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Parametric High Resolution Techniques for
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Abstract—The increased sensitivity of future radio telescopes
will result in requirements for higher dynamic range within the
image as well as better resolution and immunity to interference.
In this paper, we propose a new matrix formulation of the imaging
equation in the cases of non-co-planar arrays and polarimetric
measurements. Then, we improve our parametric imaging tech-
niques in terms of resolution and estimation accuracy. This is
done by enhancing both the minimum variance distortionless
response (MVDR) parametric imaging, introducing alternative
dirty images, and by introducing better power estimates based
on least squares, with positive semi-definite constraints. We also
discuss the use of robust Capon beamforming and semi-definite
programming for solving the self-calibration problem. Addi-
tionally, we provide statistical analysis of the bias of the MVDR
beamformer for the case of moving array, which serves as a first
step in analyzing iterative approaches such as CLEAN and the
techniques proposed in this paper. Finally we demonstrate a full
deconvolution process based on the parametric imaging tech-
niques and show its improved resolution and sensitivity compared
to the CLEAN method.

Index Terms—CLEAN, convex optimization, minimum vari-
ance, parametric imaging, radio astronomy, robust beamforming,
synthesis imaging.

I. INTRODUCTION

T HE future of radio astronomical discoveries depends on
achieving better resolution and sensitivity while main-

taining immunity to terrestrial interference which is rapidly
growing. To achieve the improved sensitivity and higher resolu-
tion, new instruments are being designed. The square kilometer
array (SKA)1 [1] and the low frequency array (LOFAR) [2]
are two of these advanced instruments. Achieving higher sen-
sitivity to observe faint objects results in high dynamic range
requirements within the image, where strong sources can affect
the imaging of the very weak sources. On the other hand,
Moore’s law [3] together with recent advances in optimization
theory [4] open the way to the application of more advanced
computational techniques. In contrast to hardware implemen-
tation, these image formation algorithms, that are implemented
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in software can benefit from the continuing increase in compu-
tational power, even after the antennas and the correlators will
be built. In this paper, we extend the parametric deconvolution
approach of [5] to obtain better power estimation accuracy and
higher robustness to interference and modeling uncertainty.
The algorithms presented here can also be used in conjunction
with real-time interference mitigation techniques as described
in [5] and [6].

We briefly describe the current status of radio astronomical
imaging techniques. For a more extensive overview the reader
is referred to [7], [8], or [9]. A good historic perspective can be
found in [10], whereas [11] provides a very recent perspective.

The principle of radio interferometry has been used in radio
astronomy since 1946 when Ryle and Vonberg constructed a
radio interferometer using dipole antenna arrays [12]. During
the 1950s, several radio interferometers which use the synthetic
aperture created by movable antennas have been constructed.
In 1962, the principle of aperture synthesis using earth rotation
has been proposed [13]. The basic idea is to exploit the rotation
of the earth to obtain denser coverage of the visibility domain
(spatial Fourier domain). The first instrument to use this prin-
ciple was the five kilometer Cambridge radio telescope. During
the 1970s, new instruments with large aperture have been con-
structed. Among these we find the Westerbork synthesis radio
telescope (WSRT) in the Netherlands and the very large array
(VLA) in the U.S. Recently, the giant microwave telescopes
(GMRT) has been constructed in India and the Allen telescope
array (ATA) in the U.S. Even these instruments subsample the
Fourier domain, so that unique reconstruction is not possible
without some further processing known as deconvolution. The
deconvolution process uses some a priori knowledge about the
image to remove the effect of “dirty beam” side-lobes.

Two principles dominate the astronomical imaging decon-
volution. The first method was proposed by Hogbom [14]
and is known as CLEAN. The CLEAN method is basically
a sequential least-squares (LS) fitting procedure in which the
brightest source location and power are estimated. The response
of this source is removed from the image and then the process
continues to find the next brightest source, until the residual
image is noise-like. During the years it has been partially
analyzed [15]–[17]. However full analysis of the method is still
lacking due to its iterative nature. The CLEAN algorithm has
many recent flavors which are capable of faster performance,
e.g., the Clark version [18] and the Cotton-Schwab [19]. In
these versions the dirty image is recomputed only after several
point sources have been estimated. Furthermore the sources are
subtracted from the ungridded visibility. This results in better
suppression of the sources. Interestingly it is well known that
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when the noise model is nonwhite (as in radar clutter modeled
by ARMA processes in SAR applications) algorithms such as
RELAX [20] outperform the CLEAN algorithm.

A second approach proposed by Jaynes [21] is maximum en-
tropy deconvolution (MEM). The basic idea behind MEM is the
following. Not all images which are consistent with the mea-
sured data and the noise distribution satisfy the positivity de-
mand, i.e., the sky brightness is a positive function. Consider
only those that satisfy the positivity demand. From these se-
lect the one that is most likely to have been created randomly.
This idea has also been proposed in [22] and applied to radio
astronomical imaging in [23]. Other approaches based on the
differential entropy have also been proposed [24], [25]. An ex-
tensive collection of papers discussing the various methods and
aspects of maximum entropy can be found in the various pa-
pers in [26]. Briggs [27] proposed a nonnegative least squares
approach (NNLS) which eliminates the need for iterative pro-
cessing. However, the computational complexity is very large.

