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Finite Word Length Effects on Transmission Rate in
Zero Forcing Linear Precoding for Multichannel DSL
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Abstract—Crosstalk interference is the limiting factor in trans-
mission over copper lines. Crosstalk cancellation techniques show
great potential for enabling the next leap in DSL transmission rates.
An important issue when implementing crosstalk cancelation tech-
niques in hardware is the effect of finite word length on perfor-
mance. In this paper, we provide an analysis of the performance
of linear zero-forcing precoders, used for crosstalk compensation,
in the presence of finite word length errors. We quantify analyti-
cally the tradeoff between precoder word length and transmission
rate degradation. More specifically, we prove a simple formula for
the transmission-rate loss as a function of the number of bits used
for precoding, the signal-to-noise ratio, and the standard line pa-
rameters. We demonstrate, through simulations on real lines, the
accuracy of our estimates. Moreover, our results are stable in the
presence of channel estimation errors. Lastly, we show how to use
these estimates as a design tool for DSL linear crosstalk precoders.
For example, we show that for standard VDSL2 precoded systems,
14 bit representation of the precoder entries results in capacity loss
below 1% for lines over 300 m.

Index Terms—Capacity estimates, linear precoding, multi-
channel DSL, quantization, vectoring.

I. INTRODUCTION

SL systems are capable of delivering high data rates
D over copper lines. A major problem of DSL technolo-
gies is the electromagnetic coupling between the twisted pairs
within a binder group. Reference [1] and the recent exper-
imental studies in [2] and [3] have demonstrated that vec-
toring and crosstalk cancelation allow a significant increase of
the data rates of DSL systems. In particular, linear precoding
has recently drawn considerable attention [4], [5] as a nat-
ural method for crosstalk precompensation as well as crosstalk
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cancelation in the receiver. In [2] and [3], it is shown that
optimal cancellation achieves capacity boost ranging from 2x
to 4x and also substantially reduces per-loop capacity spread
and outage, which are very important metrics from an oper-
ator’s perspective. References [5] and [6] advocate the use of
a diagonalizing precompensator and demonstrate that, without
modification of the customer premise equipment (CPE), one
can obtain near optimal performance. Recent work in [7] and
[8] has shown that a low-order truncated series approximation
of the inverse channel matrix affords significant complexity
reduction in the computation of the precoding matrix. Im-
plementation complexity (i.e., the actual multiplication of the
transmitted symbol vector by the precoding matrix) remains
high, however, especially for multicarrier transmission, which
requires one matrix-vector multiplication for each tone. Cur-
rent advanced DSL systems use thousands of tones. In these
conditions, using minimal word length in representing the pre-
coder matrix is important. However, using coarse quantization
will result in substantial rate loss. The number of quantization
bits per matrix coefficient is an important parameter that af-
fects the system’s performance—complexity tradeoff, which we
focus on in this paper. We provide closed-form sharp analytic
bounds on the absolute and relative transmission-rate loss. We
show that both absolute and relative transmission loss decay
exponentially as a function of the number of quantizer bits and
provide explicit bounds for the loss in each tone. Under ana-
lytic channel models as in [9] and [10], we provide refined and
explicit bounds for the transmission loss across the band and
compare these to simulation results. This explicit relationship
between the number of quantizer bits and the transmission-rate
loss due to quantization is a very useful tool in the design of
practical systems.

The structure of this paper is as follows. In Section II, we
present the signal model for a precoded discrete multichannel
system and provide a model for the precoder errors we study.
In Section III, a general formula for the transmission loss of a
single user is derived. In Section IV, we focus on the case of
full channel state information where the rate loss of a single user
results from quantization errors only. Here we prove the main
result of this paper in Theorem 4.1. We provide explicit bounds
on the rate loss under an analytic model for the transfer func-
tion as in [9]. We also study a number of natural design criteria.
In Section V, we provide simulation results on measured lines,
which support our analysis. Moreover, we show through simu-
lation that our results are valid in the presence of measurement
errors. The appendixes provide full details of the mathematical
claims used in the main text.
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II. PROBLEM FORMULATION

A. Signal Model

In this section, we describe the signal model for a precoded
discrete multitone (DMT) system. We assume that the trans-
mission scheme is frequency-division duplexing, where the up-
stream and the downstream transmissions are performed at sep-
arate frequency bands. Moreover, we assume that all modems
are synchronized. Hence, the echo signal is eliminated, as in
[1], and the received signal model at frequency f is given by

x(f) =H(f)s(f) +n(f) ()

where s(f) is the vectored signal sent by the optical network
unit (ONU), H(f) is a p X p matrix representing the channels,
n(f) is additive Gaussian noise, and x(f) (conceptually) col-
lects the signals received by the individual users. The users es-
timate rows of the channel matrix H( f), and the ONU uses this
information to send P(f)s(f) instead of s(f). This process is
called crosstalk precompensation. In general, such a mechanism
yields

x(f) = H(f)P(f)s(f) +n(f)- 2

Denote the diagonal of H(f) by D(f) = diag(H(f)) and let
P(f) = H(f)~'D(f), as suggested in [5]. With this, we have

x(f) =D(f)s(f) +n(f) 3

showing that the crosstalk is eliminated. Note that with F(f) =
H(f) — D(f), we have the following formula for the matrix

P(f):
P(f) = (I+D Y(HF() . )

Following [5], we assume that the matrices H( f) are row-wise
diagonally dominant, namely, that

[[iill > [[ijll, Vi # j. ()

In fact, motivated in part by Gersgorin’s theorem [11], we pro-

pose the parameter (H)
(Zm |h,;j|> ©
|hiil

as a measure for the dominance. In most downstream scenarios,
the parameter r is indeed much smaller than one. We empha-
size that typical downstream VDSL channels are row-wise di-
agonally dominant even in mixed-length scenarios, as demon-
strated in [8].

B. A Model for Precoder Errors

In practical implementations, the entries of the precoding
matrix P will be quantized. The number of quantizer bits used
is dictated by complexity and memory considerations. Indeed,
relatively coarse quantization of the entries of the precoder P
allows significant reduction of the time complexity and the
amount of memory needed for the precoding process. The
key problem is to determine the transmission-rate loss of an
individual user caused by such quantization. Another closely
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related problem is the issue of robustness of linear precoding
with respect to errors in the estimation of the channel matrix.
The mathematical setting for both is that of error analysis. Let

P=I+D'F+E) ' +E, @)

where:
* E; models the relative error in quantizing or measuring
the channel matrix H;

* E, models the errors caused by quantizing the precoder P.
The problem is to determine the capacity of the system, and the
capacity of each user, in terms of the system parameters and
the statistical parameters of the errors. Note that (7) captures
three types of errors: errors in the estimation of H, quantization
errors in the representation of H, and quantization errors in the
representation of the precoder P.

