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Cooperative Game Theory and the Gaussian
Interference Channel
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Abstract—In this paper we discuss the use of cooperative game
theory for analyzing interference channels. We extend our previ-
ous work, to games with N players as well as frequency selective
channels and joint TDM/FDM strategies. We show that the Nash
bargaining solution can be computed using convex optimization
techniques. We also show that the same results are applicable
to interference channels where only statistical knowledge of the
channel is available. Moreover, for the special case of two player
2 × K frequency selective channel (with K frequency bins) we
provide an O(K log2 K) complexity algorithm for computing the
Nash bargaining solution under mask constraint and using joint
FDM/TDM strategies. Simulation results are also provided.

Index Terms—Spectrum optimization, distributed coordina-
tion, game theory, Nash bargaining solution, interference chan-
nel, multiple access channel.

I. INTRODUCTION

COMPUTING the capacity region of the interference
channel is an open problem in information theory [2].

A good overview of the results until 1985 is given by van der
Meulen [3] and the references therein. The capacity region
of general interference channel is not known yet. However,
in the last forty five years of research some progress has
been made. Ahslswede [4], derived a general formula for the
capacity region of a discrete memoryless Interference Channel
(IC) using a limiting expression which is computationally
infeasible. Cheng, and Verdu [5] proved that the limiting
expression cannot be written in general by a single-letter
formula and the restriction to Gaussian inputs provides only an
inner bound to the capacity region of the IC. The best known
achievable region for the general interference channel is due
to Han and Kobayashi [6]. However, the computation of the
Han and Kobayashi formula for a general discrete memoryless
channel is in general too complex. Sason [7] describes certain
simplification of the Han Kobayashi rate region in certain
cases. A 2x2 Gaussian interference channel in standard form
(after suitable normalization) is given by:

x = Hs + n, H =
[

1 α
β 1

]
(1)

where, s = [s1, s2]T , and x = [x1, x2]T are sampled values
of the input and output signals, respectively. The noise vector
n represents the additive Gaussian noises with zero mean and
unit variance. The powers of the input signals are constrained
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to be less than P1, P2 respectively. The off-diagonal elements
of H, α, β represent the degree of interference present. The
capacity region of the Gaussian interference channel with very
strong interference (i.e., α ≥ 1 + P1, β ≥ 1 + P2 ) is given
by [8]

Ri ≤ log2(1 + Pi), i = 1, 2. (2)

This surprising result shows that very strong interference does
not reduce the capacity. A Gaussian interference channel is
said to have strong interference if min{α, β} > 1. Sato
[9] derived an achievable capacity region (inner bound) of
Gaussian interference channel as intersection of two multiple
access Gaussian capacity regions embedded in the interference
channel. The achievable region is the intersection of the rate
pair of the rectangular region of the very strong interference
(2) and the region

R1 + R2 ≤ log2 (min {1 + P1 + αP2, 1 + P2 + βP1}) . (3)

A recent progress for the case of Gaussian interference is
described by Sason [7]. Sason derived an achievable rate
region based on a modified time- (or frequency-) division
multiplexing approach which was originated by Sato for the
degraded Gaussian IC. The achievable rate region includes
the rate region which is achieved by time/frequency division
multiplexing (TDM/ FDM), and it also includes the rate region
which is obtained by time sharing between the two rate pairs
where one of the transmitters sends its data reliably at the
maximal possible rate (i.e., the maximum rate it can achieve
in the absence of interference), and the other transmitter
decreases its data rate to the point where both receivers can
reliably decode their messages.
While the two user flat interference channel is a well studied

problem, much less is known in the frequency selective case.
An N ×N frequency selective Gaussian interference channel
is given by:

xk = Hksk + nk k = 1, ..., K

Hk =

⎡
⎢⎣

h11(k) . . . h1N (k)
...

. . .
...

hN1(k) . . . hNN (k)

⎤
⎥⎦ .

(4)

where, sk, and xk are sampled values of the input and output
signal vectors at frequency k, respectively. The noise vector
nk represents the additive Gaussian noises with zero mean and
unit variance. The power spectral density (PSD) of the input
signals are constrained to be less than p1(k), p2(k) respec-
tively. The off-diagonal elements of Hk, represent the degree
of interference present at frequency k. The main difference
between interference channel and a multiple access channel
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(MAC) is that in the interference channel, each component of
sk is coded independently, and each receiver has access to a
single element of xk. Therefore, iterative decoding schemes
are much more limited, and typically impractical.
One of the simplest ways to deal with interference limited