In this paper, we use a reformulation of the image formation
problem as a parameter estimation problem using a set of covari-
ance matrices, measured at the various observation epochs [5].
This yields a model where the array response is time varying.
Previous research on time varying arrays and their application to
direction-of arrival (DOA) estimation includes [28]–[30]. In [5],
we proposed a simplified ML estimator. Lanterman [31] devel-
oped a full EM algorithm for implementing the MLE proposed
in [5]. The algorithm performs quite well although it is quite
complex compared to the solutions described in this paper.

The aforementioned algorithms assume perfect knowledge of
the instrumental response (point spread function). Due to var-
ious internal and external effects this assumption holds only ap-
proximately. One way to overcome this problem is the use of
calibrating sources. An unresolved source with known parame-
ters is measured, and by relating the model errors to the array
elements a set of calibration equations is solved. A much more
appealing solution is to try to improve the fitting between the
data and the sky model by adjusting the calibration parameters.
Another possibility [32] is to use the redundant structure of the
array to solve for the calibration parameters (this is possible
only for some arrays which have redundant baselines, such as
the WSRT). A good overview of the various techniques is given
in [33].

In this paper, we extend the above methods in several direc-
tions. First, we extend the parametric formulation of [5] to the
non-coplanar array case and to polarimetric imaging. Then we
propose relatively “low” complexity approaches for the image
deconvolution problem, based on minimum variance distortion-
less response (MVDR) and its robust extensions. We call these
extensions least-squares minimum variance imaging (LS-MVI).
We provide a new type of dirty image that has isotropic noise
response, something desirable in imaging applications. This is
done by generalizing the work of Borgiotti and Kaplan [34] to
the moving array case. We discuss acceleration techniques, re-
lated to the Clark [18] and the Cotton-Schwab [19] approaches
to CLEAN. However, in contrast to the classical CLEAN case,
the accelerated algorithm involves semi-definite programming
of low order, ensuring that the covariance matrices remain posi-
tive semi-definite after the subtraction. We provide analytic ex-

pressions for the asymptotic bias of the MVDR based imaging.
We also relate the classical self-calibration technique to a novel
extension of the robust Capon beamformer to the moving array
case, showing that self-calibration can be cast in terms of semi-
definite programming. This has advantage over previous ap-
proach to self-calibration since the covariance structure main-
tains its positive definite structure.

We also demonstrate full parametric deconvolution process
based on the proposed technique and compare CLEAN and
LS-MVI on simulated images. We will show in simulations
that LS-MVI, indeed, significantly outperforms the classical
CLEAN algorithm over a wide range of parameters, in terms of
better resolution, higher sensitivity and dynamic range.

The structure of the paper is as follows. In Section II, we de-
scribe the astronomical measurement equation. The measure-
ment equation is subsequently rephrased in a more convenient
matrix formulation both for non co-planar and co-planar arrays.
It is then extended with the effect of noise and unknown cal-
ibration parameters. We also discuss extension to polarimetric
measurements. In Section III, we discuss the new least squares
minimum variance imaging and extensions to self calibration
using robust Capon techniques. In Section IV, we present bias
analysis of the MVDR imaging technique.

In Section V, we describe several computer simulations
demonstrating the gain in parametric deconvolution relative to
the CLEAN in terms of resolution, sensitivity and capability
to model extended structures. We also provide example of the
tightness of the statistical bias analysis of the MVDR DOA esti-
mation with a moving array. We end up with some conclusions.

II. ASTRONOMICAL MEASUREMENT EQUATIONS

In this section we describe a simplified mathematical model
for the astronomical measurement and imaging process. Our
discussion follows the introduction in [9] and its matrix ex-
tension in [5]. We extend the matrix formulation of [5] to non
co-planar arrays and polarimetric measurements. This allows us
to obtain a uniform description of various astronomical imaging
operations such as deconvolution and self-calibration.

A. Interferometric Measurement Equation

The waves received from the celestial sphere may be con-
sidered as spatially incoherent wideband random noise. They
may be polarized and can contain spectral absorption or emis-
sion lines. Rather than considering the emitted electric field at a
location on the celestial sphere, astronomers try to recover the
intensity (or brightness) in the direction of unit-length vec-
tors , where is a specific frequency. Let be the received
celestial electric field at a location on earth and be the
antenna gain towards direction . The measured correlation of
the electric fields between two identical sensors and with lo-
cations and is called visibility and is (approximately) given
by [9]2

2To simplify notation, from this point we do not include the directional re-
sponse of the elements of the radio telescope.
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(1)

where is the mathematical expectation operator, the super-
script denotes the transpose of a vector, and overbar denotes
the complex conjugate. Note that it is only dependent on the ori-
ented distance between the two antennas; this vector is
called a baseline.