Our focus will be on the study of the effect of quantization
errors in the representation of the precoder on the capacity of
an individual user. Nevertheless, the estimation errors resulting
from measuring the channel cannot be ignored. We will show
that the analysis of quantization errors and estimation errors can
be dealt with separately (see Remark 3.2 after Lemma 3.1). This
allows us to carry out analysis under the assumption of perfect
channel information. Then, we show in simulations that when
the estimation errors in channel measurements are reasonably
small, our analytical bounds remain valid.

C. System Model

We now list our assumptions regarding the errors Eq, Eo,
the power spectral density of the users, and the behavior of the
channel matrices.

1) Perfect CSI: Perfect channel state information (CSI),
namely

E,(f) =0, Vf. (8)

2) Quant (2~%): The quantization error of each matrix ele-
ment of the precoder is at most 2~¢. Namely

|E2(f)t,j| S 2_d7 vf, V’L,j (9)

3) DD: The channel matrices are row-wise diagonally dom-
inant (DD)

r(H(f)) <1, Vf.

4) SPSD: The power spectral density (PSD) of all the users
of the binder is the same. Namely, we assume that for some fixed
unspecified function P(f), we have

Fi(f) = P(f), Vi.

The main result of this paper (Theorem 4.1) is based on as-
sumptions (8)—(11). Assumption SPSD can be lifted, as shown
in Appendix H. For the sake of clarity, we present only the sim-
plified result in the body of this paper.

In order to obtain sharp analytic estimates on the transmission
loss in actual DSL scenarios, we need to incorporate some of
the properties of the channel matrices of DSL channels into our
model. In particular, we will assume the following.

(10)

Y
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5) Werner Channel Model: The matrix elements of the
channel matrices H( f) behave as in the model of [9]. Namely,
following [9], we assume the following model for insertion
loss:

[IE(f ) = em2tVT (12)
where £ is the DSL loop length (in meters), f is the frequency
in hertz, and « is a parameter that depends on the cable type.
Furthermore, crosstalk is modeled as

B (02 = K(6) f2HE(f, 0. (13)
Here K ({) is a random variable studied in [10]. The finding is
that K (¢) is a log-normal distribution with expectation, denoted
there ¢; (¢), that increases linearly with £.

An additional assumption that we will make concerns the be-

havior of the row dominance of the channel matrices H( f, ).
6) Sublinear Row Dominance:

r(H(f, 0) <) +200)f

where 7»(¢) = O(\V/1).
Remark 2.1: Note that

HFEXT( p)
mr(rLe - VEOF

(14)

The sublinearity in f follows by studying r(H(Z, f)) in terms
of p? random variables behaving as K ().

D. Justification of the Assumptions

Perfect CSI is plausible due to the quasi-stationarity of DSL
systems (long coherence time), which allows us to estimate the
channel matrices at high precision.

Quant (2-%) is a weak assumption on the type of the quan-
tization process. Informally, it is equivalent to an assumption
on the number of bits used to quantize an entry in the channel
matrix. In particular, our analysis of the capacity loss will be in-
dependent of the specific quantization method, and our results
are valid for any technique that quantizes matrix elements with
bounded errors.

Assumption DD reflects the diagonal dominance of DSL
channels. While linear precoding may result in power fluc-
tuations, the diagonal dominance property of DSL channel
matrices makes these fluctuations negligible within the 3.5 dB
fluctuation allowed by the PSD template (G993.2). For ex-
ample, if the row dominance is up to 0.1, the effect of precoding
on the transmit powers and spectra will be at most 1 dB.

Assumption SPSD [see (11)] is justified in a system with ideal
full-binder precoding, where each user will use the entire PSD
mask allowed by regulation. Note that in [3], it is shown that
DSM3 provides significant capacity gains only when almost all
pairs in a binder are coordinated. Thus the equal transmit spectra
assumption is reasonable in these systems. However, we also
provide in Appendix H a generalization of the main result to a
setting in which this assumption is not satisfied.

1471

Assumption Werner Channel Model does not need justifica-
tion, whereas our last assumption, Sublinear Row Dominance,
was verified on measured lines [3] and can also be deduced an-
alytically from Werner’s model. In practice, the type of fitting
required to obtain vy (£), v2(¢) from measured data is simple and
can be done efficiently. Moreover, the line parameters tabulated
in standard (e.g., R,L.,C,G parameters of the two-port model),
together with the 99% worst case power-sum model used in
standards [12], provide another way of computing the constants

71 (5): Y2 (£)~

III. A GENERAL FORMULA FOR TRANSMISSION LOSS

The purpose of this section is to provide a general formula for
the transmission-rate loss of a single user, resulting from errors
in the estimated channel matrix as well as errors in the precoder
matrix. First, we develop a useful expression for the equivalent
channel in the presence of errors. This is given in (17). Next, a
formula for the transmission loss is obtained in (30). The for-
mula compares the achievable rate of a communication system
using an ideal ZF precoder as in (4) versus that of a communi-
cation system whose precoder is given by (7). This formula is
the key to this whole paper. Note that we use a gap analysis as
in [13] and [14]. A useful corollary in the form of (34) is de-
rived. This will be used in the next section to obtain bounds on
capacity loss due to quantization.

Let H(f) = D(f)+F(f) be a decomposition of the channel
matrix at a given frequency to diagonal and nondiagonal terms.
Thus D(f) is a diagonal matrix whose diagonal is identical to
that of H( f). Also, we let SNR;( f) be the signal-to-noise ratio
of the 7th receiver at frequency f

Eln;(f)>

In this formula, P;(f) is the PSD of the ith user at frequency f
and n;(f) is the associated noise term. We denote

SNR;(f) = (15)

o2 (f) = Elni(f). (16)

A. A Formula for the Equivalent Channel in the Presence of
Errors

We first derive a general formula for the equivalent signal
model. The next lemma provides a useful reformulation of the
signal model in (2).

