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Blind Source Separation: The Location of Local
Minima in the Case of Finitely Many Samples
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Abstract—Cost functions used in blind source separation are
often defined in terms of expectations, i.e., an infinite number of
samples is assumed. An open question is whether the local minima
of finite sample approximations to such cost functions are close to
the minima in the infinite sample case. To answer this question, we
develop a new methodology of analyzing the finite sample behavior
of general blind source separation cost functions. In particular,
we derive a new probabilistic analysis of the rate of convergence
as a function of the number of samples and the conditioning of
the mixing matrix. The method gives a connection between the
number of available samples and the probability of obtaining a
local minimum of the finite sample approximation within a given
sphere around the local minimum of the infinite sample cost func-
tion. This shows the convergence in probability of the nearest local
minima of the finite sample approximation to the local minima of
the infinite sample cost function. We also answer a long-standing
problem of the mean-squared error (MSE) behavior of the (finite
sample) least squares constant modulus algorithm (LS-CMA),
namely whether there exist LS-CMA receivers with good MSE
performance. We demonstrate how the proposed techniques
can be used to determine the required number of samples for
LS-CMA to exceed a specified performance. The paper concludes
with simulations that validate the results.

Index Terms—Blind source separation, constant modulus algo-
rithm, finite sample analysis.

I. INTRODUCTION

B LIND equalization and source separation is a wide field
of research. Initiated by the works of Sato [2], many

authors have followed, e.g., Godard [3], Jutten and Herault [4],
Treichler and Agee [5], Shalvi and Weinstein [6], Cardoso [7],
and Comon [8]. Many solutions are tied to the optimization
of certain cost functions (also known as contrasts [8]), e.g.,
cumulant-based methods [7], mixed second-order/fourth-order
methods, augmentations with independence constraints (re-
lated to finding beamformers to all sources) [9], characteristic
function-based techniques [10], [11], etc. An overview of blind
source separation techniques and blind equalization can be
found in [12]–[14].
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The analysis of these algorithms has focused on proving the
existence of “good” local minima of the cost function (those
leading to separation), the absence of undesired local minima
(not associated to separation), computational complexity, suit-
able step sizes in gradient descent implementations, and more
recently the effectiveness of natural gradient descent techniques.
Although the properties of these cost functions have been well
studied, they implicitly assume an infinite number of samples,
because they are formulated in terms of expectations.

A question that has not been sufficiently studied yet is, For
finite-sample approximations of the blind source separation cost
functions, do the local minima converge to the “true” infinite-
sample solutions? and second, What is the asymptotic speed of
convergence, i.e., how many samples are at least needed to arrive
close to the “true” solutions? Partial answers have been provided
by Comon et al. [15] and Moreau et al. [16] for some cumulant-
based contrasts in terms of bias and variance of the estimated
separator. Also asymptotic weak consistency follows from the
general theory of asymptotic statistics [17], [18]. However, no
effective results on the number of samples required to obtain a
given accuracy with a given probability exist.

In this paper we propose a general framework for analyzing
such questions for various cost functions through the use of
probabilistic inequalities such as the Chebyshev inequality and
inequalities related to higher order moments of the function and
its derivatives.

The constant modulus algorithm (CMA) [5] is among the
most widely used and analyzed algorithms in this context. The
asymptotic behavior of the underlying constant modulus (CM)
cost function is now well understood, i.e., the location of the
local minima of the CM cost function have been characterized,
first in the noiseless case and then in the noisy case [19]–[22]. It
was shown that (under conditions) local minima of the CM cost
function are close to the minima of the mean square error (MSE)
cost function [23]. At the same time, many of the blind source
separation cost functions have been shown to belong to the same
family [24], and therefore converge to the same receivers.

For finite samples, many cost functions can be reformulated
in terms of similar deterministic least squares cost functions,
which has led, e.g., to the least squares CMA [25], a fixed
window version of LS-CMA [26], and the ACMA [27]. For
the fixed window LS-CMA, no finite-sample analysis has been
done. For ACMA, a convergence result states that the beam-
formers converge to the linear minimum MSE (LMMSE or
Wiener) beamformers, asymptotically in number of samples
or signal to noise ratio [28], [29]. Other results gauge the finite
sample performance in terms of Cramér–Rao bounds [30], [31].
Finally, some of the literature focuses on identifiability: the
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number of samples necessary for obtaining a unique solution
in the noiseless case [32].

The contributions of this paper are as follows:
• we present a new methodology of analyzing finite sample

behavior of general blind source separation techniques, in
particular a new probabilistic analysis of the rate of con-
vergence in samples;

• we answer a long standing problem of MSE behavior of
LS-CMA, namely whether there exist LS-CMA receivers
with good MSE performance.

The first result enables a bounding of the number of samples
necessary to achieve a certain accuracy of general blind source
separation techniques. The bound is in terms of the smallest
eigenvalue of the Hessian of the (infinite sample) cost function
at the location of the local optimum, and the selected proba-
bility region. This enables e.g., to derive the required number of
samples for a specific method to reach a specified performance,
in terms of the conditioning of the mixing matrix. It should
be noted that while we provide the first effective bound on the
number of samples required to achieve a given accuracy with a
predetermined probability, our bounds are not tight. We foresee
that adding assumptions on the existence of the moment gener-
ating function of the data, together with Chernoff type bounds
will enhance the tightness of the bound. This is out of the scope
of the current paper, which provides the general methodology.