For simplification, we may sometimes assume that the astro-
nomical sky is a collection of discrete point sources (maybe
unresolved). This gives

where is the coordinate of the th source, and thus

(2)

For earth rotation synthesis arrays, the following coordinate
system is often used. We assume an array with antennas that
have a small field of view and that track a reference source
direction in the sky. Other locations in the field of view can
be written as , (valid for small ) and a
natural coordinate system is , .
Similarly, the receiver baselines can be parameterized as

, . The measurement equation in
coordinates thus becomes (see [9, ch. 19])

(3)

Assuming phase tracking is performed to compensate for the
geometric delay we obtain

(4)
where . Assuming that the sky is composed
of discrete set of sources we obtain

(5)

In certain conditions, such as East-West array or when the field
of view is limited by the antenna primary beam to sufficiently
small angular region, the third term in the exponential can be
neglected and the term is approximately 1. The
measurement equation (3) becomes

(6)

which has the form of a Fourier transformation.

The function is sampled at various coordinates
by first of all taking all possible sensor pairs or base-

lines , and second by realizing that the sensor locations
, are actually time-varying since the earth rotates. Given a

sufficient number of samples in the domain, the relation
can be inverted to obtain an image (the “map”). Direct Fourier
inversion of the visibility data suffers from severe aliasing and
is termed the dirty image. To overcome the aliasing, deconvo-
lution algorithms are required.

B. Matrix Formulation of the Measurement Equation

To allow a parametric imaging formulation of the discrete
source model, we can now formulate our measurement equa-
tions in terms of matrices following [5]. Our formulation is more
general than [5], extending it to the non-co-planar array case.

Let be an arbitrary and time-varying reference point,
typically at one of the elements of the array, and let us take
the coordinates of the other telescopes with respect to
this reference, ,

. Similarly to [5] in the coplanar case, (5) can then be
written in matrix form as

(7)

where

... (8)

and

When the field of view is limited, the factor
is close to unity and can be neglected. The vector function

is called the array response vector in array signal
processing. It describes the response of the telescope array to
a source in the direction . As usual, the array response is
frequency dependent. The response is also slowly time-varying
due to earth rotation. It is assumed that the function as shown
here is completely known. However, typically the array re-
sponse is not perfectly known. Each antenna may have a
different complex receiver gain, , dependent on cable
losses, amplifier gains, and (slowly) time varying. For LOFAR
type arrays the calibration is also space varying because of
atmospheric conditions. To simplify the exposition we only
treat calibration parameters that are spatially invariant assuming
that the field of view is contained in a single isoplanatic patch.
The case of LOFAR type array with space varying calibration
parameters is complicated, and will be treated in a subsequent
paper. The measurements are also containing additive system
noise. Typically, this noise is zero mean, independent among
the antennas (thus spatially white). After noise calibration and
scaling of the measurements we can also assume that it has a
covariance matrix that is a multiple of the identity matrix, ,
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where is the noise power on a single antenna. Usually the
receiver noise is assumed to be Gaussian. The resulting model
of the received covariance matrix then becomes

(9)

where

(10)

and is the calibration parameter for antenna at
time epoch . To allow proper calibration it is assumed that the
time varying calibration parameters vary slowly so calibration
equations can combine multiple epochs.

C. Astronomical Measurement Equation for Polarized Sources

Next, we extend our matrix formulation to the case of polari-
metric measurement of polarized sources. Our notation follows
the conventions of Hamaker et al. [35], [36]. For concreteness,
we concentrate on circular feeds. We perform the deconvolution
of the cross-polarization parameters and then recover the Stokes
parameters using the Muller matrices for each source. This en-
ables a straightforward extension of the matrix formulation to
polarized sources. First, we restrict our attention to purely or-
thogonal feeds, and then introduce the Jones matrices of each
antenna into the model. To that end assume that each antenna
has two orthogonal circular feeds. As usual, we restrict our dis-
cussion to the quasi-monochromatic case. The response of the
array at epoch towards direction can now be
decomposed as

(11)

where is the 2 2 identity matrix. This implies that for any
directions the vectors are orthogonal.
Assume that the sky is composed of point sources (to replace
the integral by a finite sum). The extended measurement equa-
tion for ideal feeds is now described by

(12)

where

(13)

is the array response matrix

(14)

is a block diagonal matrix with 2 2 sub-blocks, , on the
diagonal consisting of the source coherency matrices

(15)

Similarly to the calibrated model for scalar imaging, we can in-
troduce feed calibration matrices for nonideal (nonorthog-
onal) feeds, using the Jones matrices

(16)

where the 2 2 subblocks are the corresponding Jones matrices
representing the polarization leakage and the different gains and
phases of the feeds

(17)

The calibrated measurement equation in matrix form now be-
comes

(18)