Lemma 3.1: The precoded channel (2) with precoder as in (7)
is given by

x(f) =D(f)s(f) + D(f)A(f)s(f) +n(f) A7)
with
A(f) = T+D Y(HF(f)E(S)
—Ei(f)T+D HHF(f) +Ea(f) " (18)

The proof is deferred to Appendix A.
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Remark 3.2: For our analysis, we will assume that Eq(f) =
0, in which case the formula for the matrix A simplifies to
A(f) = T+ D (NHF(f)Ea(f). (19)

The relevance of (18) for the experimental part of the paper
(where E; (f) is not assumed to be zero) is explained in the next
remark.

Remark 3.3: In (30), we show that the impact of the errors
E1(f) and Eo(f) on the transmission loss of a user can be com-
puted from the matrix A. Thus, an important consequence of the
lemma is that the effect on transmission loss due to estimation
errors (encoded in the matrix E(f)) and due to quantization
errors (encoded in the matrix Ez(f)) can be studied separately,
as they contribute to different terms in the above expression for

A

B. Transmission Loss of a Single User

Consider a communication system as defined in (3) and de-
note by B the frequency band of the system. We let SNR;( f) be
as in (15) and let I" be the Shannon gap comprising modulation
loss, coding gain, and noise margin. Let R; be the achievable
transmission rate of the ¢th user in the system defined in (3). Re-
call that in such a system, the crosstalk is completely removed,
and therefore

sz/ﬁ%ﬂyuf%ng»#. (20)
féB
Let
Ri(f) = logy(1 + T'SNR;(f)) (1)

be the transmission rate at frequency f (formally, it is just the
density of that rate). Let Rt(f ) be the transmission rate at fre-
quency f of the 2th user, when the precoder in (7) is used. We
note that while R;(f) is a number, the quantity R;(f) depends
on the random variables E;, Es and hence is itself a random
variable. Let ]N%,; be the transmission rate of the sth user for the
equivalent system in (17). Thus

Ri= [ Ri(f)df (22)
By (17), the ith user receives
7=1
=dii(f)(1+Aii(f))si(f) + Ni(f) (23)
where N;(f) = dii(f) 320 2 Dii ()i (f) +ni(f). Assuming

Gaussian signaling, i.e., that all s, ( f) are Gaussian, we conclude
that N;(f) is Gaussian. A similar conclusion is valid in the case
of a large number of users, due to the central limit theorem.
In practice, the Gaussian assumption is a good approximation
even for a modest number of (e.g., eight) users. Recall also that
Gaussian signaling is the optimal strategy in the case of exact
channel knowledge. Therefore, we can use the capacity formula
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for the Gaussian channel, even under precoder quantization er-
rors.

Definition 3.1: The transmission loss L;( f) of the ith user at
frequency f is given by

Li(f) = Ri(f) = Ri(f)- (24)
The total loss of the #th user is
L, = / L;(f)df. (25)

feB
We are ready to deduce a formula for the rate loss of the ¢th
user as a result of the nonideal precoder in (17). Our result will
be given in terms of the matrix A. Recall that A generally de-
pends on both precoder quantization errors E5 and estimation
errors Eq.
Denote by A, ; the (¢, j)th element of the matrix A and let

FZ P (P 26)
Let
adf)=5(f)‘45NR(f)
—; 7 |Au (FPSNRi(f)  @7)
w(A, ) = % o8)
and
ki(f) = %m (29)

Note that a;(f) and hence ¢;(A, f) are independent of the
Shannon gap I'. The next lemma provides a formula for the exact
transmission-rate loss due to the errors modeled by the matrices
E; and E,. The result is stated in terms of quantities ¢(A, f)
and the effective SNR I'"1SNR;(f).

Lemma 3.4: Let H(f) be the channel matrix at frequency f
and let E1, E5 be the estimation and quantization errors, respec-
tively, as in (7). Let L;(f) be the loss in transmission rate of the
ith user defined in (24). Then

Li(A, f) = —logy (1 = ki(f)(1 = 4i(A, f)))

where ¢;(A, f) is given in (28) and k;(f) is given in (29).

In particular, if A;;(f) = -1, the transmission loss is
logy(1 + T'"1'SNR;(f)), where SNR;(f) is defined in (15).
Lastly, if A; ;(f) # —1, we have

Li(A, f) < Maz <0,10g2 <ﬁ>> .

The proof of this lemma is deferred to Appendix B.
To formulate a useful corollary, we introduce the quantities

(30)

€1y

M;(f) = max Pj(f)

i#i Pi(f) 32
ti(f) = max |Ai;]. (33)
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Corollary 3.5: Let H(f) be the p X p channel matrix at fre-
quency f and let E{(f), Eo(f) be the estimation and quan-
tization errors, respectively, as in (7). Let L;(f) be the trans-
mission-rate loss of the sth user defined in (24). Assume that
ti(f) < 1. Then

2
Proof: By (27), we have
=3 PPN (1)
< M;(H)ti(f)*(p — D)SNR; () (35)
L+ ai(f) ST+ (p = DMi(H)t:(f)*SNRi(f).  (36)
Since |A; ;(f)] < t:i(f), we get
1L+ Asi())I* 2 (1= t:(f))*. (37)
Thus by (28), we have
1 al)+1
a(A, f)  1+AL(N)I
O Ve 1)Mi(f)t12(f)SNRi(f). (38)

- (1 —ti(f))?

Notice that the right-hand side is larger than one and, using
(31) of the previous lemma, the proof is complete.

Remark 3.6: We note that under simplifying assumptions,
such as assumption SPSD [see (11)], the above formula reduces
to

Li(A, f) < logy(L + (p — 1)£7 (f)SNR;(f))
—2log,(1 = #:(f))-

Under the assumption Perfect CSI, we have A(f) = (I +
D~Y(f)F(f))E2(f), and since we further assumed that the
channel matrices H(f) are row-wise diagonally dominant, we
see that A(f) ~ Ea(f). Thus, t;(f) ~ 27 and we obtain a
bound of the form

(39)

Li(A, ) < logy(1 4 (p — 1)SNR;(f)27%7)
—2log,(1 —27%). (40)
For a statement of a bound of this form, see (41) of Theorem
4.1.