The paper is structured as follows. In Section II, we formu-
late the problem and relate it to various blind source separation
techniques. In Section III, the main theorem regarding the
location of “finite sample” local minima is formulated and
proved. In Section IV we discuss the MSE behavior of the fixed
window LS-CMA and show the existence of LS-CMA receivers
with good MSE performance. This section also illustrates the
theorem by estimating the required number of samples for
LS-CMA to ensure a certain signal-to-interference ratio with
a given outage probability. Finally, simulations in Section V
illustrate the results. We end up with some conclusions and
remark on future extensions.

II. DATA MODEL AND PROBLEM FORMULATION

A. Cost Functions

Assume that we measure a noisy mixture of unknown signals,

where is the received signal vector ( entries) at time ,
is a “tall” (overdetermined), complex or real mixing matrix for
an instantaneous channel, is a vector of transmitted sig-
nals assumed to be independent and non-Gaussian, and is the
receiver noise vector that is assumed to be spatially and tempo-
rally white Gaussian noise with covariance . This setup is
very general and covers various problems from blind separa-
tion of narrowband communication signals to the separation of
medical signals such as electro-encephalogram (EEG) and mag-
neto-encephalogram (MEG).

An adaptive beamformer is basically a linear combiner
of the received signal vector, where denotes
the complex conjugate transpose. The goal is to design such
that approaches one signal out of the mixture, with maximal

signal to interference plus noise ratio. When the transmitted sig-
nals are unknown but certain statistical properties of the signals
are known, the problem is called blind source separation.

Many existing blind source separation techniques are based
on the optimization of a cost function ,
where the notation denotes the expectation operator with re-
spect to the random variable . The separating beamformer is
obtained by finding a vector which optimizes the cost func-
tion . In practice, the cost function is unavailable to us
and is estimated from the data. When the received signals and
noise are stationary ergodic, the estimation phase is reduced to
computing sample averages

(1)

where is the number of samples and is a matrix containing
the measured vectors,

(2)

There are numerous adaptive algorithms to separate users
based on optimizing a stochastic cost function . One
of the most successful is the CMA, which follows from mini-
mizing the CMA(2,2) cost function

(3)

Others include minimizing the CMA cost function,

and maximizing the Shalvi–Weinstein contrast

where is a fourth-order cumulant (see [33] for its relation
to the CMA cost function). There are many related fourth-order
cumulant-based cost functions [7], [8], [15], [34], [35] which
also fit here.

With sources, the preceding cost functions should have
local optima, and there is an issue about finding all of them (e.g.,
by using multiple initial points and hoping they converge to in-
dependent solutions). Alternatively, the multiuser CMA of [9]
and [36] combines the CMA cost function with a term that ex-
presses the stochastic independence of the outputs after cor-
rect separation. To put this in our framework, let be a vector
accumulating all the beamformers of the individual users

(4)

The cost function is given by

(5)
where is a positive constant. Other multi-user-based tech-
niques based on deflation (e.g., [37]) do not immediately fit in
our framework and are not considered here.
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B. Problem Formulation

We will study the relation of the local minima of a general
cost function

(6)

to the local minima of its finite sample approximation
. We will assume that we are given a set of

i.i.d. realizations of the channel output, , and
minimize defined by (1).

Let be a local minimum of . We would like to
bound the distance of to the closest local minimum of

, in terms of the statistical properties of the cost
function and its derivatives. Obviously, since our definition is
based on realizations of a random process, we cannot expect
to obtain a deterministic result. Therefore, we consider, given
a probability and a radius , whether the probability that a
local minimum of has a distance at most from

is greater than . More specifically, we would like to
know that the probability of not having a local minima within
a given radius converges to zero as tends to infinity. In the
next sections we solve this problem, and also provide bounds
on the rate of convergence of the local minima of
to , for sufficiently large .

III. THE LOCATION OF LOCAL MINIMA

A. Main Result

We will prove a general result on the location of local minima
of finite sample approximations to cost functions, and show
convergence in probability of the local minima of the approx-
imation to the local minima of . In our main Theorem
3.1, the gradient and Hessian are defined assuming that is
a real vector. If it is complex, we can apply the theorem to

. When the function depends on a ma-
trix we can replace it by , where is the
operation of converting a matrix into a vector of the elements.

We begin with some notation that simplifies the treatment of
multidimensional Taylor series.

Definition 3.1: Let ,
. Let ,

(7)

and

(8)

The Taylor series expansion is given by

(9)

where is the multinomial coefficient.
We define now the th order tensor of the partial derivatives.

Definition 3.2:

(10)

In the proof, we will assume several technical regularity
conditions.

A1) The Hessian of is (strictly) positive definite at
.

A2) For all

A3) All the third-order derivatives of with respect
to are continuous and bounded at , i.e.,

for some integrable function for which
and .