channels is through orthogonal signaling. Two extremely sim-
ple orthogonal schemes are using FDM or TDM strategies.
These techniques allow a single user detection (which will
be assumed throughout this paper) without the need for
complicated multi-user detection. The loss of these techniques
compared to techniques requiring joint decoding has been
thoroughly studied, e.g., [8] showing degradation compared
to techniques using joint or sequential decoding. However,
the widespread use of FDMA/TDMA as well as collision
avoidance medium access control (CSMA) techniques, make
the analysis of these techniques very important from practical
point of view as well. For frequency selective channels (also
known as ISI channels) we can combine both strategies by
allowing time varying allocation of the frequency bins to
the different users. In this paper we limit ourselves to joint
FDM and TDM scheme where an assignment of disjoint
portions of the frequency band to the several transmitters
is made at each time instance. This technique is widely
used in practice because simple filtering can be used at the
receivers to eliminate interference. The main results in this
paper were derived under a PSD mask limitation (peak power
at each frequency) since this constraint is typically enforced by
regulators. In contrast total power constraints are technology
dependent and emerge from practical limitations as well as
economic limitations on power amplifiers. Hence, studying
PSD mask constraint has great practical value. Furthermore, in
bandwidth limited applications where SINR is high, the value
of spectral shaping is low and using a flat PSD mask can be
very close to optimal.
While information theoretical considerations allow all

points in the rate region, we argue that the interference channel
is a conflict situation between the interfering links [1]. Each
link is considered a player in a general interference game.
Therefore, the non-cooperative solutions such as the iterative
water-filling [10], which leads to good solutions for the
multiple access channel (MAC) and the broadcast channel [11]
can be highly suboptimal in interference channel scenarios
[12], [13]. To solve this problem there are several possible
approaches. One that has gained popularity in recent years is
through the use of competitive strategies in repeated games
[14]. Other solutions are by regulatory type of solution [15]
where certain users are protected, or by changing the rules
of the game by imposing pricing mechanisms [16],[17]. Our
approach is significantly different and is based on general
bargaining theory originally developed by Nash [18]. Our
approach is also different than that of [19] where Nash
bargaining solution for interference channels is studied under
the assumption of receiver cooperation. This translates the
channel into a MAC, and is not relevant to distributed receiver
topologies. In our analysis of the interference channel we
claim that while all points on the boundary of the interference
channel are achievable from the strict informational point of
view, many of them will never be achieved since one of the
players will refuse to use coding strategies leading to these

points. The rate vectors of interest are only rate vectors that
dominate component-wise the rates that each user can achieve,
independently of the other users coding strategy. The best rate
pairs that can be achieved independently of the other users’
strategies form a Nash equilibrium [20]. This implies that
not all the rates are indeed achievable from game theoretic
perspective. Hence, we define the game theoretic rate region.
Definition 1.1: Let R be an achievable information theo-

retic rate region. The game theoretic rate region RG is given
by

RG =
{
(R1, ..., RN ) ∈ R : RC

i ≤ Ri, ∀i = 1, ..., N
}
(5)

where RC
i is the rate achievable by user i in a non-cooperative

interference game [13].
To see what are the pair rates that can be achieved by
negotiation and cooperation of the users we resort to a well
known solution termed the Nash bargaining solution. In his
seminal papers, Nash proposed four axioms [18],[21] that any
solution to the bargaining problem should satisfy. He then
proved that there exists a unique solution satisfying these
axioms. We will analyze the application of Nash bargaining
solution (NBS) to the interference game, and show that there
exists a unique point on the boundary of the capacity region
which is the solution to the bargaining problem as posed by
Nash.
The fact that the Nash solution can be computed indepen-

dently by the users, exchanging only channel state distribu-
tions, provides a good method for managing multi-user ad-hoc
networks operating in an unregulated environments.
Application of Nash bargaining to OFDMA has been pro-

posed by [22]. However in that paper the solution was used
only as a measure of fairness. Therefore, RC

i was not taken
as the Nash equilibrium for the competitive game, but an
arbitrary Rmin

i . This can result in non-feasible problem, and
the proposed algorithm might be unstable. The algorithm in
[22] is suboptimal even in the two user case, and according
to the authors can lead to an unstable situation, where the
Nash bargaining solution is not achieved even when it exists.
In contrast, in this paper we show that the NBS for the
N player game can be computed using convex optimization
techniques. We also provide detailed analysis of the two
user case and provide an O(K log2 K) complexity algorithm
which provably achieves the joint FDM/TDM Nash bargaining
solution. Our analysis provides ensured convergence for higher
number of users and bounds the loss in applying OFDMA
compared to joint FDM/TDM strategies. In the two user case
we can show that the Nash bargaining solution requires TDM
over no more than a single tone, so we can achieve a very good
approximation to the optimal FDM based Nash bargaining
solution. We also provide similar analysis for higher number
of users, showing that for the Nash bargaining solution with N
players, over a frequency selective channel with K frequency
bins, only

(
N
2

)
frequency bins has to be shared by TDM,

while all other frequencies are allocated to a single user. When(
N
2

)
<< K , this provides a near optimal solution to the game

using FDM strategies, as well.
The structure of the paper is as follows: In section II we

discuss competitive and cooperative solutions to frequency
selective interference games and provide an overview of the
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Nash bargaining theory. In section III we discuss the existence
of the NBS forN player FDM cooperative game over slow, flat
fading channels. In section IV we discuss the Nash bargaining
over general frequency selective interference channel, with
PSD mask constraint. We show that computing the NBS
under mask constraint and joint FDM/TDM strategies can
be posed as a convex optimization problem. This shows that
even for large number of players, computing the solution with
many tones is feasible. We also show that in this case the
N users will share only few frequencies, dividing all the
others. In section V we specialize to the frequency selective
two players case. We provide an algorithm for computing the
NBS in complexity O (K log2(K)). Finally, we demonstrate
in simulations the gains compared to the competitive solution
both in the flat fading and the frequency selective cases. We
end up with some conclusions.