IV. TRANSMISSION-RATE LLOSS RESULTING FROM
QUANTIZATION ERRORS IN THE PRECODER

In the ZF precoder studied earlier, we can assume without loss
of generality that the entries are of absolute value less than one.
Each of these values is now represented using 2d bits (d bits for
the real part and d bits for the imaginary part, not including the
sign bit). We first consider an ideal situation in which we have
perfect channel estimation.

A. Transmission Loss With Perfect Channel Knowledge

Consider the case where E; = 0 and the quantization error is
given by an arbitrary matrix Es with the property that each entry

1473

is a complex number with real and imaginary parts bounded in
absolute value by 2~<¢. We will not make any further assump-
tions about the particular quantization method employed and
will provide upper bounds for the capacity loss. We do not as-
sume any specific random model for the values of Es because
we are interested in obtaining absolute upper bounds on capacity
loss.

The following theorem describes the transmission-rate loss
resulting from quantization of the precoder.

1) Main Theorem 4.1: Let H(f) be the channel matrix of
p twisted pairs at frequency f and r(f) = r(H(f)) as in (6).
Assume Perfect CSI (8), Quant (2=%) (9), SPSD (11), and that
the precoder P(f) is quantized using d > 1/2+log,(1+7(f))
bits. The transmission-rate loss of the ith user at frequency f
due to quantization is bounded by

Lz(d f) S 10g2(1 + ’Y(d7 f)SNRz(f))

—2logy(1 - v(f)27%) @D
where
v(d. f) = 2(p = (A +7(f))*27* (42)
and
o(f) = V201 +r(f). (43)
Furthermore, suppose d > 1/2 + logy(1 + 7max) With
Pmax = r}leag(r(H(f)) (44)
Then the transmission loss in the band B is at most
[ tor1 4 A@SNR( ) ~21Blr(@) 649)
feB
where | B| is the total bandwidth
Y(d) = 2(1 + ryax)’(p — 1)27% (46)
and
7(d) = logy(1 — (1 + Tpax )27 F05). 47)

The proof of the theorem is deferred to Appendix C.

We now record some useful corollaries of the theorem illus-
trating its value.

Corollary 4.2: The transmission-rate loss L;(A, f) due to
quantization of the precoding matrix by d bits is bounded by

Li(A, f) < logy(1 4 ~(d; f)SNR;(f))
—2logy(1 = v(f)27%)

where 7(d, f) = 2(p— 1)(1+7(/))?2 2 and o(f) = V2(1+
r(f)). I r(f) < 1, a simplified looser bound is given by

(48)

Li(A, f) < 27435 4 log, (1+8(p—1)SNR;(£)27%). (49)

For the derivation of the first inequality, see (98) in
Appendix C. The simplified bound is based on the esti-
mate — log,(1 — 2z) < 2z valid for 0 < z < 0.5.
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The next result is of theoretical value. It describes the asymp-
totic behavior of L;(d) for very large d.

Corollary 4.3: Under the assumptions of the theorem and
assuming that rp,x < 1

Li(d) = O(27%).

More precisely, we have

Li(d) =46 (%2”3) )

Remark 4.4: By definition, f(n) = 6(g(n)) if and only if

We note that for many practical values of the parameters (e.g.,
SNR(f) = 80 dB, d < 20, p < 100), the first term in (45),
involving 2-2d_js dominant. Since we are interested in results
that have relevance to existing systems, we will develop in the
next section, and under some further assumptions (e.g., (12) and
(13)), a bound for L;(d) of the form a;272% + a52~¢ where the
coefficients a1, as are expressible using the system parameters.
This is proposition 4.8.

2) Ensuring Bounded Transmission Loss in Each Frequency
Bin: We now turn to study the natural design requirement that
the transmission loss caused due to quantization of precoders
should be bounded by a certain fixed quantity, say 0.1 bit/s/Hz/
user, on a per-tone basis. Such a design criterion is examined in
the next corollary.

Corollary 4.5: Lett > 0 and let d be an integer with

d>d(t). (50)
With
d(t) = {dl(t)7 if2r —1< 2
/ d,(t), otherwise.
Here
1.25 2t+1
di(t) = log, <%) (51)
and
5(p — 1)(1 2SNR;
dy(t) = 0.5 log, <"(p )(tz:(Tz)) (f>> . (52

Then the transmission loss at tone f due to quantization with d
bits is at most ¢ bps/Hz.

Proof: By Theorem 4.1, the loss at a tone f is bounded by
logy (1 +272%u(f))) —logy((1 — v(f)2-7)%), where u(f) =
2(p — 1)(1+ r)?SNR;(f) and v(f) = V2(1 + r(f)).

Using 1 — 2t < (1 — )%, we get

Li(d, f) < logy (1 +272"u(f))) — logy(1 — 20(f)2").

We will show that the inequality

log, (M) <

1—2v(f)2-4 (53)
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is satisfied for any d > d(t) as in (50) Let z = 2~ so that (53)
is

1 2
Lu(f) < 2t (54)
1—2v(f)z
This yields a quadratic inequality of the form
A2+ Bz<T (55)

with A = u(f), B = 2!*1(f),and T = 2¢ — 1. Using Lemma
10.1 (see Appendix D), we see that if d > dy(t), where

o) ={ ) e
Here
dow (1) = log, <12(52’j(7f)12)t+1> (56)
and
dup(t) = 0.510g, (5(p - 1)((12f_r)1§SNRi(f )> NG

Then L;(d, f) < t.Butdg(t) < d(t) because 2t —1 > In(2)t
and the result follows.

Remark 4.6: The qualitative behavior is d(t) ~ a; — log, (%)
for very small values of ¢, whereas d(t) ~ as — 0.5log,(t) for
larger values of ¢.

B. Applications of the Main Theorem

We now apply Theorem 4.1 to analyze the required quantiza-
tion level for DSM level 3 precoders under several design cri-
teria. To that end, let R; be the transmission rate of the ith user
(20) and let L, be the transmission loss of the sth user as in (24).
The relative transmission loss is defined by

[ Li(f)df
_Li_gem (58)
IR T T R(hdf

feB

The design criteria are as follows.

¢ Absolute/relative transmission loss across the band is

bounded.

e Absolute/relative transmission loss for each tone is

bounded.

1) Bound on Absolute Transmission Loss: From now on, we
will assume that the transfer function obeys a parametric model
as in [9]. Thus we assume (12) and (13).

To bound the absolute transmission loss, we estimate the in-
tegral in (45) of Theorem 4.1.