A4) For each , let

(11)

where is the tensor of th-order partial derivatives
of . We assume that is a random vari-
able with a finite variance

(12)

A5) The probability .
Assumption A1) holds in many cases of interest. For example,

for the cost function (5), it is shown in [9] that (when all sources
have kurtosis less than 2) the Hessian is positive definite at a
stationary point only if it corresponds to a desired weight vector
(i.e., one that separates the sources). This also implies that the
Hessian of the ordinary CMA(2,2) cost function is positive def-
inite at the local minima. In particular, we assume that the Hes-
sian matrix is nonsingular. In the noiseless case this implies that
the number of signals is equal to the number of sensors.1 This
limitation is artificial and follows from the fact that if there are
more sensors than sources, there are no true local minima since
adding to a component in the direction of the noise subspace
(the subspace orthogonal to the column span of ) will not
change the value of . To overcome it one should note that
by the results of [21] the CM receivers are all in the signal sub-
space (the column span of ) even in the noisy case. Hence, a
sensible first step would be to project the sensors data onto the
signal subspace, e.g., as estimated from the second order statis-
tics of the data .

Assumptions A2)–A5) are mild and used to ensure that
the second-order approximation of has a uniformly
bounded error provided we throw away certain realizations of

that have arbitrarily small probability of occurrence. Note
that for to hold, we need to limit ourselves to receivers in
the signal subspace. However, as discussed above, this does

1And that a suitable phase normalization has been used, since without it,
beamformers are unique only up to a unimodular scalar.



LESHEM AND VAN DER VEEN: BLIND SOURCE SEPARATION 4343

not pose any limitation on the applicability of the results.
Furthermore, its only use, is to simplify some arguments and it
might be dropped at the price of somewhat more complicated
proof. Since we are mainly concerned with local minima we
can always bound to a compact sphere around , so that
without loss of generality Assumption 3 will hold with respect
to . Regarding the moments of we should notice
that the assumption is very mild. For example, if
is a polynomial function (e.g., originating from cumulants)
and the moment generating function of exists then by the
Chernoff bound the tail of the probability density function (pdf)
of decays exponentially and all the relevant moments exist.
Actually existence of the variance of the third-order derivatives
at will suffice. A4) holds for many cases of interest. An im-
portant case where A4) holds is when where

, is a polynomial of degree and the moments
of of order exist the assumption holds. This covers, e.g., all
the interesting cumulant-based source separation techniques.
For this assumption to hold it is sufficient that the variance of
the norm of the th-order derivatives vector grows sub-ex-
ponentially with , since decays to 0. This holds for
example whenever each component grows sub-exponentially.
A5) always holds when is a random variable which has a
finite first-order moment.

Theorem 3.1: Let be the local minimum of
closest to , and assume that and satisfy As-
sumptions A1)–A5). Then, for every and any ,
there is such that .
Moreover, for all and , we can choose2

where is the gradient of evaluated at ,
is the smallest eigenvalue of the Hessian of

evaluated at and
depends only on but not on , where is defined in
(12). , where

and is the th element of the Hessian of
.

In contrast to existing asymptotic analysis our bounds provide
simply computable bounds. Before we continue, we explain the
role of the constants . These constants depend only
on and not on so they do not affect the asymptotic be-
havior with respect to , and for small the first term dominates.

provides the number of samples required to ensure that
the probability that the lowest eigenvalue of the sample Hessian

is above with probability at least
while is the number of samples required to bound the
error in the second-order Taylor expansion of around

by a third-order polynomial with
probability at least . To simplify our analysis, we will

2This expression corrects an error in [1].

always be interested in the case where . This does not
limit the scope of the theorem since for we can use the
number of samples required when .

B. Proof of Theorem 3.1

The proof of Theorem 3.1 is divided into two parts. First, we
study the location of local minima of which is the
second-order approximation to around . Then, we
show that if , the existence of a local minimum of
in a sphere of radius ensures the existence of a local minimum
of in the same sphere, and combine these two results.

The proof uses a union bound type of argument. First, we
exclude two small sets of possible values of ; . We will
show that given that each of these
sets has probability smaller than . Then, we will show that
given that and
the probability that does not have a local minimum
within distance from is lower than provided that

. The proof will be finished since the probability
that there is no local minimum within distance is less than

a local minimum within

radius (13)

Let be the second-order Taylor approximation of
around

(14)

where is the gradient vector and the Hessian matrix
of . It follows that has a local minimum at

(15)

provided that is positive definite. By assumption,
is positive definite. Therefore, for sufficiently large

, is also positive definite with high probability.
This follows from the convergence in probability of the eigen-
values of to those of , which holds for
any ergodic source . To better quantify the probability that

is also positive definite in the i.i.d. case, we will
bound the probability that .

Lemma 3.2: Let
. Then

To prove the lemma, we will use the following lemma which
is an immediate consequence of Weyl’s theorem [38], using the
symmetry of the Hessian and the sample Hessian (remember
that has continuous second-order derivatives).

Lemma 3.3: For every , let be the minimal
eigenvalues of and , respectively. Then

(16)
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Proof (Lemma 3.2): Using Lemma 3.3, we obtain that

(17)

Therefore

(18)

Since for every matrix we have and when
there are two nonzero singular values strict inequality holds
(which holds in our case by positive definiteness) we obtain that

(19)

Note that

Since and using Markov’s inequality
applied to the right side, we obtain that

(20)

By the i.i.d assumption on we obtain that

(21)
Choosing and
substituting into (21) yields the conclusion of Lemma 3.2.