This model is very similar to the scalar measurement equation
(9), except that the source matrix is now block diagonal. This
will have an effect on the parametric imaging algorithms. Note
that it is easy to see that the 2 2 subblocks of the matrix
agree with the formulation of Hamaker et al. [36]. After decon-
volution of the model (12) we can extract the Stokes parameters
of each source using the Muller matrices

(19)

where and

(20)

III. LEAST-SQUARES MINIMUM-VARIANCE IMAGING

The idea of using direction-of-arrival (DOA) estimation
techniques for imaging was first introduced in [5]. In that
paper, it was suggested that the imaging process will be based
on minimum variance distortionless response (MVDR) DOA
estimates [37], using classical dirty image intensities, similar
to the CLEAN method [14]. Therefore, the algorithm improves
the source location estimates, but the power estimates are still
inaccurate similarly to the CLEAN algorithm. In this paper,
we improve the algorithm of [5] in several directions. First, we
introduce a new type of dirty image that has better properties
than the standard MVDR dirty image. We term this new dirty
image the adaptive angular response (AAR) dirty image, since
it extends the technique of [34] to the moving array case. The
main advantage is the isotropic noise response, similar to that
of the classical Fourier beamformer. Then, we improve the
power estimate using nonnegative least squares estimator for
the power and imposing a positive semi-definite constraint on
the residual covariance matrices. Note that in contrast to the
global NNLS of Briggs [27] we only solve linear NNLS which
has a closed form solution. Furthermore, the dimensionality of
the specific NNLS used in this paper is very low, operating on
a single (or few) sources at a time. The two previous papers on
parametric imaging [5], [38] have only demonstrated dirty im-
ages based on MVDR and the robust MVDR estimation. In this
paper we demonstrate the benefits of the parametric approach
after a full deconvolution. The proposed algorithm results in a
robust technique capable of much better resolution compared
to the CLEAN, since it inherently suppresses interference from
other sources within the image, by using a data dependent
beam in order to estimate the locations. Finally, we will show
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how to speed up the proposed algorithm by estimating multiple
sources at each round.

The MVDR based imaging can be generalized to robust capon
beamforming (RCB) [38]–[43], which is also expected to pro-
vide robustness to array manifold errors. A first stage of exper-
imental verification of using the RCB has been carried out in
[38], where dirty images based on the RCB showed superior in-
terference immunity compared to the ordinary dirty images. We
also demonstrate how to combine the LS-MVI with the self-cal-
ibration. However, this requires a novel extension of the robust
Capon algorithm to the case of moving array using semi-definite
programming. We begin with discussion of the MVDR and the
robust MVDR algorithms for a moving array and then discuss
power estimation. Then we provide a complete description of
the algorithm and its accelerated versions. We end up with ex-
tending the robust Capon beamformer to the moving array case
and demonstrate how it can be used for self calibration.

A. Two-Dimensional Minimum Variance Estimation With a
Moving Array

The MVDR [37] was one of the first super-resolution tech-
niques for direction-of-arrival estimation. Compared to classical
(Fourier) based beamforming it provides better separation of
closely spaced sources and robustness to strong interference.
The MVDR estimator is obtained by solving the following op-
timization problem [44]:

Let denote the antennas’ output signal at time (we
assume that DC has been removed so that is a zero mean
random signal). We apply a weight vector to . Hence,
the variance of the antennas’ output, derived from pointing to-
wards direction , is given by

The total output power is then given by

(21)

Note that for the classical dirty image [5] and
the dirty image is given by

(22)

This amounts to using fixed Fourier basis vectors for beam-
forming, independently of the data. As in [5], we can replace

by , where is the noise power. This power
downdating can, alternatively, be incorporated into the positive
semidefinite constraints. A much better approach to the imaging
process would be to minimize the interference subject to trans-
ferring the desired direction unchanged. This is equivalent to
working with data dependent beamformer. Using the data to
form the beam provides much better interference suppression,
compared to the fixed Fourier basis. The variance of the array
output consists of the response to sources at many directions.
We require that at each time instance the total output power
will be minimized, subject to the constraint that the output
response towards direction will be fixed. This is equivalent
to requiring that the contributions of the sidelobes of other

sources will be minimized. Using (9) and assuming calibrated
array, we obtain

In order to obtain an estimate of the power originating from
direction without interference, we require that for all

(23)

and then minimize the overall output power. This can be refor-
mulated as the following constrained problem (for simplicity we
denote by ):

(24)
The above problem can be solved using Lagrange multipliers.
The solution is given by

(25)
Substituting in (21) we obtain

(26)

Definition 3.1: formulated in (26) is the MVDR dirty
image.