Using the model (12), one can easily see that

Pi(f) o—200/7
o5, (f) '

Moreover, under the assumption (14), we have a linear bound
on the quantity »(H(f, £)), that is

r(H(f,€) <70 +72(0) f

SNR;(f) =
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where 72(¢) = O(V/£). Putting these together, we can estimate
the integral occurring in the bound (45), and the final conclusion
is described in Theorem 4.8.

The parameters 1 (£), y2(¢) enter our bounds through the fol-
lowing quantity:

pe = 70(£)* + 12y(¢) (7;%3 + 240 (Z;%l) (59)

with vo(£) = 1 + 71(£).

Remark 4.7: The quantity p, behaves as 1+C¢~3/2 and is
close to one for £ = 300 m.

We are now ready to formulate one of the main results of this
paper:

Theorem 4.8: Under assumptions Perfect CSI, Quant (2~¢),
SPSD, Werner Channel Model, and Sublinear Row Dominance
[see (8), (9), and (11)—(14)], we have

Ll(d) S 522—211 +2—d+3.5 (60)
B
where
P 1 1
& = n(2) (p— DEa?—BE_?W' (61)

We provide a proof of this result in Appendix E.

2) Bound on Relative Transmission Loss: The most natural
design criterion is to ensure that the relative capacity loss is
below a predetermined threshold. We will keep our assumption
that the insertion loss behaves as in the model (12) and (13).

Let SNR; = Pi/o2. and SNR] = P;/o2 e~VB be the
SNRs of the ith user at the lowest and highest frequencies, re-
spectively. We also denote by SNR = SNR;/T" and by SNR’, =
SNR!/T. Finally, we denote

1 —— 2 —,
¢i =3 log,(SNR;) + 3 log,(SNR;). (62)
The next proposition shows that ¢; provides a lower bound on
the spectral efficiency of the +th user.

Proposition 4.1: Assume that the attenuation transfer char-
acteristic of the channel is given by (12). Then the spectral effi-
ciency is bounded below by

1

B (63)

The proof is deferred to Section IV-A (Appendix F).

Corollary 4.9: Let n;(d) be the relative transmission rate loss
of the 7th user as in (58). Assume that the transfer function sat-
isfies (12) and (13).

Then

1 -

ni(d) < (272 + —27 435 (64)
Ci
where

& 4 P 1 1
=X = —-1)———=— 65
G ¢ In(2) (p )0121 a’B (2 Lpe ©5)

1475

Proof: This is an immediate consequence of the upper
bound on the average loss L;/B and the lower bound on
1/BR,.

3) Ensuring Bounded Relative Transmission Loss in the
Whole Band: The next corollary yields an upper bound for the
number of quantized bits required to ensure that the relative
loss is below a given threshold.

Corollary 4.10: Let0 < 7 < 1 andletd > d(7), where

d(r) = log,(122), ifT < %
0.5logy( ?{i ), otherwise.

Then the relative transmission loss caused by quantization with
d bits is at most 7.

The proof is a simple application of the previous bound on
the relative transmission loss and Lemma 10.1 Appendix D.

V. SIMULATION RESULTS

To check the quality of the bounds in Theorem 4.1 and its
corollaries, we compared the bounds with simulation results,
based on measured channels. We have used the results of the
measurement campaign conducted by France Telecom R&D as
described in [10]. All experiments used the band 0-30 MHz.

A. Full Band

For each experiment, we generated 1000 random precoder
quantization error matrices Eo( f), with independent identically
distributed (i.i.d.) elements and independent real and imaginary
parts, each uniformly distributed in the interval [-27¢, 27]. We
add the error matrix to the precoder matrix to generate the quan-
tized precoder matrix. Repeating this in each frequency, we pro-
duced a simulation of the quantized precoded system and com-
puted the resulting channel capacity of each of the ten users.
Then we computed the relative and absolute capacity loss of
each of the users. In each bin, we picked the worst case out
of 1000 quantization trials and obtained a quantity we called
maximal loss. The quantity maximal loss is a random variable
depending on the number of bits used to quantize the precoder
matrices. Each value of this random variable provides a lower
bound for the actual worst case that can occur when the channel
matrices are quantized. We compare this lower bound with our
upper bounds of Theorem 4.1. We have checked our bounds in
the following scenario: each user has flat PSD of —60 dBm/Hz
and the noise has flat PSD of —140 dBm/Hz. The Shannon gap
is assumed to be 10.7 dB. As can be seen in Fig. 1, the bound
given by (45) is sharp. We also checked the more explicit bound
(64), which is based on the model (12) and (13). We validated
the linear behavior of the row dominance »(H(f)) as a function
of the tone f as predicted by (14). Next we used (12) to fit the
parameter « of the cable via the measured insertion losses. The
process of fitting is described in detail in [10]. Its value, which
was used in the bound (64), was o = 0.0019. The parameters
v1 = 0.1596 and v, = 3.1729 10~ were estimated from the
measured channel matrices by simple line fit. The results are de-
picted in Fig. 1.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on May 20, 2009 at 13:26 from IEEE Xplore. Restrictions apply.



1476

Relative Capacity loss at 300m with Perfect CSI

—— maximal loss
-{ — integral bound on loss
— - explicit bound

Relative loss [%]

No. of quantization bits

Fig. 1. Relative capacity loss versus number of quantizer bits in perfect CSI in
a system of ten users. Integral bound on loss is obtained via (45); explicit bound
is obtained via (64), (65), and (62).

Capacity loss vs. number of quantizer bits Number of Users=10
102

—
——  Upper bound, SNR(f1)=40 dB
—— Maximal loss in 10000 Iterations
——  Upper bound, SNR(f2)= 60 dB
—— Maximal loss in 10000 lterations

10°

100 b

102

103

relative Loss [bps/Hz/channel] in [%]

10+

105 i i i i i I

No. of bits

Fig. 2. Capacity loss versus quantizer bits. Perfect CSI in system of ten users.

