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1. Introduction 
  
The problem of radar waveform design is of fundamental importance in designing 

state-of-the-art radar systems. The possibility to vary the transmitted signal on a 
pulse-by-pulse basis opens the door to great enhancement in estimation and detection 
capability as well as improved robustness to jamming. Furthermore modern radars  
can detect and track multiple targets simultaneously. Therefore, designing the 
transmitted waveforms for detecting and estimating multiple targets becomes a 
critical issue in radar waveform design.  

 
Most of existing waveform design literature deals with designs for a single target. 

One of the important tools in such designs is the use of information theoretic 
techniques, see [1] for a review of early results of Woodward and others. Bell [1] 
was also the first to propose using the mutual information between a random 
extended target and the received signal. His optimization led to a water-filling type 
strategy. In his paper he assumed that the radar signature is a realization of random 
Gaussian process with a known power spectral density (PSD). However, when 
considering real-time signal design we can use his approach to enhance the next 
transmitted waveform based on the a priori known signature. Whereas  waveform 
design literature concentrated on the estimation of a single target, modern radars 
treat multiple targets. Therefore, the development of design techniques for multiple 
targets is of critical importance to modern radar waveform design. 

  
Recently a great interest has emerged in MIMO radars, where multiple transmit 

and receive antennas are used with large spatial aperture to overcome target fading, 
see [2] and the references therein for a review of statistical MIMO radar literature. 
Much less has been done on MIMO waveform design. Two papers related 
specifically to waveform design in the MIMO context are [2], [3]. Yang and Blum 
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applied MIMO point-to-point communication theory to design radar waveforms by 
water-filling the power over the spatial modes of the overall radar scene (channel). 
They also showed that optimizing the non-causal MMSE and optimizing the mutual 
information leads to identical results. This finding provides another justification for 
using the maximum mutual information criterion for the radar waveform design 
problem. Their work is a novel extension of the work of [1]. However, one should 
note that by water-filling with respect to the spatial modes, higher power is allocated 
to the stronger targets. This approach is reasonable when using a single target 
through several remotely located antennas. However, this approach is not always 
desirable, when tracking multiple targets. De Maio and Lops [3] proposed design 
criterion for space time codes for MIMO radars based on mutual information. They 
also analyzed the detection probability of these techniques under the statistical 
MIMO diversity model that assumes independent scattering towards each of the 
MIMO systems component and point targets.  

 
The approach proposed in this paper is different. We are interested in reception 

and transmission for tracking  multiple extended targets, by using the insights 
provided by multi-user information theory instead of the point-to-point MIMO 
approach. These insights are applied here for the context of coherent phased array 
receivers that are capable of transmitting independent signals simultaneously, as well 
as for optimizing the waveforms for extended targets. We assume high range 
resolution and that the various extended targets are treated as independent signals 
that need to be estimated. In the optimization  process we provide priorities through 
a set of priority vectors. A linear combination of the mutual information between 
each radar beam and its respective target is optimized. This leads to a highly 
complicated optimization problem. However, by assuming linear pre- and post-
processing and an independent estimation of the targets, we are able to reduce the 
waveform design problem to a problem similar to that of the centralized dynamic 
spectrum allocation in communication. Furthermore, recent advances in convex 
optimization (see [4] and the references therein) open the way to design techniques 
specifically tailored for radar waveforms that would be suitable for estimating the 
parameters of multiple targets. While we concentrate on the phased array coherent 
reception, statistical MIMO modeling might be incorporated into this context where 
each transmitter optimizes its transmit spectrum towards the various independent 
targets.  

 
The paper has two main contributions: First we extend Bell's results to the design 

of  multiple transmit waveforms, each optimized towards a specific target where the 
transmitter employs multiple beamformers as well as receiver. Finally, an 
optimization algorithm is proposed. We show that using duality theory the problem 
can be reduced to a search over a single parameter and parallel low-dimensional 
optimization problems at each frequency. Interestingly even though the proposed 
design criterion for multiple waveforms is non-convex, strong duality [4] still holds, 
which allows us to solve the simpler dual problem. 