Finally, we describe a second variant of the MVDR dirty
image, which combines the adapted angular response (AAR)
of [34] and the approach of [45] to moving arrays. Borgiotti
and Kaplan [34] proposed to use an MVDR type of estimator

but in order to obtain isotropic behavior of
the noise to add a constraint for all . This results
in the following spatial spectrum estimator:

(27)

Rieken and Fuhrmann [45] suggested to assume that the mea-
surements at each epoch (or array in their formulation) are un-
correlated, resulting in block diagonal covariance matrix

(28)

This assumption holds for the radio-astronomical case, since the
received signal can be assumed independent over different time
epochs. Let

(29)

where

Substituting (28) and (29) into (27), we obtain that the dirty
image is given by

(30)
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TABLE I
LS-MVI ALGORITHM

This new spatial power spectrum estimator for the moving array
case has isotropic white noise response, and optimal suppression
of interference under the isotropic white noise requirements.
Furthermore, the averaging over the time epochs
at both numerator and denominator results in smoother behavior
of the dirty image.

Definition 3.2: formulated in (30) is the AAR dirty
image.

The AAR dirty image (30) yields better power estimates and
is more robust to strong noise, but has somewhat higher compu-
tational complexity.

B. LS-MVI Algorithm

In this section we present a new algorithm—the Least Squares
Minimum Variance Imaging (LS-MVI). The algorithm is an it-
erative one, similar to the CLEAN method. We assume that
every cosmic source in the sky brings the MVDR dirty image
(26) or the AAR dirty image (30) to its maximum at its direction.
Thus, in each iteration we find the brightest point in the MVDR
dirty image. Then we estimate its intensity, using least squares,
as described below. We subtract part of the source’s contribution
to the correlation matrices. A new MVDR dirty image is then
calculated, using the new correlation matrices. We continue the
iterations until a certain stopping rule (typically defined by
test for the residual dirty image) is met. The final image is com-
posed of the locations and intensities we have found during these
iterations, convolved with a synthesized beam, usually an ideal
Gaussian beam. Note that the location estimator is not limited to
the grid of the dirty image. Since the model is continuous either
interpolation or local optimization can be used to find the best
location, independent of the grid. Typically, quadratic interpo-
lation around the maximum of the grid suffices. This solves the
dynamic range problem pointed out by [46]. In [5] the locations
of the sources were estimated by using the MVDR dirty image

. However, the intensities were estimated using the con-
ventional dirty image . As explained before the new AAR
dirty image improves the location estimation over the MVDR
dirty image. Furthermore, we go even beyond the location esti-
mation, by improving the estimate of the sources intensity. We

suggest to estimate the intensities by using least squares. Recall
from (9) that

In each iteration we find a location that brings the MVDR
dirty image to its maximum at its direction. Thus, defining

, we solve the following problem:

(31)
where is the Frobenius norm. Problem (31) can be refor-
mulated as follows:

(32)

where

is a vector of size , in which is number of time
instances and is the number of antennas, the index indicates
the specific time instance, and

The problem can be solved using the Karush-Kuhn-Tucker Con-
ditions for constrained optimization [4]. The result is

(33)

When positivity constraint is not applicable, such as in polari-
metric imaging, one similarly obtains . The
MVDR dirty image can be replaced with the AAR dirty
image (30) yielding better performance. The superiority of the
LS-MVI over the CLEAN method is shown in simulated ex-
amples in Section V-A. A possible improvement of the method
above is by using semi-definite constraints. We can add the fol-
lowing constraints on in (32):

(34)

where means that is positive semi definite. Since
the solution for (32) provides an upper bound on and 0 is a
lower bound, a simple bisection can provide this optimal value.
The LS-MVI algorithm is described in Table I.

C. Accelerating the Algorithm

The proposed algorithm has higher computational com-
plexity compared to the CLEAN since it cannot utilize the 2-D
FFT algorithm to generate the MVDR dirty image. It should be
noted that naive implementation of the techniques is much more
complex than the CLEAN approach. It is still an interesting
research problem to reduce the complexity of the proposed
parametric approach. There are however several techniques
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that can accelerate the LS-MVI algorithm. We would like to
mention two approaches. First, a clever update of the MVDR
dirty image is possible, with complexity , where is the
number of antennas in the array, is the image size and is
the number of observation epochs, by using low rank updates.
Moreover, since the MVDR estimator better suppresses the
effect of other sources, we can estimate simultaneously several
point sources with directional vectors , where is a
small number, by choosing the strongest points in the image.
This is similar in spirit to the small cycle in [18] and [19]. To
that end, define

(35)
and let . We can estimate the powers of the
sources by solving the problem

(36)

where are the sources powers. Similarly to
the single source case, the solution is given by solving the LS
problem with positivity constraints. This problem is a special
case of quadratic programming problems, and therefore can be
solved efficiently. In contrast to [27], where all the measure-
ment constraints are put into a large constrained LS problem,
our problem has low dimensional positivity constraints. The so-
lution is given by

Therefore, we solve an unconstrained LS solution and set the
negative terms to 0. Solving for sources simultaneously re-
duces the complexity by a factor of . In this case we can also
impose the extra conditions

(37)

These constraints prevent the matrices from becoming
non positive semi-definite and prevent overestimation of the
power. This problem is equivalent to a special case of convex
programming called semi-definite programming in the variables

:

(38)

After is estimated the covariance matrices
are updated by subtracting the contribution of the estimated

sources from the covariance matrices (possibly using a prede-
fined loop gain)

(39)

Such problems can be solved very efficiently using convex opti-
mization techniques [4], especially, when the number of sources
estimated simultaneously is small. Finally, we mention that the
MVDR dirty image can be interpolated in the intermediate steps,
resulting in significant reduction in the complexity of the decon-
volution.