B. Single Frequency

The bounds provided for the entire band are results of bounds
on each frequency bin. To show that our bounds are sharp even
without averaging over the frequency band, we studied the ca-
pacity loss in specific frequency bins. We concentrated on the
same scenario as before (i.e., with ten users), the noise is —140
dBm/Hz, and the power of the users is —60 dBm/Hz. We picked
measured matrices H(f1), H(f2) so that SNR(f;) is 40 dBm
and SNR(f2) is 60 dBm. As before, we systematically gener-
ated an error matrix E5 by choosing its entries to be i.i.d., uni-
formly distributed with maximal absolute value 2~4+0-5 Next,
we computed the transmission-rate loss using (30). By repeating
this process N = 10000 times and choosing the worst event
of transmission-rate loss, we obtained a lower bound estimate
of worst case transmission-rate loss. This was compared to the
bounds of Corollary 4.2. The results are depicted in Fig. 2. Fig. 2
uses (48). In particular, we see that for SNR= 60 dB and trans-
mission-rate loss of 1%, simulation indicates quantization with
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Qunatization bits for 1% loss

num. of quantizer bits

1246 = v semse v s ........... ............ ......... .........

125 ; ; ;
200 400 600 800

loop length [m]

Fig. 3. Number of quantization bits required versus loop length.

Relative Capacity loss at 300m: imperfect CSI

Bt s stz —— maximal loss X
"=+ _bound on loss of ideal scenario

T T

107

1000

107

Relative loss [%]

102 |

10°

10 M1 12 13 14 15 16 17 18 19 20
No. of quantization bits

Fig. 4. Capacity loss versus quantizer bits. Imperfect CSI in system of ten
users. CSI based on 1000 measurements.

13 bits. The analytic formula indicates 14 bits. Similarly, when
SNR= 40 dB, and again allowing the same transmission-rate
loss of 1%, simulation suggests using 10 bits for quantization.
The simple analytic estimate requires 11 bits.

C. The Number of Quantizer Bits Needed to Assure 99% of
Capacity

In the next experiment, we have studied the number of bits
required to obtain a given transmission loss as a function of the
loop length. Fig. 3 depicts the number of bits required to ensure
transmission-rate loss below 1% as a function of loop length.
We see that 14 bits are sufficient for loop lengths up to 1200 m.
Fewer bits are required for longer loops.

D. Stability of the Results

In the next experiment, we validated that the analytic results
proven for perfect CSI are valid even when CSI is imperfect
as long as channel measurement errors are not the dominating
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cause for capacity loss. To model the measurement errors of the
channel matrix H(f), we used matrices with Gaussian entries
with variance proportional to SNR( f). More precisely, we as-
sumed that the estimation error of the matrix H( f) is a Gaussian
with zero mean and with variance o3 () = L/NSNRi(f),
where N is the number of samples used to estimate the channel
matrix H(f). For N = 1000, we estimated the loss in a fre-
quency bin as the worst case out of 500 realizations of quantiza-
tion noise combined with measurement noise. Fig. 3 shows that
as long as the quantization noise is dominant, we can safely use
our bounds for the transmission loss. We comment that the sta-
tionarity of DSL channels allows accurate channel estimation.

VI. CONCLUSION

In this paper, we analyzed effects of finite word length on the
achievable rate of vector DSL systems with zero-forcing pre-
coding. The results of this paper provide simple analytic ex-
pressions for the loss due to finite word length. These expres-
sions allow simple optimization of linearly precoded DSM level
3 systems.

We validated our results using measured channels. Moreover,
we showed that our bounds can be adapted to study the effect
of measurement errors on the transmission loss. In practice, for
loop lengths between 300 and 1200 m, one needs 14 bits to
represent the precoder elements in order to lose no more than
1% of the capacity.

APPENDIX A
PROOF OF LEMMA 3.1

In this section, we prove Lemma 3.1.
Proof: For simplicity, we will omit the explicit dependency
of the matrices H(f), D(f),F(f),P(f) on the frequency f.
We show that

HP =D + DA (66)
with A as above. Indeed, H = D(I + D~'F), and thus
HP =D(I+D 'F)(I+D 'F+E)) ' +Ey). (67)
Hence
HP=D(I+D 'F+E, - E))
x(I+D7'F+E;)""'+ DI+ D7 'F)E,. (68)

Thus

HP =D -DE;(I+ D 'F+E|) ' + DI+ D 'F)E,
(69)

which proves the lemma.

APPENDIX B
PROOF OF LEMMA 3.4

In this Appendix, we prove Lemma 3.4.

1477
Proof: By (17), the 4th user receives
2i(f) = dii()si(F) +dii Y Dii(H)si(f) +nif)
j=1
=di;(f)(1+ Aii(f))si(f) + Ni(f) (70)

with N;(f) = dii(f) 2254 A j(f)s;(f) + ni(f). For alarge
number of users, we may assume that N;( f) is again a Gaussian
noise and the transmission rate at frequency f of the system
described by (70) will be

R;(A, f) =log, (1 + SINR; (A, f)) (71)

where

Pi(f)ldii (F)PIA+ Aii(f)I?
LY Pi(Hdia(HPIA I+ [na(£)I?)

SINR;(A, f) =

Note that this quantity appeared in the main body of the paper
just after (22), where it was denoted R;(f). Dividing both the
numerator and the denominator by P;(f)|d; ;(f)|?, we get

(14 A (NI

SINR; (A, f) = : (P
'Y Pep 180 (DI + miaiir
(72)
Thus
1+ A())P
R;(A, f) = log, <1 + 6|( + 3, (fl))| ) (73)
N+ s8R0
where we have defined
SNRi PL' dz i 2
eSNR;(f) = F(f> = (Fjjil(f)(éﬂ (74)
and
P’.
(1) =15 PP 5)
g "
To get the transmission-rate loss, we denote
[(1+ Aii()I?
eSNR; (A, f) = : . (76)
%)+ SNR)
Notice that
eSNRq(f) = QSNR,L'(O, f)
By (24), we have
Li(A, f) = Ri(f) — Ri(A, f)
= log,(1 + eSNR;(f))
— logy(1 4 eSNR;(A, £)). (77)
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We then have

o, (L eSNRI(A, f)
e 2( 1+ eSNR;(f) )

Lo, (1 _ eSNRy(f) — eSNRi(A,f)> as)

1+ eSNRi(f)

To keep the equations short, we introduce a local notation

67 NE(f, A) = eSNR;(f) — eSNR; (A, f). (79)

We have
0i + eSNR; (/)
SO
0 + SR (F)
and, finally
SN (A, f) = eSNR;(f)
eSNRi(/)8:(f) +1 (L + Aii(N)F - o)

Hence

Li(A, f) = —log, <1 —ai(f) a;(f)+1-1]1+ Ai,i|2>

ai(f)+1
(33)
where
ai(f) = 6:(f)eSNR,(f) (84)
() = eSNR;(f) (85)

~ eSNR;(f) +1

and 6;(f) is given in (75). With the notations (28) and (29), we
get

Li(A, f) = —logy, (1 = ki(f)(1 — @:(A, f))) - (86)

To prove the bound, we consider two cases. When q(A, f) >

1, we see from (86) that L;(A, f) < 0. This clearly indicates

transmission gain, and the stated inequality is valid. On the other
hand, if ¢; (A, f) < 1, we get

eSNR1

SR 1 s ) S1-a(A))

87)

and using the monotonicity of — log,(1 — u) (increasing) in the
interval (0,1), we get

LA f) < —logy (1 - (1 — (A 1))
1
= loe <qi<A,f>)

and the lemma is proved.