By Lemma 3.2, we obtain that for all and with
probability higher than

(22)

Let

then . From now on we assume that .
To say something about based on (15), let be

the smallest eigenvalue of . In this case, the max-
imal eigenvalue of is given by . Since

the same value of ensures that
with probability less than

Substituting into (15) we obtain (for )

(23)

so that

Assuming that the are i.i.d., and using the fact that is a
local minimum of , we obtain that for all

Therefore (using the fact that are i.i.d)

(24)

Using Markov’s inequality and the positivity of
we conclude that

(25)
For given , setting such that

(26)

yields the desired result for the local minima of ,
i.e., . Moreover,

.
The second part of the proof is to transfer this result to :

To show that for there is a local minimum of
sufficiently close to , i.e., within the sphere
with probability better than . To this end, we

will apply (25) to a radius , i.e., choose such that
(with probability better than ), and simultane-

ously consider all such that . It then follows
that and it only remains to show that there is a
local minimum of inside this sphere.

Thus let and . Choose large enough
such that [cf. (25)]

The argument is based on two inequalities. For the first, note
that the Taylor approximation (14) implies that

(27)
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Equivalently, (for ) there is a constant such that
for every we have

(28)

This follows from the fact that we are interested in a compact
ball around (since ) and using the La-
grange bound on the tail of the Taylor expansion, together with
Assumption A3). The following lemma proves that by elimi-
nating arbitrarily small subset of ’s and choosing suffi-
ciently large we can assume without loss of generality that
can be chosen independently of and .

Lemma 3.4: Let .
Let , . Let be given. Then there exists

such that for all

Furthermore, we can choose .
The proof uses the boundedness and continuity of the

third and higher order derivatives of (Assumptions
A2)–A4)). The details are given in Appendix I.

To use the lemma, let

(29)

and . By the lemma we obtain that

(30)

for all .
Hence, by requiring , we can ignore a small set

of realizations of , , such that . For every
, we have . Let .

Then . As before, from now on we assume that
. Since , for

all such that . The situation (outside
) is illustrated by the large circle in Fig. 1.
For a second inequality, we consider the expression (14) for
, but centered at its minimum , which gives

so that

(31)

This is illustrated by the second largest circle in Fig. 1.
We now consider all on the sphere . With

probability , we also have , and hence
with probability . For both (28),

(31) hold, and hence we obtain (for )

Fig. 1. Local behavior of � and � around � .

(32)

where the last inequality follows from the assumption that
. This is positive for all , by the choice of in (29)

or equivalently, for all . Hence, is
smaller than for any and such that

. Therefore, the sphere of radius around ,
contains a point

where is smaller than all values on the boundary. Hence,
there must be a local minimum of inside this
sphere.

By our choice of , we have for all
. The triangle inequality now implies that this local minima

is within distance from with probability better than
(assuming ). Finally, we need to take into account

the fact that was chosen ignoring which has probability
, so substituting or and using a

union bound (13) to take into account the probability that
finishes the proof. Note that this constant could have been

improved by choosing higher values of and and reducing
and .

IV. MSE PROPERTIES OF LS-CMA RECEIVERS

A. The Location of Local Minima

The theorem in the previous section is a general result for a
wide class of cost functions. We will now specialize this to the
LS-CMA, and combine Theorem 3.1 with the results of Zeng
et al. [20], [23] to obtain some information about the MSE prop-
erties of LS-CMA receivers. More explicitly, Theorem 1 of [23]
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Fig. 2. Convergence towards the MSE and CMA local minima.

provides sufficient conditions for the existence of a CMA re-
ceiver within a small neighborhood of the Wiener receiver. Fur-
thermore it was shown that the excess MSE of the CMA receiver
is a continuous function of the parameters of the problem (i.e.,
noise variance, coefficients of the mixing matrices, etc.).

Let be the Wiener solution for the source separation
problem, i.e.,

(33)
and let be the local minimum of the CMA cost function
closest to . By Theorem 1 of [23], we know that there is
a small positive number such that

(34)

Furthermore, by our main theorem we know that for every
and there is an such that for all

and is a local

minimum of

By continuity of , for every we can choose
sufficiently small such that if then

Hence for every , there is and such that for
all

(35)

This shows that for sufficiently large , with arbitrarily high
probability the local minima of have good MSE
properties.

Fig. 2 provides some insight into this result. We have high
probability of obtaining good local minima of the finite cost
function in the vicinity of the local minima of . Hence,
these local minima have good MSE properties.

B. The Required Number of Samples

We further illustrate Theorem 3.1 with a design example,
where we compute the required number of samples to reach a
specified performance for the CMA least squares cost
function. The computation is rather involved and to save space

we will only demonstrate the main term which is dominating
for any fixed as becomes small. We assume that the sources
are constant modulus, complex, circularly symmetric, with vari-
ance normalized to 1 (since a scaling can be absorbed in ).

Thus let be the CMA(2,2) cost function mentioned
in (3). Since is complex, it is convenient to use a complex gra-
dient and Hessian, defined as follows [39]: let ,
then

and

Here, we use the convention that the partial derivative with re-
spect to a vector is a row vector, and we use Brandwood’s con-
ventions for the derivative with respect to a complex number
[40]. The relations between the complex vector and the real
vector as used in Theorem 3.1 are
such that , and . The
relation between and is a two-sided linear transforma-
tion, such that the eigenvalues of are one-half those of
[41].