 



2. Targets Model 
 

In this section we describe the extended targets model. While classical radar target 
models assume far-field point source targets. This is indeed the case when the radar 
pulse is relatively narrow-band so that the range span of the target is well within a 
single range cell.  In contrast to these point source models, many modern radars are 
often capable of transmitting very wide-band pulses or alternatively use very wide-
band compressed signals. In this case delays across the target are similar in nature to 
multipath propagation. This results in a complex target impulse response. Some 
examples of wide band responses of airplanes and missiles can be found, e.g., in [5]. 
Under these conditions the targets are called extended targets, which are the focus of 
the current paper. Models for such targets have been used e.g., in [1]. Extended 
targets naturally appear in imaging and high range resolution applications [6] where 
the radar signal bandwidth is sufficiently large so that the target is not contained in a 
single range cell. Such target models were already described by Van Trees [7] where 
they are termed range selective targets. Extended targets typically have multiple 
reflection centers, each with independent statistical behavior. The target impulse 
response (TIR) is therefore modeled as:  

 
(1) 

 
where 2 /d cτ < , d is the radial span of the target and c is the speed of light. 

κ are the individual random reflection coefficients. These coefficients can be 

modeled either deterministically or using the extended Swerling 2χ models [8]. The 
temporal variability of the target response is mainly determined by the speed of the 
target and the carrier frequency. The reflected radar signal is given by: 

  
(2) 

 
where ( )κ τ  is the TIR and ( )s t  is the radar signal. Since the targets have non-

trivial impulse response, we can consider also the target frequency response (TFR) 
given by: 

 
 
 
For stochastic target models, we will be interested in the PSD of the TIR which 

now becomes a stochastic process. Significant amplitude deviations will only appear 
for extended targets. Typically we will sample the frequency domain and assume 
that ( )h f is given at a set of K equally spaced frequencies ( ) : 1,...,kh f k K= .  

 

3. Phased Arrays  Transmit And Receive Beamforming 
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Our main interest in this paper is with phased arrays which use both transmit and 
receive beamforming. We now provide the basic model for transmit and receive 
beamforming for multiple targets. We can typically assume that the array manifold is 
independent of frequency. This holds as long as the transmit signal bandwidth is 
small relative to the carrier frequency. In this section we will maintain this 
assumption, but we will use the more general formulation in the following sections. 
Assume that we have a phased array radar capable of transmitting and receiving 
simultaneously L  beams. Each beam is characterized by transmit beamforming 
vectors , 1,...,m m L< = >u  and receive vectors , 1,...,m m L< = >w . The 

baseband signals ( )is t  that are transmitted over the respective beams are multiplied 
by the transmit beamforming vectors and linearly combined to form the baseband 
transmit vector  

 
(3) 

 
 
Let ( )θa be the array manifold of the array towards directionθ . The transmitted 

signal is reflected at a target with direction θ and range R is given by: 
 
 

(4) 
 

  
where we neglect the free space attenuation across the target (since maxc Rτ << ). 

The reflection of a target at direction θ  is received by the array as 
( ) 1/ ( ) ( , ).t R y tθ θ=x a  Assuming that we have L  targets with directions 

1,..., Lθ θ< >  and ranges : 1,...,R L< = >  we obtain that the received signal 
is given by: 

 
(5) 

 
 
To enhance the signal to noise ratio by suppressing directional interference and 

other targets side-lobes we apply L  transmit beamforming vectors 
: 1,..., L< = >w  to the received signal resulting in  

 
(6) 

 
This is the standard way to decouple the estimation between azimuth cell, since it 

greatly reduces the number of targets that need to be estimated jointly. Using (5) and 
translating to the frequency domain we now obtain  

 