II. NASH EQUILIBRIUM VS. NASH BARGAINING SOLUTION

In this section we describe two solution concepts for N
player games. The first notion is that of Nash equilibrium.
The second is the Nash bargaining solution (NBS). In order
to simplify the notation we specifically concentrate on the
Gaussian interference game. In this paper we use three models:
Frequency selective with total power constraint, flat frequency
response and frequency selective channels with PSD mask
constraints.

A. The Gaussian interference game

In this section we define the Gaussian interference game
under total power constraint, and provide some simplifica-
tions for dealing with discrete frequencies. For a general
background on non-cooperative games we refer the reader to
[20]. The Gaussian interference game was defined in [23].
In this paper we use the discrete approximation game. Let
f0 < · · · < fK be an increasing sequence of frequencies.
Let Ik be the closed interval be given by Ik = [fk−1, fk].
We now define the approximate Gaussian interference game
denoted by GI{I1,...,IK}.
Let the players 1, . . . , N operate over K parallel fre-

quency channels. Assume that the N2 frequency selective
cross channels between j’th transmitter and i’th receiver have
transfer functions 〈hij(k) : k = 1, ..., K〉. Assume that user i
is allowed to transmit a total power of Pi. Each player can
transmit a power vector pi = (pi(1), . . . , pi(K)) ∈ [0, Pi]K

such that pi(k) is the power transmitted in the interval Ik.
Therefore, we have

∑K
k=1 pi(k) = Pi. The equality follows

from the fact that in non-cooperative scenario all users will
use the maximal power they can use. This implies that the set
of power distributions for all users is a closed convex subset
of the cube

∏N
i=1[0, Pi]K given by:

B =
N∏

i=1

Bi, (6)

where Bi is the set of admissible power distributions for player
i given by:

Bi = [0, Pi]K ∩
{

(p(1), . . . , p(K)) :
K∑

k=1

p(k) = Pi

}
. (7)

Each player chooses a PSD pi = 〈pi(k) : 1 ≤ k ≤ N〉 ∈ Bi.
Let the payoff for user i be given by:

Ci (p1, . . . ,pN ) =
∑K

k=1 log2 (1 + SINRi(k))Δfk (8)

where

SINRi(k) =
|hii(k)|2pi(k)∑ |hij(k)|2pj(k) + σ2

i (k)
, (9)

Ci is the capacity available to player i given power distri-
butions p1, . . . ,pN , channel responses hii(k), cross coupling
functions hij(k), σ2

i (k) > 0 is external noise present at the i’th
receiver at frequency k, and Δfk it the bandwidth of the k’th
interval. In cases where σ2

i (k) = 0 capacities might become
infinite using FDM strategies, however this is non-physical
situation due to the receiver noise that is always present, even
if small. Each Ci is continuous on all variables.
Definition 2.1: The Gaussian Interference game

GI{I1,...,Ik} = {C, B} is the N player non-cooperative
game with payoff vector C =

(
C1, . . . , CN

)
where Ci are

defined in (8) and B is the strategy set defined by (6).
The interference game is a special case of convex non-
cooperative N-persons game. Interestingly, under PSD mask
constraint, the Gaussian interference game becomes a set of
K parallel competitive games over flat channels.

B. Nash equilibrium in non-cooperative games

An important notion in game theory is that of a Nash
equilibrium.
Definition 2.2: An N -tuple of strategies 〈p1, . . . ,pN 〉 for

players 1, . . . , N respectively is called a Nash equilibrium iff
for all n and for all p (p a strategy for player n)

Cn
(
p1, ...,pn−1,p,pn+1, . . . ,pN

) ≤ Cn (p1, ...,pN ) ,

i.e., given that all other players i 	= n use strategies pi, player
n best response is pn.
The proof of existence of Nash equilibrium in the general
interference game follows from an easy adaptation of the proof
of this result for convex games [13]. A much harder problem is
the uniqueness of Nash equilibrium points in the water-filling
game. This is very important to the stability of the waterfilling
strategies. A first result in this direction has been given in
[24], [25]. A more general analysis of the convergence has
been given in [26].

C. Nash bargaining solution for the interference game

Nash equilibria are inevitable whenever a non-cooperative
zero sum game is played. However they can lead to substantial
loss to all players, compared to a cooperative strategy in the
non-zero sum case, where players can cooperate. An example
of this situation is the well known prisoner’s dilemma. The
main issue in this case is how to achieve the cooperation
in a stable manner and what rates can be achieved through
cooperation.
In this section we present the Nash bargaining solution

[20]. The underlying structure for a Nash bargaining in an N
player game is a set of outcomes of the bargaining process
S ⊆ RN which is compact and convex and a designated
disagreement outcome d (which represents the agreement to