In the case of CMA(2,2), the block entries of the complex
gradient and Hessian are

(36)

(37)

(38)

where is the output of the beamformer. (The Hes-
sian is evaluated for infinite samples, whereas the gradient is a
random vector corresponding to the cost function for a single
sample.) In Appendix II, we derive that, evaluated at ,

(39)

where is the noise power (for simplicity, was approxi-
mated by the MMSE beamformer, which is known to be close
to the CMA optimum). It follows that, in the context of Theorem
3.1,

(40)

where is the largest singular value of and is the
number of sources.

Furthermore, in Appendix II it is shown that

(41)

(42)
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where is the column of corresponding to the source selected
by . Thus, the complex Hessian is

(43)

where is with column taken away. The latter expression
shows that has a 1-D null space. The explanation for this
is that the optimal beamformer for CMA is not unique, we can
always multiply with a unimodular scalar . The null space
can be removed by placing a suitable phase normalization on .
Assuming this has been done, the second smallest eigenvalue,

becomes relevant. Applying Weyl’s theorem [38] to
(43), it can be shown that

Thus, in the context of Theorem 3.1, for the smallest nonzero
eigenvalue of we have

where is the smallest singular value of .
Let

Since , can be interpreted as the loss in Signal to
Interference Ratio (SIR) due to a finite-sample beamformer as
opposed to the optimal infinite-sample beamformer. Note that

so that

For a given , the design is now as follows. Choose an ac-
ceptable loss in SIR (i.e., ), and an acceptable probability
that this loss will be exceeded ; set . Ac-
cording to Theorem 3.1, the required number of samples is

Further define the Signal to Noise Ratio (SNR) at the input of
the receiver as

SNR

Note that . Also note that
, so that

SNR

Thus, to reach the desired performance it is sufficient to set

SNR

Note that is equal to the condition number of . In
conclusion, the conditioning of very strongly determines the
minimum number of samples to use, according to this technique.

V. SIMULATIONS FOR THE CM COST FUNCTION

To demonstrate the finite sample behavior of cost functions,
we show the results of simulations for the CMA ap-
proximation of the CM cost function.

In the first experiment we have mixed two random phase CM
signals using the unitary matrix

and 60 . We have added random Gaussian noise with
signal to noise ratio (SNR) of 30 dB. For logarithmically spaced
number of samples between 100 and , we have initial-
ized a minimization of the CM cost function with one of the
zero forcing solutions (a column of ), and let it converge
to the nearest local minimum using a Broyden–Fletcher–Gold-
farb–Shanno (BFGS) quasi-Newton algorithm. The justification
for the initialization is that for good SNR the CM beamformer
is expected to be near the zero-forcing solution. For each value
of we have repeated the experiment 1000 times. The true (in-
finite sample) CM beamformer was estimated by averaging the
locations of all the experiments with many samples.

Fig. 3(a)–(d) presents the deviations of the estimated CM
beamformers from the true CM beamformer, for various values
of . Each dot in the figure represents the two coordinates of the
difference vector for a single experiment. It is seen that
the locations of the local minima tend to concentrate around the
true solution, as expected from Theorem 3.1, and become more
accurate for increasing .

Next we have turned to estimate the distribution of the local
minima as a function of the number of samples . Let be
the radius which ensures probability of finding a local
minimum of the CMA cost function close to the CM
minimum. We expect to find a linear connection between the
logarithm of and the logarithm of . To test this we have used
the order statistics of . Fig. 4 presents the tenth, fiftieth, and
ninetieth percentiles of as a function of .
We can clearly see that the lines are parallel and are linear. To
verify the linearity we also computed the least squares fit, which
are presented by the continuous lines.

To demonstrate the effect of the eigenvalue spread of the
mixing matrix (which directly influences of the Hessian
matrix of the cost function), we have repeated the above exper-
iment with a mixing matrix

This matrix has singular values 5.47, 0.37 and condition number
14.9. Fig. 5 presents the locations of the local minima. We can
clearly see that the minima are now spread along an elongated
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Fig. 3. Unitary mixing: Distribution of local minima for various values of � : (a) � � ���, (b) � � ����, (c) � � �� , and (d) � � �� .

Fig. 4. Unitary mixing: Order statistics of the log distance to the CM beam-
former as a function of � . The symbols “�”, �, � show the tenth, fiftieth, and
ninetieth percentiles as function of ��� � , respectively. The continuous lines
are the LS fits to the estimated percentiles.

ellipsoid, due to the spread in singular values. Fig. 6 presents
the order statistics, which again are linear.

Finally, to test the dependence between and for any
given we have computed the coefficients , of the LS fit of

, as a function of the percentile .
Fig. 7(a) and (b) describes the results for each simulation respec-
tively. It is seen that the dependence is of the form ,

i.e., the coefficient is extremely close to 1 in all cases, and in-
dependent of . This completely agrees with the analysis of the
relation between and presented in the previous sections.
The dependence of on is not entirely as predicted. We expect
that the accuracy of the theorem can be improved either using
the central limit theorem or Chernoff type bounds. However, a
complete characterization of the dependence on is beyond the
scope of this paper. Note that for small values of grows as

. Finally, we comment on the two constants .
Since we see that even for the fits well for var-
ious values of , we conclude, that in reality these constants are
not necessary even for moderate values of . It is a shortcoming
of our bounding technique, that requires these constants. Better
optimization of these constants can probably be achieved using
Chernoff bounds, assuming that the moment generating func-
tion of exists.