1

( ) ( )
L

m m
m

t s t
=

= ∑t u

max *

0

1( , ) ( ) ( ) Ry t t d
R c

τ
θ κ τ θ τ τ⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∫ a t

( )
max *

20
1 1

1( ) ( ) ( ) ( )
L L

m m
m

Rt s t d
R c

τ
θ κ τ θ τ τ

= =

⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑∫x a a u

*( ) ( )z t t= w x



 
(7) 

 
 
where ( )h f  is the 'th target frequency response. To simplify notation from 

this point on we will assume that 2

1
R

is included in the target signature. When the 

targets are resolved in range or in angle we can separate them in the time domain or 
using receive beamforming, which means that only certain range cells will include 
target information. This will imply that each ( )z t  is subject to only receiver and 
clutter noise. When targets are partially overlapping both in range and angle (see 
e.g., Gini et.al [9]) each beam contains residual interference from other targets. In 
this case the noise PSD contains contributions from other targets. The next step is a 
correlation of each ( )z t  with ( )s t  to obtain the target impulse responses. These 
impulse responses can be used to enhance the transmitted signal in the next pulse. 
This can be done by using the targets PSD when the target reflection centers (and 
therefore the target signature PSD) exhibit pulse to pulse variations as in the 
Swerling type II models or by using the latest estimate when the variations are 
sufficiently small. The exact choice of the model depends on the target velocity, 
radar carrier frequency and PRI or compressed pulse duration. 

  
Since the targets are selective in range, we also obtain that certain frequencies are 

more reflective. This implies that concentrating the transmitted power according to 
the target frequency response is beneficial in terms of the information we obtain 
regarding the target signature. 

3.1. Multi-Target Tracking 
Finally we discuss the tracking model, and its relationship to the signal design  

problem. In general multi-target tracking is a well established topic [10]. Our paper 
is not focused on the tracking itself but rather on the adaptive design of the 
transmitted waveform, based on the target parameters. Therefore the design will be 
affected by the following parameters:  

• The azimuth and range cells that include each target. These influence the  
transmit and receive beamforming vectors.  

• Target motion during the time interval between pulses  relative to the arrier 
wavelength. This parameter decides the statistical model of choice for 
estimating the TIR. If the motion is   large compared to the wavelength 
then we can use only target PSD as   in the Swerling type II or IV, while if 
the motion is small so that the local reflection environment can be 
considered static we can use the previous estimate of the TIR as a predictor 
for the next realization.  

Since our main interest is in adaptive design of the pulse, we shall   assume a given 
estimate for these parameters, assume that the   transmit and receive beamforming 
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vectors for each beam are provided   by the tracking system, and limit our interest to 
the radar signal design problem. This is a reasonable approach since the described   
parameters are provided by existing systems. We will also assume   that the radar 
control provides us priorities with respect to the various targets to be tracked. These 
priorities are given by a vector of constants. The choice of these constant is 
important. However, the relative priorities can be determined from   the overall SNR 
estimate of each target as well as its temporal   variability, which depends on the 
target speed. Typically we would like to allocate higher priority to rapidly moving 
targets or weak targets that are harder to track. 
 

4. Information Theoretic Approach To Waveform Design 
 

In this section we extend the waveform design paradigm of Bell [1] to the case of 
multiple radar transmitters and receivers. In order to study the trade-off between 
various radar receivers, we use a linear convex combination of the mutual 
information between the targets and the received signal at each receiver beam 
oriented at that specific target.  

 
We begin by revising the received signal model. Assume that an array with 

p elements simultaneously transmits L waveforms. The transmitted signal at 

frequency kf  is given by: 
 
 

(8) 
 
where ( )kfu  are the beamformer coefficients for the 'th waveform designed 

for the 'th target at frequency f  k , and ( )s k  is the corresponding waveform at 

frequency f  k . We assume channel reciprocity; i.e., if the receive steering vector 

is ( , )kfθa , then the transmitted signal arrives at the target with 

channels *( , )kfθa . The signal reflected from the 'th target having signature 

( ), 1,...,kh f k K=< = >h  is therefore given by: 
 
 