LESHEM and ZEHAVI: COOPERATIVE GAME THEORY AND THE GAUSSIAN INTERFERENCE CHANNEL 1081

disagree and solve the problem competitively). S can be
considered as a set of outcomes of the possible joint strategies
or states, Alternatively, some authors consider S as a set of
states, d a disagreement state and a multiuser utility function
U : S ∪ {d}→RN . such that U (S ∪ {d}) is compact and
convex. The two approaches are identical and the first is
obtained from the second by defining the game by the set
of utilities of the possible outcomes. We will use the first
formulation since it simplifies notation. However, in some
cases we will define the outcomes of the game in terms of
strategies. The set S in the first definition is then obtained
by identifying it with U (S ∪ {d}) of the second definition.
The Nash bargaining solution is a function F which assigns
to each bargaining problem S ∪ {d} as above an element of
S ∪ {d}, satisfying the following four axioms:

Linearity. Assume that we consider the bargaining prob-
lem S′ ∪ {d′} obtained from the problem S ∪ {d} by
transformations: s′i = αisi + βi, i = 1, ..., N. d′i =
αidi + βi. Then the solution satisfies Fi

(
S′ ∪ {d′}) =

αiFi (S ∪ {d}) + βi, for all i = 1, ..., N .
Independence of irrelevant alternatives. This axiom states
that if the bargaining solution of a large game T ∪{d} is
obtained in a small set S. Then the bargaining solution
assigns the same solution to the smaller game, i.e., The
irrelevant alternatives in T \S do not affect the outcome
of the bargaining.
Symmetry. If two players i < j are identical in the sense
that S is symmetric with respect to changing the i’th and
the j’th coordinates, then Fi (S ∪ {d}) = Fj (S ∪ {d}).
Equivalently, players which have identical bargaining
preferences, get the same outcome at the end of the
bargaining process.
Pareto optimality. If s is the outcome of the bargaining
then no other state t exists such that s < t (coordinate
wise).

A good discussion of these axioms can be found in [20]. Nash
proved that there exists a unique solution to the bargaining
problem satisfying these four axioms. The solution is obtained
by solving the following problem:

sNash = arg max
s∈S∪{d}

N∏
n=1

(sn − dn) . (10)

Typically, one assumes that there exist at least one feasible
s ∈ S such that d < s coordinatewise, but otherwise we can
assume that the bargaining solution is d. We also define the
Nash function F (s) : S ∪ {d}→R

F (s) =
N∏

n=1

(sn − dn) . (11)

The Nash bargaining solution is obtained by maximizing the
Nash function over all possible states. Since the set of possible
outcomes S ∪ {d} is compact and convex F (s) has a unique
maximum on the boundary of S ∪ {d}.
Whenever the disagreement situation can be decided by a

competitive game, it is reasonable to assume that the disagree-
ment state is given by a Nash equilibrium of the relevant
competitive game. In some cases there are other possibilities
for the disagreement point. When the utility for user n is given

by the rate Rn, and d is the competitive Nash equilibrium, it
is obtained by iterative waterfilling for general ISI channels.
For the case of mask constraints the competitive solution is
simply given by all users using the maximal PSD at all tones.

III. NASH BARGAINING SOLUTION FOR THE FLAT FADING

N PLAYER INTERFERENCE GAME

In this section we provide conditions for the existence
of the Nash bargaining solution (NBS) for the N × N flat
frequency interference game. In general, the rate region for
the interference channel is unknown. However, by a simple
time sharing argument we know that the rate region is always
a convex set R, i.e.
R = {r : r = (R1, R2, ..., RN )is in the rate region} .

(12)
is a convex set. Typically we will use the utility defined by
the rate, i.e., for every rate vector r = (R1, ..., RN )T we
have Un(r) = Rn. In future work we will show how the
results can be generalized to other utility functions such as
UL

n (t) = log (Rn).
For some specific operational strategies one can define

an achievable rate region explicitly. This allows for explicit
determination of the strategies leading to the NBS. One
such example is the use of FDM or TDM strategies in the
interference channel. In the sequel we analyze the N player
interference game, with FDM or TDM strategies. We provide
conditions under which the bargaining solution exists, i.e.,
FDM strategies provide improvement over the competitive
solution. This extends the work of [12] which characterized
when does FDM solution outperforms the competitive IWF
solution for symmetric 2x2 interference game. We have shown
there that indeed in certain conditions the competitive game
is subject to the prisoner’s dilemma where the competitive
solution is suboptimal for both players. Let the utility of
player n be given by Un = Rn. The received signal vector x
(equivalent to the model in equation (4) for K = 1) is given
by

x = Hs + n (13)

where x = [x1, ..., xN ]T is the received signal, and H =
{hij}, 0 ≤ i, j ≤ N , is the interference coupling matrix,
s = [s1, s2, ..., sN ]T is the vector of transmitted signals.
Similarly to the two user case (1) we can assume without
loss of generality that the cross channels are normalized by
the direct channels so that hii = 1. We will assume that for all
i, j |hij | ≤ 1. Moreover, we will assume that the matrix H is
invertible. This assumption is reasonable since typical wireless
communication channels are random, and the probability of
obtaining a singular channel is 0. Note that in our case both
transmission and reception are performed independently, and
the vector formulation is used for notational simplicity. First
observe:
Lemma 3.1: Assume that there is a unique Nash equlibrium

in the Gaussian interference game. Then the competitive
strategies are given by flat power allocation. The resulting
rates are:

RC
n =

W

2
log2

(
1 +

|hnn|2Pn

WN0/2 +
∑N

j=1,j �=n |hnj |2Pnj

)
(14)
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where W is the bandwidth and N0 is the PSD of the white
Gaussian noise.
The proof is easy and left to the reader. We note that sufficient
conditions for uniqueness are given in [26]. Typically when
the NE is non-unique, the interference is stronger than the
desired signal, e.g., in the 2x2 case. In this case the competitive
solution converges to FDM type of solution, and NBS and
FDM coincide.
To simplify the expression for the competitive rates we

divide the expression inside the log in (14) by the noise power
WN0/2 obtaining:

RC
n =

W

2
log2

(
1 +

SNRn

1 +
∑N

j �=n αnjSNRj

)
, (15)

where SNRj = |hjj |2Pj

WN0/2 , αnj = |hnj|2
|hjj |2 .

Since the rates RC
n are achieved by competitive strategy,

player n would not cooperate unless he will obtain a rate
higher than RC

n . Therefore, the game theoretic rate region is
defined by the set of rates higher than RC

n of equation (15).
We are interested in FDM cooperative strategies. A strategy

is a vector [ρ1, ..., ρN ]T such that
∑N

n=1 ρn ≤ 1. We assume
that player n uses a fraction ρn (0 ≤ ρn ≤ 1) of the band (or
equivalently uses the channel for a fraction ρn of the time in
the TDM case). The rate obtained by the nth player is given
by

Rn(ρ) = Rn(ρn) = ρnW
2 log2

(
1 + SNRn

ρn

)
. (16)

First we note that the FDM rate region RFDM =
{(R1, ..., RN )|Rn = Rn(ρn)} is indeed convex. The Pareto
optimal points must satisfy

∑N
n=1 ρn = 1, since by dividing

the unused part of the band between users, all of them increase
their utility. Also note that by strict monotonicity of Rn(ρ) as
a function of ρ each Pareto optimal point is on the boundary
of RFDM . It is achieved by a single strategy vector ρ. Player
n benefits from FDM cooperation as long as

RC
n < Rn(ρn). (17)

The Nash function is given by

F (ρ) =
N∏

n=1

(
Rn(ρn) − RC

n

)
. (18)

To better understand the gain in FDM strategies we define a
function f(x, y) that is fundamental to the analysis.
Definition 3.1: For each 0 < x, y let f(x, y) be defined by

f(x, y) = min
{

ρ :
(

1 +
x

ρ

)ρ

= 1 +
x

1 + y

}
. (19)

Claim 3.1: 1. f(x, y) is a well defined function for
x, y ∈ R+.

2. For all x, y ∈ R+, 0 < f(x, y) < 1.
3. f(x, y) is monotonically decreasing in y.
Proof: Let g(x, y, ρ) be defined by:

g(x, y, ρ) =
(

1 +
x

ρ

)ρ

− 1 − x

1 + y
.

For every x, y, g(x, y, ρ) is a continuous and monotonic
function in ρ. Furthermore, for any 0 < x, y, g(x, y, 1) > 0,

and limρ→0 g(x, y, ρ) < 0. Hence, there is a unique solution
to (19). Furthermore, the value of f(x, y) is strictly between
0, 1. Finally f(x, y) is monotonically decreasing in y since
g(x, y, ρ) is increasing in y, so if we increase y we need to
decrease ρ to maintain a fixed value.
Using the function f(x, y) we can completely characterize

the cases where NBS is preferable to the Nash equilibrium.
Theorem 3.2: Nash bargaining solution exists if and only

if the following inequality holds

N∑
n=1

f

⎛
⎝SNRn,

∑
j �=n

αnjSNRj

⎞
⎠ ≤ 1. (20)

Proof: In one direction, assume that a Nash bargaining solution
exists. The next two conditions must hold

1. There is a partition of the band between the players such
that player n gets a fraction ρn > 0.

2. Each player gets by cooperation higher rate then the
competitive rate, i.e, Rn(ρn) ≥ RC

n .

Therefore, using equation (19) and inequality (17) we obtain
that equation (20) must be satisfied. On the other direction by
definition of f player n has at least the rate that it can get
by competition if he can use a fraction ρn, of the bandwidth.
Since (20) implies that

∑N
n=1 ρn ≤ 1, FDM is preferable to

the competitive solution for the utility function Un = Rn. By
the convexity of the FDM rate region the Nash function has a
unique maximum that is Pareto optimal and outperforms the
competitive solution.
Interestingly, as long as the utility function Un(ρ) depends

only on ρn and Un(ρ) is monotonically increasing in ρ the
same conclusion holds. This implies that the NBS for the
utility UL

n (ρ) = log (Rn(ρn)) there is a unique frequency
division vector ρ that achieves the NBS. Furthermore the
optimization problem, of computing the optimal ρ is still
convex.
We now examine the simple case of two players. Assume

that player I uses a fraction ρ (0 ≤ ρ ≤ 1) of the band and
user II uses a fraction 1 − ρ. The rates obtained by the two
users are given by

R1(ρ) = ρW
2 log2

(
1 + SNR1

ρ

)
R2(1 − ρ) = (1−ρ)W

2 log2

(
1 + SNR2

1−ρ

)
.

