (k))

=
R1 (α1)−R1C

R2 (α2)−R2C
. (20)

Note that the right hand side of (20) is independent of
frequency. Hence for all frequencies k, m satisfying 0 <
α1(k), α1(m) < 1 we must have

g(R1 (k))
g(R2 (k))

=
g(R1 (m))
g(R2 (m))

. (21)

Note also that when αi(k) = 0 we have

Ri (k)− 1 + e−Ri(k)

Ri (αi)−RiC
≤ λk. (22)

since µi(k) ≥ 0. Furthermore, when α1(k) = 0 we necessarily
have

g(R1 (k))
R1 (α1)−R1C

≤ g(R2 (k))
R2 (α2)−R2C

(23)

and when α2(k) = 0

g(R1 (k))
R1 (α1)−R1C

≥ g(R2 (k))
R2 (α2)−R2C

. (24)

The last two observations will assist us in devising the
algorithm later, since we will be able to sort the frequencies
according to g(R1(k))/g(R2(k)).

Given L1, L2 we can immediately distinguish the frequen-
cies which are not used by any of the users as those which
satisfy L1 < σ2

1(k), L2 < σ2
2(k), where α1(k) = α2(k) = 0

and ignore them. To simplify notation we will assume that
we do not have such frequencies, and α2(k) = 1 − α1(k).
Substituting (1) into (20) we obtain a set of d = |D| (where
D is the set of frequencies that satisfy Eq. (25) linear equations
in the variables α1(1), ..., α1(K):

g(R1(k))
g(R2(k))

=
∑K

m=1 α1(m)R1(m)∑K
m=1(1− α1(m))R2(m)

, k ∈ D, (25)

and a set of k − d inequalities:

g(R1(k))
g(R2(k)) >

∑K
m=1 α1(m)R1(m)∑K

m=1(1−α1(m))R2(m)
, α1(k) = 1

g(R1(k))
g(R2(k)) <

∑K
m=1 α1(m)R1(m)∑K

m=1(1−α1(m))R2(m)
, α1(k) = 0

. (26)

TABLE I
ALGORITHM FOR COMPUTING THE 2X2 FREQUENCY SELECTIVE NBS

UNDER AVERAGE POWER CONSTRAINT

Initialization:
Compute lower and upper bounds of the water levels, n = 1, 2:
Ln,min- results from water filling with no interference,

Ln,max = Pn + maxk

(
σ2

n(k)

hnn(k)

)
- maximum water levels.

Set:
4P - power accuracy.
4L = 4P/K - water level accuracy.
Divide the set of possible values of water levels L1, L2

to a grid with M2 points with granulite 4L.
Computation: For any point in the 2−D grid :
Compute the rates Rn (k) , n = 1, 2.
Sort the frequency bin according to the ratio
g(R1(k))
g(R2(k))

in decreasing order.
Solve NBS according to Eq. (23).
Compute the total power used by each user.
Compute the rates obtained by NBS.
Select the point in the grid that maximizes Nash Bargaining function,
and has total power per user in the range [Pn −4P, Pn +4P ]

Let ri =
(
Ri(k1), ..., Ri(k|D|)

)T
, k1, .., K|D| ∈ D, and

gi =
(
g(Ri(k1)), ..., g(Ri(k|D|))

)
. The equations above can

be written as
(
g1r

T
2 + g2r

T
1

)
β = (rT

2 1)g1, (27)

where β = [αk1 , ..., αkd
]T .

Equations (27), (5), and inequalities provide a unique solu-
tion as long as there are at most two frequencies which satisfy
(20). This already provides a simple algorithm for solving the
2 users case. Perform a two-dimensional search over L1, L2

and for each L1, L2 find the cutoff frequencies which satisfy
(20). This defines a unique partition if there are at most two
such frequencies. Otherwise for these L1, L2 we can solve a
convex optimization problem, for maximizing

f (α, L) = −
N∑

i=1

log (Ri(αi)−RiC) (28)

under the linear constraints (27), (5). It turns out (the proof
is omitted due to its complexity) that an optimal solution can
always be chosen such that at most a single frequency is shared
between the users. Unlike the power mask constraint case, this
proof is significantly more complicated. Full description of the
algorithm will be provided in the final version of this paper.

IV. SIMULATIONS

In this section we compare in simulations the Nash Bar-
gaining Solution to the competitive solution for frequency
selective fading under average power constraint. We performed
extensive simulations that demonstrate the advantage of the
NBS over the competitive approach for the frequency selective
fading channel, as a function of the mean interference power.
The performance of the NBS was evaluated according to
two criteria. First, the minimum relative improvement, ∆min,
describing the individual minimum price of anarchy, that a
player can gain by cooperation. Second, the maximum relative



improvement, ∆max, describing the individual maximum gain
by cooperation. These criteria are defined as follows:

∆min = min
{
RNBS

1 /RC
1 , RNBS

2 /RC
2

}
∆max = max

{
RNBS

1 /RC
1 , RNBS

2 /RC
2

} (29)

In this simulation we demonstrate the advantage of the Nash
bargaining solution over competitive approach of iterative
water filling (IWF), for a frequency selective interference
channel. We assumed that two players having direct channels
that are standard Rayleigh fading channels (σ2 = 1), with
SNR=30 dB, and co-channel interference due to the second
player (hij). The SINR of each player was varied from 8
dB to 1 dB (σ2

hij
= 0.1, ,̇1). We have used 16 frequency

bins. At each pair of variances σ2
1 = σ2

h21
, σ2

2 = σ2
h12

, we
randomly picked 1000 channels (each comprising of 16 2x2
matrices). The results of the minimal relative gain, and the
maximum relative gain (29), are depicted in figures (1), and
(2), respectively. We can clearly see that the relative gain of the
Nash bargaining solution over the competitive solution highly
depends on the SINR. The maximum value of the gain, which
is about 1.8 (80%) is obtained when weaker player has SINR
of 1 db (his NBS gain is 1.8), and the strongest player has
SINR of 8 dB (his NBS gain is 1.1). If we are measuring the
minimum NBS, we see that both of the players can gain due to
cooperation between 10%-40%, when the SINR is limited to
the range of 1 dB-8 dB. The gain reduces dramatically if the
SINR is very high or very low. At very high SINR, the result of
IWF is partitioning of the band between the two users, so there
is no NBS since the strongest player will not agree to get less
than Ric. At very low SINR, the effect of the interference is
very small and the two players prefer to share the all band. The
results that we show are in contrast to NBS under power mask
constraint, where the gain increases as SINR decreases. This is
not surprising, since under power mask constraint the players
can not use water filling for optimized power allocation.

V. CONCLUSIONS

In this paper we extended the results of [7], [8] to the
two players frequency selective channel with total power
constraint. Similarly to the previous case we have a very
efficient algorithm. However, in contrast to the PSD limited
case, the algorithm requires initial step of iterative waterfilling
and a two dimensional optimization over the water levels in
the Nash bargaining solution.
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