(9) 
 
for 1,...,k K= (note that we have used index m to enumerate the transmitted 

waveforms, m 1,...,L = , since  is reserved for the target). Hence, the received 
signal at the array is given by: 
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(10) 
 
 

where
1

( ) ( )
L

k kf f
=

=∑R R . And R is the rank-one matrix given by: 

 
(11) 

  
 
Assume that a beamformer ( )kfw  is used to receive the 'th target, resulting in 
 
 

(12) 
 
where *' ( ) ( ) ( )k k kf f fν ν= w  is the received noise and clutter component of 

the 'th beam. Let 
22

' ( )') (k kf E f fνσ ν= Δ  be the 'th beam noise power at 

frequency kf . After algebraic manipulations we can show that Mutual information 

the mutual information between the 'th beam and the 'th target at frequency kf is 
now given by: 

 
 

(13) 
 
 
where  the signal reflected from the 'th target is denoted by: 
 

(14) 
 
 
while the noise and inter-target interference component at the 'th beam is given 

by: 
 

(15) 
 
 
We assume that the radar allocates one beam towards each target, since non-linear 

joint processing of all the beams would lead to an infeasible receiver. Therefore, the 
total mutual information  between the 'th beam and the 'th target is given by:  

 
(16) 
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where ( ) : 1,...,kz f k K=< = >z and  ( ) : 1,...,kh f k K=< = >h  are the 

received signals using the 'th received beam and the 'th target signature, 
respectively.  

[ ]1( ),..., ( ) T
m m m Ks f s f=s are the signal waveform samples directed towards 

the m 'th target,  
(17) 

 
is the complete spatio-temporal waveform matrix, and vec( )=s S . Assuming that 

the beamforming vectors are known the multiple waveform design problem is now 
given by: 

 
 
 
 

(18) 
 
 
 
where 1[ ,..., ]T

Lα α=α is the target priority vector. This problem is highly non-

linear in the complex waveforms S . Furthermore, it involves cross-correlations 
between the waveforms, and therefore  phase information plays an important role. 
Hence we need to design not only the waveform spectrum, but the complete complex 
envelope. The dependence on the phase will have a secondary drawback, since we 
will not be able to reduce the peak to average of the overall transmitted waveform by  
properly choosing the waveform phase. However, we will show that  in the typical 
scenario of multiple beams in a large phased array this problem can be approximated 
by a simpler spectrum design problem. 

5. Waveform  Optimization For Multiple Targets 
 
Using certain approximation of the mutual information and relying on the properties 
of the transmit and receive beamformers we can show that the mutual information  
(18) can be approximated by: 
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is the total power allocation matrix, and vec( )=p P . The constants ,mg  are 
defined by: 
 
 
 
 
and include all the prior information regarding the target signatures and the channels.  
 
The problem (18) can now be simplified to  
 
 
 

(20) 
 
 
 
 

To solve the multiple waveform design problem, we should note that (20) is a 
generalized (non-convex) monotropic optimization problem, since the summands of 
(19) are not concave functions. While this is a non-convex optimization problem we 
will show how it can be solved efficiently using duality theory. 
 
Applying duality theory  we obtain that the Lagrangian dual function is now given 
by: 
 

(21)  
where  
 

(22) 
 
The dual problem now becomes 
 
 

(23) 
 
 

Note that unlike the case of a single waveform, we will have multi-dimensional 
parallel optimization problems. However, this problem has two significant 
simplifications: The dimension L of each problem is much smaller than the typical 
number of frequency bins. Second, the problem is unconstrained, which is a major 
simplification in the non-convex problem. We can now solve (23) using bi-section 
search for λ and solving the parallel problems at each frequency given any specific 
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value of λ . This is done using standard unconstrained optimization tools. While the 
complexity is still large, it is still linear in the number of frequency bins. 
Furthermore our functions are smooth, and the gradient and Hessian are rational 
functions. This can be exploited in solving 
 

(24) 
 

In simulations we will show how these problems can be solved efficiently when 
the total number of variables is much above 100. 
 