(21)

The two users will benefit from FDM cooperation as long as

RC
i ≤ Ri(ρi), i = 1, 2 ρ1 + ρ2 ≤ 1. (22)

Condition (20) can now be simplified:

f(SNR1, αSNR2) + f(SNR2, βSNR1) ≤ 1, (23)

where α = |h12|2/|h22|2, β = |h21|2/|h11|2. The NBS is
given by solving the problem

ρNBS = argmax
ρ

F (ρ), (24)

where the Nash function is now given by: F (ρ) =(
R1(ρ) − RC

1

) (
R2(1 − ρ) − RC

2

)
and Ri(ρ) are defined by

(21). A special case can now be derived:
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Fig. 1. FDM rate region (thick line), Nash equilibrium ∗, Nash bargaining
solution and the contours of F (ρ). Flat channel. SNR1 = 20 dB, SNR2 = 15
dB, and α = 0.4, β = 0.7

Claim 3.2: Assume that SNR1 ≥ 1
2

(
α2β4

)−1/3
and

2β2SNR2
1 ≥ SNR2 ≥ 1

α

√
SNR1

2 . Then there is a Nash
bargaining solution that is better than the competitive solution.

Proof: The proof of the claim follows directly by substi-
tuting ρ1 = ρ2 = 1/2, and bounding the inequalities.
Finally we note that as SNRi increases to infinity the NBS is
always better than the NE.
Claim 3.3: 1. If SNR1 and SNR2 are jointly increasing,

while keeping the ratio SNR1
SNR2

= z fixed. Then, there is a
constant g such that for SNR1 > g, an FDM Nash bargaining
solution exists.
2. If SNR1+SNR2 ≤ 1−α−β

αβ there is no Nash bargaining
solution.
The proof is easy and will not be given due to space lim-
itations. The following example provides the intuition for
the definitions of the game theoretic rate region, and the
uniqueness of the NBS using FDM strategies. It also clearly
demonstrates the relation between the competitive solution, the
NBS and the game theoretic rate region RG. We have chosen
SNR1 = 20 dB, SNR2 = 15 dB, and α = 0.4, β = 0.7. Figure
1 presents the FDM rate region, the Nash equilibrium point
denoted by ∗, and a contour plot of F (ρ).
It can be seen that the convexity of F (ρ) together with the

convexity of the achievable rate region implies that at there
is a unique contour tangent to the rate region. The tangent
point is the Nash bargaining solution. We can see that the
NBS achieves rates that are 1.6 and 4 times higher than the
rates of the competitive Nash equilibrium rates for player I
and player II respectively. The game theoretic rate region is
the intersection of the information theoretic rate region with
the quadrant above the dotted lines.

IV. BARGAINING OVER FREQUENCY SELECTIVE

CHANNELS UNDER MASK CONSTRAINT

In this section we define a new cooperative game cor-
responding to the joint FDM/TDM achievable rate region

for the frequency selective N user interference channel. We
limit ourselves to the PSD mask constrained case since this
case is actually the more practical one. In real applications,
the regulator limits the PSD mask and not only the total
power constraint. Let the K channel matrices at frequencies
k = 1, ..., K be given by 〈Hk : k = 1, ..., K〉. Each player
is allowed to transmit at maximum power p (k) in the k’th
frequency bin. In non-cooperative scenario, under mask con-
straint, all players transmit at the maximal power they can use.
Thus, all players choose the PSD, pi = 〈pi(k) : 1 ≤ k ≤ K〉.
The payoff for user i in the non-cooperative game is therefore
given by:

RC
i (p1) =

K∑
k=1

log2 (1 + SINRi(k)) . (25)

Here, RC
i is the capacity available to player i given a PSD

mask constraint distributions p, and SINRi(k) is defined in
(9). Note that without loss of generality, and in order to
simplify notation, we assume that the width of each bin
is normalized to 1. We now define the cooperative game
GTF (N, K,p).
Definition 4.1: The FDM/TDM game GTF (N, K,p) is a

game between N players transmitting over K frequency
bins under common PSD mask constraint. Each user has
full knowledge of the channel matrices Hk. The following
conditions hold:

1) Player i transmits using a PSD limited by
〈pi(k) : k = 1, ..., K〉.

2) Strategies for player i are vectors α =
[αi(1), ..., αi(K)]T where αi(k) is the proportion
of time player i uses the k’th frequency channel. This
is the TDM part of the strategy.

3) The utility of the i’th player is given by

Ri =
∑K

k=1 Ri(k)
=
∑K

k=1 αi(k) log2

(
1 + |hii(k)|2pi(k)

σ2
i (k)

)
.