(88)
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APPENDIX C
PROOF OF THEOREM 4.1

For the proof of the theorem, we need a simple lemma.

Lemma 9.1: Let A be a complex p X p matrix and define D
to be the diagonal matrix with D; ; = A; ; fori =1,...,p. Let
E be a p x p matrix whose entries are complex numbers with real
and imaginary parts bounded by 2. Lastly, let B = D~'AE.
Then [B; ;| < 2=H1/2(1 4 r(A)).

Proof: Let Q = D™'A = I+ D7!(A — D). Then we
have

3 1Qikl < 1+7(A)

(89)
k=1
forall 2 = 1,...,p. Therefore
p
IBi ;| = Z QirEy;
k=1
p
<27dH1/2 Z |Qir]
k=1
<27H2(1 4 g, (90)

Proof of the Main Theorem: We first bound the loss L;( f)
in a particular tone f. By Lemma 3.4, we have

L;(A, f) < Max <0,10g2 <ﬁ>> 91
where
, L+ AP
G ) = T 92)
Here A(f) = (I+ D(f)"'F(f))Ea(f), where H(f) =

D(f) + F(f) is the channel matrix at frequency f and Eo(f)
is a matrix whose entries are complex numbers with real and
imaginary parts bounded by 2~¢. Applying Lemma 9.1 to the
matrix H(f), we see that the entries A; ;(f) are all in a disk of
radius v( f)2~¢ around zero. Using ( f) < 5, we obtain v(f) =
V2(1 +7(f)) < 6V/2. Using d > 4, we obtain 1 — 2~ %(f) >
1 —6v/2/16 > 0.

Thus

T+ A (P> (1 —v27%)2 93)

Using the assumption on the PSD of the different users, we

obtain

() = 5 B NPSNR (1)
i#i "

= 120 (F)IPSNR;(f). (94)
J#i
Using Lemma 9.1, we have
S IAHP < (p—127 1 +r()> (99

J#
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Thus

L+ai(f) 1+ (p = 1272 (1 +7(f))*SNR;(f)

<1+7(d, f)SNR;(f). (96)
Combining (92), (93), and (96), we obtain

(A f) — (T=w(f)279)?

Note that the right-hand side of the above inequality is posi-
tive and greater than one. Combining (31) and (97), we obtain

1+ ~(d, f)SNR;
LZ(A, f) < logz ( -:17_( v{;)2—d)£f)>

= log, (1 +~(d, f)SNRi(f))
—2logy(1 —v(f)27).
Since v(d, f) < 2(14+7max)?(p—1)272% and v(f) = V2(1+

7(f)) < V2(1 4 7may ), integrating this inequality over f € B,
we obtain (45) and the theorem is proved.

(98)

APPENDIX D
PROOFS OF COROLLARIES 4.8 AND 4.9

A Quadratic Inequality: In the proof of Corollaries 4.8 and
4.9, we use the following lemma.
Lemma 10.1: Let A, B, T be positive real numbers and let

=

)
0.5log, (224),

. B2
otherwise.
Then for d > d(T'), we have

A272 4 po—d < T (99)

Proof: Weletx = 2~% and observe that f(z) = Az?+ Bx
is monotone in z > 0 with one root of f(z) = T
exactly at ©p = B2+ 4AT — B/2A. Thus for any

d > do(T) = logy(24/VB? +4AT — B), we have
A27 4 B2mt = f(277) < f(27) = flzo) = T

To complete the proof, we will show that do(T) < d(T).
Indeed

24
do(T) = log, ( B AT — B)
2
 log, <2A(\/B +4AT+B)>. (100)

4AT

Thus

B / 4AT

If we let p = 4AT'/ B2, then for p < 1, we have /T + p+1 <
2.5, and this yields the bound

1.25B> (102)

(1) < 1o, (1222

1479

forT < BQ/4A. On the other hand, if p > 1, it is easy to see
that 1 + /1 + p < 2.5,/p. Thus

B [4AT A
do(T) < log, <ﬁ (2.5 ?>> = log, <2.5\/;> .
(103)

Remark 10.2: Note that as 1" decreases to zero, the value
of d(T) increases and behaves as log,(1/T).

APPENDIX E
PROOF OF THEOREM 4.8

Proof: Using Theorem 4.1, the capacity loss of the :th user
L;(d) is bounded by

Li(d) < /10g2 <1+v(d,f)f—2e—af\/?) df
feB n

— 2|B|logy (1 — 279+1:5), (104)

By assumption, y(d, f) < 2(p — 1)2729(1 + 1 + 72.f)%
To bound the first term, we state here a simple lemma (for the
proof, see Appendix G).

Lemma 11.1: Let f(z) = P/o2e~*V7 and define
B

1
Tasi) = 3 [log(1+ o+ b fa))do. (105)
0
We have
c@VB

where
ab a\2
$(a,b,) = 20 + 247 + 240 (E) :

We can now finish the proof of the theorem.
Leta = 1+ v1,b = 2, and p = 2(p — 1)272%; and let
J = Ju as in the lemma above. From (104), we get

lLi(al) < J(2(p — 1)272) — 2log, (1 — 279FL5),

5 (107)

Using the inequality — log,(1 — z) < 2z, for z < 1/2, and
the inequality provided by the lemma for .J(), we obtain

1 VB
SLid) < x(ta)

logy(142(p — 1)272 f(B)) +2793>  (108)

with
x4, ) = 2(1 + 71 (£))?