6. Simulations 
 

In this section we show some simulated results. we assume that two waveforms 
are transmitted by an omni-directional equispaced linear phased array with 10 
elements (

2
λ  spacing) and received by the same array. The target directions in our 

simulation were 70o and 80o . The number of  frequency bins was 100. The receive 
beamformer used was an MVDR-based beamformer, and the transmit beamformers 
were  classical beamformers directed towards the targets. Target signatures were 
Gaussians corresponding to targets of length 17m and 10m respectively as shown in 
Figure 1. Waveforms bandwidth was 80MHz.The priorities used in the first 
simulation were 1 0.4α = , 2 0.6α = with the higher priority given to the weaker 
target. 
 

 
Figure 1. Gaussian modeled target responces for 17m and 10m long targets.(a) Target  
impulse response. (b) Target frequency response. 
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the two targets were chosen to be spatially separated. Figure 2 shows the 

transmitted PSD for both targets.  
 

 
Fiure 2 . Transmitted waveforms towards the targets. 

 
In this example we can see that the algorithm transmits for both targets with a very 

large frequency overlap. This could be explained by the received PSD shown in 
Figure 3. 

 
Figure 3. Received waveforms, after beamforming. 



 
 The targets do not have strong interference on each other and the interference 

noise is flat over all frequencies. This implies that the algorithm can transmit for 
both targets in the frequencies where their SINR is high even if the frequencies are 
overlapping, without losing information due to interference between the targets.  
 

Finally we have studied the information region of the two targets and compared to 
the case where no spectral shaping is applied to the transmitted pulse. The results are 
presented in Figure 4. Using flat spectrum causes a loss of 100% for the weak target 
compared to the case where the design is according to the weak target profile. 
However choosing 0.5α = leads to performance enhancement of 33% for both 
targets. 

 

 
Figure 4. Information region, for two extended targets 

 
In the next set of simulations we assumed that three targets are present and 

designed three waveforms transmitted by an omni-directional equispaced linear 
phased array with 10 elements ( / 2λ spacing) and received by the same array. The 
target directions were 90o , 0160  and 20o , respectively.  The number of frequency 
bins was 100. The receive beamformer used was an MVDR beamformer, and the 
transmit beamformers were classical beamformers directed towards the targets. 
Target signatures were Gaussians corresponding to target sizes of 17, 10 and 13 
meter respectively. The priority vector was [1,10,1] / 12α = . The transmit-power-to-
receive noise ratio was 20 dB, and the targets were centered at 8 GHz.  

 



 
Figure 5. (a) Designed waveforms (up); (b) Targets' signatures (bottom)} 

 
We can clearly see that the algorithm designed waveforms centered around 8 GHz 

with respect to their weights and sizes. In the next experiment, we tested the 
sensitivity to spatial resolution of the targets. We have used the same target sizes and 
the same target weights as before. The direction-of-arrival was changed to be 70o , 
70.5o and 71o respectively, these directions were chosen in order to make a strong 
interference between targets. 

 



 
Figure 6.  (a) Designed waveforms. Spatially unresolved targets (solid). 

Spatially resolved targets (dashed); (b) Targets' signatures (bottom) 
 

In the previous experiment where the targets were spatially resolved can see a 
large spectral overlap of the designed waveforms. This overlap is caused by the fact 
that the spatial resolution enables the array to suppress reflections from the other 
targets therefore allowing better utilization of the frequency domain for both targets. 
When the targets become close the design criteria reduces the inter-target 
interference through spectral separation. 

 
7. Conclusions 
 
In this paper we discuss the optimization of multiple waveforms for multiple targets 
under joint power constraint. This type of waveform design is suitable for 
unresolved extended targets. We have derived computationally efficient algorithm 
and presented the result of the optimization in simulations. Further results as well as 
design of a single waveform optimized for multiple targets can be found in [11]. The 
combination of waveform design and direction-of-arrival estimation is discussed in 
[12]. 
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