D. Self Calibration and Robust MVDR With a Moving Array

We now turn to the case where the array response is not com-
pletely known, but we have some statistical knowledge of the
error, e.g., we know the covariance matrix of the array response
error at each epoch. Typically this covariance will be time in-
variant or will have slow temporal variation. In this case we ex-
tend the robust dirty image as described in [38], into the moving
array case. This generalization is new, and has not been previ-
ously dealt with in the signal processing literature. Since the
positive definite constraint on the residual covariance matrices
is important in our application, we decided to extend the robust
Capon estimator of [39]. To that end assume that at each epoch
we have an uncertainty ellipsoid describing the uncertainty of
the array response (as well as unknown atmospheric attenua-
tion). This is described by

(40)

where is the nominal value of the array response towards
the point . Generalizing our MVDR with moving array we
would like to solve the following problem:

(41)

Let . The problem (41) is equivalent to the following
problem:

(42)

This problem is once again a semi-definite programming
problem that can be solved efficiently via interior point tech-
niques [47]. We can now replace the MVDR estimator by
this robust version. Interestingly we obtain estimates of the
corrected array response . Using the model we obtain for
each
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Fig. 1. Two very strong close sources. Signal power to noise standard deviation in the image was 250 000 : 1. (a) True image. (b) Conventional dirty image. (c)
MVDR dirty image. (d) AAR dirty image. (e) Image after CLEAN. (f) Image after LS-MVI.

(43)

Hence, the self-calibration coefficients can be estimated using
least squares fitting

(44)

where . Of course, when the self-cali-
bration parameters vary slowly we can combine the estimation
over multiple epochs. This might be instrumental in calibration
of LOFAR type arrays, where the calibration coefficients vary
across the sky. Since the computational complexity of the self
calibration semi-definite programming is higher than that of the
MVDR dirty image, it is too complicated to solve this problem
for each pixel in the image. Hence it should be used similarly to
the external self calibration cycle, where this problem is solved
using a nominal source locations model. The advantage over or-
dinary self calibration is that beyond the reevaluation of the cal-
ibration parameters, we obtain better estimates of the sources
powers, without significant increase in the complexity. Another
interesting alternative proposed by the anonymous reviewer is
to use the doubly constrained RCB which combines norm con-
straint like in the AAR dirty image with the robust Capon beam-
forming [48]. The extension to the moving array is done simi-
larly to the previous problems, and will be omitted.

IV. STATISTICAL ANALYSIS OF THE 2-D MVDR DOA
ESTIMATOR WITH A MOVING ARRAY

In this section, we analyze the 2-D DOA estimator based on
MVDR with a moving array. The main motivation for this anal-
ysis is a first step in analyzing the LS-MVI, but the results have
independent value for DOA estimation with a moving array. In-
terestingly, this is not a straightforward extension of the analysis
of the 2-D MVDR estimator with a fixed array by Hawkes and
Nehorai [49]. The proof is given in the Appendix.

Vaidyanathan and Buckley [50] studied the statistical proper-
ties of 1-D MVDR estimator in a fixed array. They have used a
single correlation matrix, and the unknown parameter was the
th source’s location, represented by the scalar , .

Hawkes and Nehorai [49] considered the case of 2-D MVDR
estimator for a fixed array, i.e., they have also used a single cor-
relation matrix, but the unknown location was represented by
the vector of size (2 1). Our study extends these works to
the case of a moving array. The location of the th source is de-
noted by , , where and are the
coordinates on a plane that is as an approximation of a small re-
gion in the celestial sphere (As described in Section II). is
the correlation matrix at epoch where and
is the sample covariance matrix at epoch . For simplicity we
assume that for each , is based on samples (independent
of ). This is realistic in most applications.

The 2-D MVDR spectral estimator is given by

(45)

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on December 15, 2008 at 04:58 from IEEE Xplore.  Restrictions apply.



678 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 5, OCTOBER 2008

Fig. 2. Scattered sources. Intensities ratio between the strongest source and the weakest source is 16 db. (a) True image. (b) Conventional dirty image. (c) MVDR
dirty image. (d) AAR dirty image. (e) Image after CLEAN. (f) Image after LS-MVI.

When , the function degenerates to

(46)

Since maximizing is equivalent to mini-
mizing , both [49], [50] minimized

for scalar and vector , respectively. However, this
approach can not be used with covariance matrices, because
of the structure of in (45). In order to be able to generalize
the analysis from a single correlation matrix to correlation
matrices, we have to directly maximize (45). This technique
significantly complicates the analysis.