Y2(8) 720\’
24(1 / 240 .
24O+ 20 (P
Using logo(1 + ¢) < In(2)¢, the fact that f(B) =
pr/ afle_‘“/g, and the definition of p, in (59), we obtain
1 4 P

1

p£2—2d 4 2—(1—1—3.5. (109)
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APPENDIX F In particular, we have
PROOF OF PROPOSITION 4.1

2P b b\°
Proof: We begin with a bound on the transmission rate of ~ J(u) < W (a2 + 12a_2 + 120 (—2) ) u (116)
the users. By (20) and the model (12), we obtain mejarboy @ @

which is sharp for small values of .
Proof: The inequality J(u) < log,(14+ M pu) is evident. To

R; = / log, (1 + F_ISNRB_M\/?)df get the second bound, we compute the derivative with respect to
feB W
> logy(e) / In(D~XSNRe~*Vh)df.  (110) 2 b (o)
n J' (1) / (o +bz) de.  (117)
Bln 1+ p(a+bx)?f(x)
Thus ’
Using the lower bound 1 + u(a + bx)?f(z) > 1 + uf(z) >
B 1+ f(B)u, we obtain
R; > Blog,(I"*SNR) — log, (e / ap\/fdf
B
0 a+ bz)? )
9 J' (1) / dz. (118)
> Blog,(I' 'SNR) — 3 log,(e)ay BVB.  (111) Bln )14 uf
We notice that this, with SNR’ = SNRe*O‘“/E, implies We get
1 2 P o1 7
—R; > — = logy(e)(In(SNR) — In(SNR’ J! < = /h 119
B 5 082(¢)(In(SNR) — In(SNR')) (“)—ogBl()lJruf (119)
0

+ log, (T "'SNR)

1 2
=3 log,(SNR) + 3 log,(SNR’) — log,(T'). (112)  where
The proof is complete. h(z) = (a® 4 2abx 4 b2z?)e Ve,
Remark 12.1: In practice, the estimation of oy is more re- - -
liable than the measurement of the transfer function at the edge Byt f e Veidr =2 i 27 +He~tdt = 2(2n + 1)!, and hence
0 0

of the frequency band. Thus, the equivalent form
B

_ 1 T - 2
LRy > log,(SNR) — 200VB (113) /e“"ﬁdx <— /e‘ﬁdx == (120)
B 3 ) a? «
0
B oo

1 12
/xe_“ﬁd:v < o /:ce_ﬁd:v = (121)
0

is more reliable.

0

APPENDIX G B -
PROOF OF LEMMA 11.1 /xQe*“ﬁdx < ig/ VE gy — 24(?' (122)
In this section, we prove Lemma 11.1. Recall , o ) o
1 B Thus we get
/log2 1+ p(a +bx)? f(x))ds (114)
0 Jl(/‘) < E 1 1 |:2;12 &ab 240b2
~ 02 BIn(2) (1 + pf(B)) | «? at ab
where f(z) = P/oZe= V7, (123)
Lemma: Leta > 1and b > 0.
Let M be the maximal value of (a + bx)? f(z) in the interval Integrating this inequality from p = 0 to ¢, we obtain

[0, B]. We have .

, 2P (1 +1f(B))
/ T < T 5aBo — 7iB)

J(p) < min(clogy (14 pf(B)), logy (1 4+ Mp))  (115) J

12ab 12062
where x a2 + ;1 _ (124)
o a
erVB
©=" 2B ¥(a,b, a). Using the fact that .J(0) = 0, we obtain the desired result.
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Remark 13.1: We emphasize that M can be computed an-
alytically. In fact, it is a routine exercise to write the maxima M
of f(z) in terms of a, b, . Indeed

—(yﬁ
P _ (a + bx)?
/ _ ayz _ \&T UL
() = = 2b(a + bz)e NG

Thus f/(x) = 0 is equivalent to a quadratic equation and can be
solved analytically. Since the function f(z) may have at most
two critical points, say, z1, 22 € [0,00), we find that

M = max(f(0), f(z1), f(z1), f(B)).

APPENDIX H
LIFTING THE ASSUMPTION OF EQUAL PSD
FROM THE MAIN THEOREM

In this Appendix, we prove a slight generalization of the main
result, showing that the assumption of equal PSD in the binder
is not necessary. The resulting bound is similar to that of the
main Theorem 4.1.

To formulate the bound on the transmission loss, we introduce
the quantities

Panas(f) = max(Pi() (125
Puin() = min (PA(f)) (126

We let p(f) = Pumax(f)/Pi(f). We will say that the PSD sat-
isfies the assumption SPSD(p) (or has dynamic range of width
p) if we have

Pmax(f) S mein(f)'

We emphasize that this means that for each f such that P;(f) #
0, we have

Prax(f) < pPi(f)-

Remark 14.1: Inrealistic scenarios, the number p is limited
by the maximal power backoff parameter of the modems in the
system.

Theorem 14.2: Assume assumptions Perfect CSI, Quant
(2=%), and SPSD(p). Assume that the precoder P(f) is quan-
tized using d > 1/2 4 logy(1 + rmax)) bits. Let H( f) be the
channel matrix of p twisted pairs at frequency f. Let r(f) =
r(H(f)) as in (6). The transmission-rate loss of the ith user at
frequency f due to quantization is bounded by

Li(d, f) < logy(1 +v(d, f)SNR(f)) — 2logy(1 — v(f)277)

(127)
where
v(d, f) =20(f)(p— 1)1 +7r(f)*27>"  (128)
and
o(f) = V2(1 +r(f)). (129)

Furthermore, the transmission loss in the band B is at most

/ loga (1 + Y(d)SNRi(f)df — 2|Blr(d)  (130)

feB
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where |B| is the total bandwidth
Y(d) = 2p(1 + Tinax)?(p — 1)27 2 (131)
and
7(d) =1ogy(1 = (1 + 7max)2” 7). (132)

Proof: Only few changes in the proof of Theorem 4.1 are
needed in order to derive the above theorem. In the proof of the
main theorem, instead of (97), we have

) = 3 e (NPSNR (1)
i#i "

< S pNIAGDPSNR().  (133)

J#

The bound on A; ;(f) obtained in (95) is valid because our
assumptions on the quantization are the same as in Theorem 4.1.
Following the same line of reasoning as in (96) and (97) yields
the bound (127). This, together with the assumption SPSD(p),
easily yields (130). [ |
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