VI. CONCLUSION

In this paper, we have discussed the location of local minima
of finite sample approximations of general source separation
cost functions. We derived the rate of convergence of the local
minima to the local minima of the infinite sample cost function.
While these results are not optimal, we are the first that provide
effective bounds in the nonasymptotic case. Simulation results
suggest that the main term is the leading term. We have
also demonstrated how this can be used to evaluate the conver-
gence behavior of the Least Squares CMA algorithm, which has
been an open question for a long time. For this specific case we
have shown the explicit dependence of the rate of convergence
on the condition number of the mixing matrix. Finally, we have
demonstrated the dependence on the condition number through
simulated experiments.



LESHEM AND VAN DER VEEN: BLIND SOURCE SEPARATION 4349

Fig. 5. Nonunitary mixing: Distribution of local minima for various values of � : (a) � � ���, (b)� � ����, (c) � � �� , and (d) � � �� .

Fig. 6. Nonunitary mixing: Order statistics of the log distance to the CM beam-
former as a function of � .

APPENDIX I

BOUNDING

In this appendix, we prove Lemma 3.4.
Proof: The proof uses Assumption A4) that has

a finite variance. To simplify notation let . As-

sume . By definition the Taylor series expansion of
around is given by

(44)

To observe the first note that for every such that
, . For the second in-

equality we need the following computations:
using the assumption that .

Let , . We have
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Fig. 7. Regression coefficients as a function of percentile. (a) Unitary mixing, (b) nonunitary mixing.

Using the fact that

and substituting into the second line of (44) we obtain the de-
sired bound. By (11) we obtain that

(45)

Hence for every

(46)
Therefore

(47)

Using the i.i.d. property of and the Chebyshev inequality we
obtain

(48)

By definition of this ends the proof of Lemma 3.4.
Finally we comment that when where

we can obtain tighter bounds using the fact that

where denotes the Kronecker product. Hence, whenever
the moment generating function of exists, and Chernoff
type bounds for can be derived. Furthermore we can
clearly see that if is a polynomial of degree in the
infinite series become finite and the variance trivially exists as
long as the signals and the noise have moments up to order .

APPENDIX II
DERIVATION OF EXPRESSION (41) FOR THE HESSIAN OF THE

LS-CMA COST FUNCTION

Using and other
properties of Kronecker products, the expression for the Hessian
(37) can be written as

For the model , it is known that [28]

(49)

where , is a vector
of ones, is the Khatri–Rao product (column-wise Kronecker
product), and is the fourth-order cumulant of , given by [28]

It follows that

with given in (49). This has to be evaluated at the minimum
of the cost function.

The treatment becomes feasible in the noise-free case: in that
case , where is one of the columns of the identity
matrix, corresponding to the selected source. Note that

so that
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Thus, without noise, it follows that

so that we finally obtain

In a similar way, starting from (38) it can be shown that
.

APPENDIX III
DERIVATION OF EXPRESSION (39) FOR THE NORM OF THE

GRADIENT OF THE LS-CMA COST FUNCTION

The expected value of the norm of the gradient at in-
volves eighth-order statistics. It turns out to be equal to zero
in the noise-free case. Assuming small but nonzero noise, we
will retain only terms up to order , and, as before, evaluate at

rather than at the true minimum of the cost func-
tion. The complete derivation is very long and therefore we only
present the main steps.

Let and recall that

The desired result is an expression for
. Define and , then

(50)

We will need expressions for the statistics of up to fourth
order. To simplify this, we write as model for (cf. [28])

where

The “source vectors” and have the following properties [28]:

If we define the permutation operator such that
, then we further have

For higher-order expectations, we regard and as indepen-

dent, and use

The above list of properties is used to derive that, for the first
term in (50),

This has to be evaluated for with . To
this end, we can derive that

where , so that

The second term in (50) requires

This evaluates to

Without further details, we mention that a lengthy but otherwise
mechanical derivation shows that the third term in (50) evaluates
to a similar expression, and that we finally obtain

This gives the result. Fig. 8 gives evidence of the validity of the
expression, by comparing the model for to the result
of a simulation, for the case of antennas in a uniform
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Fig. 8. Expected value of the norm of the gradient, for varying SNR and DOAs.

linear array (half-wavelength spacing), and equipowered
sources with varying separations. It is seen that the model is
reasonably accurate over a wide range of SNRs.

REFERENCES

[1] A. Leshem and A.-J. van der Veen, “On the finite sample behavior of
the constant modulus cost function,” in Proc. IEEE Int. Conf. Acoustics,
Speech, Signal Processing (ICASSP), Istanbul, Turkey, Jun. 2000, vol.
5, pp. 2537–2540.

[2] Y. Sato, “A method of self-recovering equalization for multilevel am-
plitude-modulation systems,” IEEE Trans. Commun., vol. 23, no. 6, pp.
679–682, Jun. 1975.

[3] D. Godard, “Self-recovering equalization and carrier tracking
in two-dimensional data communication systems,” IEEE Trans.
Commun., vol. 28, no. 11, pp. 1867–1875, Nov. 1980.

[4] C. Jutten and J. Herault, “Blind separation of sources I. An adaptive
algorithm based on neuromimetic architecture,” Signal Process., vol.
24, pp. 1–10, Jul. 1991.