The estimator based on samples per covariance matrix is
denoted by . The estimation error is
given by

(47)

Let be the limit of the sequence of
estimates. Based on general estimation theory the limit exists
with probability one. Similarly to [50], we decompose the esti-
mation error as

(48)

where is the asymptotic bias and
is the finite sample error. Note that is a deterministic con-
stant, while is a random variable. The variance of the finite
sample error (as well as the variance of the estimator) decays as

and converges to 0 with probability 1. Explicitly

This implies that the variance of the 2-D MVDR estimator con-
verges to zero asymptotically. The asymptotic bias can be ex-
plicitly computed. It is given by the following theorem.

Theorem 4.1: Let be the asymptotic
bias of the MVDR estimator of the th source’s location,

.
Then

(49)

where

(50)
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(51)

(52)

(53)

(54)

(55)

... (56)

. . . (57)

and

. . . (58)

The analytical expressions seem to be in a good agreement
with empirical values, as demonstrated in Section V-B. The
proof of the theorem is given in the Appendix.

V. SIMULATIONS

In this section we present simulation results of the LS-MVI
algorithm as well as of the asymptotic bias analysis. In the first
subsection we present deconvolution results on simulated im-
ages. We compare the performance of the LS-MVI algorithm
and the CLEAN method. In the second subsection we study
the asymptotic bias analysis. In all simulations we have used an
East-West array of ten antenna elements, logarithmically spaced

up to and generated artificial sky images. We converted
the images to coordinates from right ascension and decli-
nation, as described in [8]. Note that this results in coor-
dinates that are not on a rectangular grid. We produced 720 cor-
relation matrices along 12 h, using the model of [6], where the
averaging period for each matrix was one minute. To simplify
the simulations we assumed perfect coherence of the sources
along each integration time and that compensation for the geo-
metric delay has been done. The synthesized beam used in this
paper is depicted in Fig. 3 at the right bottom of each subfigure.

A. Comparison of LS-MVI and CLEAN

Our first set of experiments compared the performance of
the CLEAN algorithm and the LS-MVI. A Gaussian noise was
added to the measurements. To implement the CLEAN we cre-
ated a uniform grid and interpolated the visibilities to this grid
using standard convolutional gridding. We created the classical
dirty image using fast Fourier inversion on the rectangular grid.

We applied the CLEAN algorithm on the created dirty image.
Subsequently, we created from the same data the MVDR dirty
image (Def. 3.1) and the AAR dirty image (Def. 3.2), based on
the computed correlation matrices. We performed deconvolu-
tion using the LS-MVI algorithm with the AAR dirty image, as
described in Table I. Both CLEAN and LS-MVI used a loop gain

in all simulations. For each trial the original image, the
dirty image , the MVDR dirty image and the AAR
dirty image are presented. Then the results of applying
the CLEAN method and the LS-MVI algorithm. The latter was
based on the AAR dirty image.

The first scenario is depicted in Fig. 1. The original image
consists of two closely spaced sources. Their intensities were
equal and the noise was very weak, so that the image noise
was 250 000 times weaker than each source. It is shown that
LS-MVI succeeds in separating the two sources whilst the
CLEAN method does not. Moreover, the intensities are more
accurate in the LS-MVI’s image. Note that in this case the
MVDR dirty image and the AAR dirty image are quite similar.

The second scenario is depicted in Fig. 2. The original image
consists of many sources with different intensities Fig. 2(a). The
intensities ratio between the strongest source and the weakest
source is 16 dB. The weakest source contributed to each baseline
power that is equal to of the noise standard deviation on the
baseline. For the WSRT this is equivalent to a source of 8 mJy
when using 160 MHz band and integrating over 256 correlation
lags.3 As can be seen, LS-MVI performs better than CLEAN.
The latter cannot differentiate between close sources, and the
structures of its sources are less accurate. Moreover, LS-MVI
gives better intensities estimations than CLEAN. The reason for
that is the isotropic noise spectrum, that prevents direction de-
pendent noise effects. Thus the sources intensities estimations
are more accurate when based on the AAR dirty image, rather
than on the conventional dirty image or on the MVDR dirty
image.

3Based on the WSRT noise exposure calculator http://www.astron.nl/~oost-
erlo/expCalc.html, and using the fact that the simulated beam is of size approx-
imately 4 pixels.
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Fig. 3. Extended source. Power for weak source in the center is �� per baseline. Contours of the image are 2% of the maximum. The bottom right is the synthesized
beam with contours that are 20% of the maximum of the synthesized beam. (a) True image. (b) Image after CLEAN—100 iterations. (b) Image after CLEAN—120
iterations. (c) Image after LS-MVI—100 iterations. (c) Image after LS-MVI—300 iterations.