(26)

Note that interference is avoided by time sharing at each
frequency band, i.e only one player transmits at a given
frequency bin at any time. Furthermore, since at each time
instance each frequency is used by a single user, each user
can transmit using maximal power.
The Nash bargaining can be posed as an optimization problem

max
∏N

i=1

(
Ri(αi) − RC

i

)
subject to: ∀k

∑N
i=1 αi(k) = 1,

∀i, k αi(k) ≥ 0,
∀i RC

i ≤ Ri (αi) ,

(27)

where,

Ri (αi) =
∑K

k=1 αi(k) log2

(
1 + |hii(k)|2Pmax(k)

σ2
i (k)

)
=
∑K

k=1 αi(k)Ri(k).
(28)

This problem is convex and therefore can be solved efficiently
using convex optimization techniques. To that end we explore
the KKT conditions for the problem. The Lagrangian of the
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problem f (α) is given by

f (α) = − ∑N
i=1 log

(
Ri(αi) − RC

i

)
+
∑K

k=1 λk

(∑N
i=1 αi(k) − 1

)
− ∑K

k=1

∑N
i=1 μi(k)αi(k)

− ∑N
i=1 δi

(∑K
k=1 αi (k)Ri (k) − RC

i

) .

(29)
Taking the derivative with respect to the variable αi(k) and
comparing the result to zero, we get

Ri (k)
Ri (αi) − RC

i

= λk − μi(k) − δi (30)

with the constraints∑N
i=1 αi (k) = 1,

δi

(
Ri (αi) − RC

i

) ≥ 0,
μi(k)αi (k) = 0,
λk ≥ 0.

(31)

Based on (30, 31) one can easily come to the following
conclusions:
1) If there is a feasible solution then for all i, δi = 0.
2) Assume that a feasible solution exists. Then for all
players sharing the frequency bin k (αi(k) > 0) we
have μi(k) = 0, and

Ri (k)
Ri (αi) − RC

i

= λk, ∀k satisfying αi (k) > 0.

(32)
3) For all players that are not sharing the frequency bin

k,(αi(k) = 0), μi(k) ≥ 0. Therefore,

Ri (k)
Ri (αi) − RC

i

≤ λk, ∀k with αi (k) = 0. (33)

The second conclusion is very interesting. let Lij(k) =
Ri(k)/Rj(k). Assume that for users i,j the values Lij(k)
are all distinct. Then the two users can share at most a single
frequency. To see this note that in this case

Ri (k)
Ri (αi) − RC

i

=
Rj (k)

Rj (αj) − RC
j

, (34)

and therefore

Lij(k) =
Ri (k)
Rj (k)

=
Ri (αi) − RC

i

Rj (αj) − RC
j

. (35)

Since the right hand side is independent of the frequency k
and Lij(k) are distinct, at most a single frequency can satisfy
this condition. This proves the following theorem:
Theorem 4.1: Assume that for all i 	= j the values

{Lij(k) : k = 1, ..., K} are all distinct. Then in the optimal
solution at most

(
N
2

)
frequencies are shared between different

users.
This theorem suggests, that when

(
N
2

)
<< K the optimal

FDM NBS is very close to the joint FDM/TDM solution. It is
obtained by allocating the common frequencies to one of the
users.
While general convex optimization techniques are useful for

computing the NBS, in the next section we will demonstrate
that for the two player game the solution can be computed
much more efficiently. Furthermore, we will show that in the
optimal solution only a single frequency is actually shared
between the users even if the Lij(k) are not distinct.

A. Extension to fast fading channels

While the method described above fits well to stationary
channels, the method is also useful when only fading statistics
is known. In this case the coding strategy will change, and the
achievable rate in the competitive case and the cooperative
case are given by

R̃
C

i (pi) =
∑K

k=1 E
[
log2

(
1 + |hii(k)|2pi(k)P

j �=i |hij(k)|2pj(k)+σ2
i (k)

)]
R̃i(αi) =

∑K
k=1 αi(k)E

[
log2

(
1 + |hii(k)|2pi(k)

σ2
i (k)

)]
,

(36)
respectively. All the rest of the discussion is unchanged,
replacing RC

i and Ri(αi) by R̃
C

i , R̃i(αi) respectively. This
is particularly attractive, when the computations are done in
distributed way. In this case only channel state distributions are
sent between the units, and the time scale for this distribution
are much longer. This implies that method can be used without
a central control, by exchange of parameters between the units
at a very low rate.

V. COMPUTING THE NASH BARGAINING SOLUTION FOR

TWO PLAYERS

For the two player case the optimization problem can
be dramatically simplified. In this section we will provide
an O(K log2 K) complexity algorithm (in the number of
tones) for computing the NBS optimal solution in a two
user frequency selective channel. Furthermore, we will show
that the two players will share at most a single frequency,
no matter what the ratios between the users are. To that
end let, α1 (k) = α (k), and α2 (k) = 1 − α (k). We also
define the surplus of players I and II when using Nash
bargaining solution as A =

∑K
m=1 α (m)R1 (m) − R1C and

B =
∑K

,=1 (1 − α (m))R2 (m)−R2C , respectively. The ratio,
Γ = A/B is a threshold which is independent of the frequency
and is set by the optimal assignment. While Γ is a-priori
unknown, it exists. Let L(k) = R1 (k) /R2 (k). Without loss
of generality, assume that the rate ratios L(k), 1 ≤ k ≤ K are
sorted in decreasing order i.e. L(k) ≥ L(k′), ∀k ≤ k′. (This
can be achieved by sorting the frequencies according to L(k).
We are now ready to define optimal assignment of the α’s. Let
Γk be a moving threshold defined by Γk = Ak/Bk. where