[5] J. Treichler and B. Agee, “A new approach to multipath correction
of constant modulus signals,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 31, no. 2, pp. 459–471, Apr. 1983.

[6] O. Shalvi and E. Weinstein, “New criteria for deconvolution of
non-minimum phase systems,” IEEE Trans. Inf. Theory, vol. 36, pp.
312–320, Mar. 1990.

[7] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for
non-Gaussian signals,” Proc. Inst. Electr. Eng.—F, Radar Signal
Process., vol. 140, pp. 362–370, Dec. 1993.

[8] P. Comon, “Independent component analysis—A new concept?,”
Signal Process., vol. 36, pp. 287–314, Apr. 1994.

[9] L. Castedo, C. Escudero, and A. Dapena, “A blind source separation
method for multiuser communications,” IEEE Trans. Signal Process.,
vol. 45, no. 5, pp. 1343–1348, May 1997.

[10] A. Taleb, “An algorithm for the blind identification of � independent
signal with 2 sensors,” in Proc. 16th Symp. Signal Processing Its Ap-
plications (ISSPA), Kuala-Lumpur, Malaysia, Aug. 2001, pp. 5–8.

[11] A. Yeredor, “Blind channel estimation using first and second deriva-
tives of the characteristic function,” Signal Process. Lett., vol. 9, no. 3,
pp. 100–103, Mar. 2002.

[12] Unsupervised Adaptive Filtering Volume I: Blind Source Seperation, S.
Haykin, Ed. New York: Wiley-Interscience, 1993.

[13] Unsupervised Adaptive Filtering Volume II: Blind Deconvolution, S.
Haykin, Ed. New York: Wiley-Interscience, 1993.

[14] A. Hyvarinen, J. Karhunen, and P. Oja, Independent Component Anal-
ysis. New York: Wiley-Interscience, 2001.

[15] P. Comon, P. Chevalier, and V. Capdevielle, “Performance of con-
trast-based blind source separation,” in Proc. IEEE Signal Processing
Advances in Wireless Communications (SPAWC), Paris, France, Apr.
1997, pp. 345–348.

[16] E. Moreau, J.-C. Pesquet, and N. Thirion-Moreau, “Convolutive blind
signal separation based on asymmetrical contrast functions,” IEEE
Trans. Signal Process., vol. 55, no. 1, pp. 356–371, Jan. 2007.

[17] Z. Bai and Y. Wu, “General M-estimation,” J. Multivar. Anal., vol. 63,
pp. 119–135, 1997.

[18] A. van der Vaart, Asymptotic Statistics. Cambridge, U.K.: Cambridge
Univ. Press, 1997.

[19] I. Fijalkow, A. Touzni, and J. Treichler, “Fractionally spaced equaliza-
tion using CMA:Robustness to channel noise and lack of disparity,”
IEEE Trans. Signal Process., vol. 45, no. 1, pp. 56–66, Jan. 1997.

[20] H. Zeng, L. Tong, and C. Johnson, “Relationships between the constant
modulus and Wiener receivers,” IEEE Trans. Inf. Theory, vol. 44, no.
4, pp. 1523–1538, 1998.

[21] D. Liu and L. Tong, “An analysis of constant modulus algorithm for
array signal processing,” Signal Process., vol. 73, pp. 81–104, Jan.
1999.

[22] P. Schniter and C. Johnson, “Bounds for the MSE performance of
constant modulus estimators,” IEEE Trans. Inf. Theory, vol. 46, pp.
2544–2560, Jul. 2000.

[23] H. Zeng, L. Tong, and C. Johnson, “An analysis of constant modulus
receivers,” IEEE Trans. Signal Process., vol. 47, no. 11, pp. 2990–2999,
Nov. 1999.

[24] P.-A. Regalia, “On the equivalence between the Godard and
Shalvi–Weinstein schemes of blind equalization,” Signal Process.,
vol. 73, pp. 185–190, Feb. 1999.

[25] B. Agee, “The least-squares CMA: A new technique for rapid
correction of constant modulus signals,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing (ICASSP), Tokyo, Japan, 1986,
pp. 953–956.

[26] X. Zhuang and A. Swindlehurst, “Fixed window constant modulus
algorithm,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Pro-
cessing (ICASSP), 1999, vol. 5, pp. 2623–2626.

[27] A.-J. van der Veen and A. Paulraj, “An analytical constant modulus
algorithm,” IEEE Trans. Signal Process., vol. 44, no. 5, pp. 1136–1155,
May 1996.

[28] A.-J. van der Veen, “Asymptotic properties of the algebraic constant
modulus algorithm,” IEEE Trans. Signal Process., vol. 49, no. 8, pp.
1796–1807, Aug. 2001.

[29] A.-J. van der Veen, “Statistical performance analysis of the algebraic
constant modulus algorithm,” IEEE Trans. Signal Process., vol. 50, no.
12, pp. 3083–3097, Dec. 2002.

[30] A. Leshem and A.-J. van der Veen, “Direction of arrival estimation for
constant modulus signals,” IEEE Trans. Signal Process., vol. 47, no.
11, pp. 3125–3129, Nov. 1999.

[31] B. Sadler, R. Kozick, and T. Moore, “On the performance of source sep-
aration with constant modulus signals,” in Proc. IEEE Int. Conf. Acous-
tics, Speech, Signal Processing (ICASSP), May 2002, pp. 2373–2376.