The third experiment included an extended source containing
a central weak point source and two extended radio lobes. The

correlation matrices were generated such that the contribution
of the weak source to each baseline was of the noise on the
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Fig. 4. Cross section through the images.

baseline. Fig. 3 presents the original image, the CLEAN image
and the LS-MVI using the AAR dirty image. The CLEAN is
presented after 100 and 120 iterations while the LS-MVI is pre-
sented after 100 and 300 iterations respectively. Each contour
is 2% of the dynamic range of the image. We can clearly see
that the CLEAN develops a fake source a little bit below the
right lobe after 120 iteration. This causes complete divergence
if the CLEAN iterations are continued. On the other hand, the
LS-MVI with its better power estimate can continue with many
more iterations, without affecting the image. Finally to demon-
strate the improved power estimate, we have taken a cross sec-
tion of the images near the center. Fig. 4 presents the results,
for the original image, the CLEAN after 100 iterations and the
LS-MVI after 100 iterations. We can clearly see the improved
power estimate.

B. Bias of the 2-D MVDR DOA Estimator’s Simulation

In this section, we present a simulation of the bias of the
2-D MVDR DOA estimator with a moving array. We have used
the same array as in the previous simulations. The artificial sky
image was composed of two point sources with different inten-
sities (the weak source had power that was half of the power
of the strong source). The sources contribution to each baseline
was approximately and of the noise on the baseline.
The MVDR dirty image (Def. 3.1) was created based on these
correlation matrices. First we found the location of the max-
imum intensity in the MVDR dirty image. Then we used a 2-D
quadratic interpolation in order to obtain a fine 2-D MVDR lo-
cation estimate. We averaged the estimates over 100 indepen-
dent trials. We compared our results to the analytical expres-
sions given in Theorem 4.1. This experiment was repeated 40
times with various angular separation of the sources. Fig. 5 de-
picts the simulated bias against the analytical bias, as a
function of the angular distance between the two sources in l
coordinates. It can be seen that the analytical results are in good
agreement with the simulation results. Moreover, as the distance
between the two sources increases, the bias of the estimator de-
creases, as expected. As the distance is larger, the influence of

Fig. 5. Bias of the 2-D MVDR estimator.

the sidelobes of one source on the other is smaller. The change
in the bias is not monotonic in the angular separation, since the
weak source moves through the sidelobes of the strong source.

VI. CONCLUSIONS

In this paper, we extend the matrix formulation of [5] to
non co-planar arrays and polarimetric measurements. Then we
propose a new parametric imaging technique that improves the
resolution and sensitivity over the classical CLEAN algorithm.
The method is based on several improvements: A new type
of dirty image, LS estimation of the powers and semi-definite
constraints. We show how the technique can be combined
into self-calibration using semi-definite programming. Our
semi-definite self-calibration algorithm also provides a new ap-
proach to robust beamforming with a moving array, extending
the techniques of [40]–[42]. We provide statistical analysis of
the location estimator. Simulated examples comparing full de-
convolution using LS-MVI and comparing them to the CLEAN
method are presented. These simulations demonstrate that
the parametric approach has higher resolution, is more robust
to source structures, and performs better in noisy situations.
The great potential of the methods proposed in this paper is a
first step towards the development of more advanced imaging
techniques, capable of providing higher dynamic range and
interference immunity as required by the radio telescopes of
the future.

APPENDIX

In this section we derive approximate expressions for the
asymptotic bias by using a first-order Taylor series expansion of

and around .
To reduce the notational load we present the derivation of the
single covariance matrix case. In the multiple covariance ma-
trices case is replaced by a sum and each expression can be
replaced by the appropriate sum over . The final result in The-
orem 4.1 includes the adjustment to multiple covariance ma-
trices. Note that is a fixed parameter representing the true
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covariance matrix, since we discuss only the asymptotic term.
Let be fixed. The expansion around is given by

(59)

and

(60)

Since by definition is the minimum of

Hence

(61)

Proving that
and using Cramer’s rule, we obtain (49) (for ).

For simplicity, from now on we will denote by .
Let us now derive the expressions for the derivatives of

:

(62)

Therefore

(63)

where

(64)

Using the fact is Hermitian and simple algebraic manip-
ulation yields

Therefore

(65)

Using (65), (63) becomes

(66)

where we have used the fact that both and are Hermitian,
and are defined in (55) for . Thus, we get (50)

(for ). Similarly, we derive (51).
To calculate [(52)], define as

(67)

Then

(68)

and

Therefore

(69)

Using again the fact that both and are Hermitian, we get

(70)
where , , , and are defined in (55) for .
Thus we get (52) for . Equation (53) may be derived in
the same way.

To calculate (54) we use (67) and obtain

(71)
By (68) and (71), we get

(72)

After some simple algebraic manipulations we get (54)
for . Note that is continuous, as long as

does not vanish. Indeed and is positive
definite (since is positive definite), so . There-
fore, is continuous. Similarly, is
continuous. Hence, . This
completes our proof.
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