[32] A. Leshem, N. Petrochilos, and A.-J. van der Veen, “Finite sample
identifiability of multiple constant modulus signals,” IEEE Trans. Inf.
Theory, vol. 49, pp. 2314–2319, Sep. 2003.

[33] L. Tong, M. Gu, and S. Kung, “A geometrical approach to blind signal
estimation,” in Signal Processing Advances in Wireless and Mobile
Communications, G. Giannakis, Ed. et al. Englewood Cliffs, NJ:
Prentice-Hall, 2000, vol. 1, ch. 8.

[34] J.-F. Cardoso, “High-order contrasts for independent component anal-
ysis,” Neural Comput., vol. 11, pp. 157–192, Jan. 1999.

[35] P. Comon, “From source separation to blind equalization, contrast-
based approaches,” in Int. Conf. Image and Signal Processing (ICISP),
Agadir, Morocco, May 2001, pp. 20–32.

[36] C. Papadias and A. Paulraj, “A space-time constant modulus algorithm
for SDMA systems,” in Proc. IEEE 46th Vehicular Technology Conf.,
May 1996, vol. 1, pp. 86–90.

[37] N. Delfosse and P. Loubaton, “Adaptive blind separation of inde-
pendent sources: A deflation approach,” Signal Process., vol. 45, pp.
59–83, 1995.

[38] R. Horn and C. Johnson, Matrix Analysis. Cambridge, U.K.: Cam-
bridge Univ. Press, 1985.

[39] K. Kreutz-Delgado, “The complex gradient operator and the
CR-Calculus,” Electr. and Comput. Eng. Dept., Univ. of Cali-
fornia San Diego, Tech. Rep. Course Lecture Supplement No.
ECE275CG-F05v1.2b, Sep.–Dec. 2005 [Online]. Available:
http://dsp.ucsd.edu/~kreutz/PEI05.html

[40] D. Brandwood, “A complex gradient operator and its application in
adaptive array theory,” Proc. Inst. Electr. Eng. F—Commun., Radar,
Signal Process., vol. 130, pp. 11–16, Feb. 1983.

[41] A. van den Bos, “Complex gradient and Hessian,” Proc. Inst. Electr.
Eng.—Vis. Image Signal Process., vol. 141, pp. 380–382, Dec. 1994.



LESHEM AND VAN DER VEEN: BLIND SOURCE SEPARATION 4353

Amir Leshem (M’98–SM’06) received the B.Sc.
(cum laude) degree in mathematics and physics,
the M.Sc. (cum laude) degree in mathematics, and
the Ph.D. in mathematics, all from the Hebrew
University, Jerusalem, Israel, in 1986, 1990, and
1998, respectively.

From 1998 to 2000, he was with the Faculty of In-
formation Technology and Systems, Delft University
of Technology, Delft, The Netherlands, as a Postdoc-
toral Fellow working on algorithms for the reduction
of terrestrial electromagnetic interference in radio-as-

tronomical radio-telescope antenna arrays and signal processing for communi-
cation. From 2000 to 2003, he was Director of Advanced Technologies with
Metalink Broadband, where he was responsible for research and development
of new DSL and wireless MIMO modem technologies and served as a member
of ITU-T SG15, ETSI TM06, NIPP-NAI, and IEEE 802.3 and 802.11. From
2000 to 2002, he was also a Visiting Researcher at Delft University of Tech-
nology. He is one of the founders of the new school of electrical and computer
engineering at Bar-Ilan University, Ramat-Gan, Israel, where he is currently
an Associate Professor and head of the Signal Processing track. From 2003 to
2005, he was also the Technical Manager of the U-BROAD consortium devel-
oping technologies to provide 100 Mb/s and beyond over copper lines. His main
research interests include multichannel wireless and wireline communication,
applications of game theory to dynamic and adaptive spectrum management of
communication networks, array and statistical signal processing with applica-
tions to multiple-element sensor arrays and networks in radio-astronomy, brain
research, wireless communications and radio-astronomical imaging, set theory,
logic, and foundations of mathematics.

Alle-Jan van der Veen (M’95–SM’03–F’05) was
born in The Netherlands in 1966. He received the
Ph.D. (cum laude) degree from Delft University of
Technology (TU Delft), Delft, The Netherlands, in
1993.

Throughout 1994, he was a Postdoctoral Scholar
at Stanford University, Stanford, CA. Currently, he is
a Full Professor in signal processing at TU Delft. His
research interests are in the general area of system
theory applied to signal processing, and in particular
algebraic methods for array signal processing, with

applications to wireless communications and radio astronomy.
Dr. van der Veen is the recipient of a 1994 and 1997 IEEE Signal Processing

Society (SPS) Young Author paper award. He was an Associate Editor for IEEE
TRANSACTIONS ON SIGNAL PROCESSING from 1998 to 2001, Chairman of IEEE
SPS Signal Processing for Communications Technical Committee from 2002 to
2004, and Editor-in-Chief of the IEEE SIGNAL PROCESSING LETTERS from 2002
to 2005. He currently is Editor-in-Chief of the IEEE TRANSACTIONS ON SIGNAL

PROCESSING, and member-at-large of the Board of Governors of IEEE SPS.