Ak =
k∑

m=1

R1 (m)−R1C , Bk =
K∑

m=k+1

R2 (m)−R2C . (37)

Ak is a monotonically increasing sequence, while Bk is mono-
tonically decreasing. Hence, Γk is also monotonically increas-
ing. Ak is the surplus of user I respectively when frequencies
1, ..., k are allocated to user I. Similarly Bk is the surplus of
user II when frequencies k + 1, ..., K are allocated to user II.
Let kmin = mink {k : Ak ≥ 0} ; kmax = mink {k : Bk < 0}.
Since we are interested in feasible NBS, we must have positive
surplus for both users. Therefore, by the KKT equations,
we obtain kmin ≤ kmax and L(kmin) ≤ Γ ≤ L(kmax).
The sequence {Γm : kmin ≤ m ≤ kmax − 1} is strictly
increasing, and always positive. We first state two lemmas
that are essential for finding the optimal partition.
Lemma 5.1: Assume that there is an NBS to the game.

Then there is always an NBS satisfying that at most a single
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bin ks is partitioned between the players, and α(k) = 1 if
k < ks, α(k) = 0 if k > ks.

Proof: By our assumption the sequence {L(k) : k =
1, ..., K} is monotonically decreasing (not necessarily strictly
decreasing). If there is a k such that L(k − 1) < Γ < L(k)
then the solution must be FDM type by the KKT equations
and we finish. Otherwise assume that L(k) = Γ. Since Γk

is strictly increasing and L(k) is non-increasing there is at
most a unique k such that Γk−1 ≤ L(k) = Γ < Γk. If no
such k exists then the users can only share kmax since for all
k ≤ kmax

Ak

Bk
≤ Γ

and the only way to get something allocated to user II is
by sharing kmax. Otherwise such a k ≤ kmax exists. By
definition of Γk we have Ak−1/Bk−1 ≤ L(k) < Ak/Bk.
Simple substitution yields

Ak−1

Bk−1
≤ L(k) <

Ak−1 + R1(k)
Bk−1 − R2(k)

=
Ak

Bk
.

Since kmin ≤ k < kmax the denominator on the RHS is
positive. Since for a, b, c, d > 0 the function a+xb

c−xd is increasing
with 0 ≤ x as long as the denominator is positive, we obtain
that by continuity there is a unique ζ such that

L(k) =
Ak−1 + ζR1(k)
Bk−1 − ζR2(k)

.

But Bk−1 − ζR2(k) = Bk + (1 − ζ)R2(k) so that ζ satisfies

Γ = L(k) =
Ak−1 + ζR1(k)

Bk + (1 − ζ)R2(k)
.

Setting α(m) = 1 for m < k, α(k) = ζ and α(m) = 0 for
m > k we obtain a solution of the KKT equations. Note that
when there are multiple values of k such that L(k) = Γ, we
only showed that there is an NBS solution where a single
frequency is shared.
While the threshold Γ is unknown, one can use the sequences
Γk and L(k).
If there is a Nash bargaining solution, let ks be the fre-

quency bin that is shared by the players. Then, kmin ≤ ks ≤
kmax. Since, both players must have a positive gain in the
game (A > Akmin−1,B > Bkmax ). Let ks be the smallest
integer such that L(ks) < Γks , if such ks exists. Otherwise
let ks = kmax.
Lemma 5.2: The following two statements provide the so-

lution

1 If a Nash bargaining solution exists for kmin ≤ ks <
kmax, then α (ks) is given by α (ks) = max{0, g},
where

g = 1 +
Bks

2R2 (ks)

(
1 − Γks

L(ks)

)
. (38)

2 If a Nash bargaining solution exists and there is no
such ks, then ks = kmax and α (ks) = g.

Proof: To prove 1 note that since Γks−1 ≤ L(ks) ≤
Γks , α (ks) is the solution to the equation L(ks) =
Aks−(1−α(ks))R1(ks)
Bks +(1−α(ks))R2(ks) . By simple mathematical manipulation,
we get α (ks) = g. Since, L(k) ≤ Γks , g ≤ 1. If g is negative,
we set α (ks) = 0, since ks is the smallest integer such that

TABLE I
ALGORITHM FOR COMPUTING THE 2X2 FREQUENCY SELECTIVE NBS

: Initialization: Sort the ratios L(k) in decreasing order.
Calculate the values of Ak, Bk and Γk, kmin, kmax,
If kmin > kmax no NBS exists. Use competitive solution.
Else
For k = kmin to kmax − 1
if L(k) ≤ Γk .
Set ks = k and α′s according to the lemmas-This is NBS. Stop

End
End
If no such k exists, set ks = kmax and calculate g.
If g ≥ 0 set αks = g, α(k) = 1, for k < kmax. Stop.
Else (g < 0)
There is no NBS. Use competitive solution.

End.
End

L(ks) < Γks . Note, that in this case the Nash bargaining
solution is given by pure FDM strategies.
To prove 2 note that since ks = kmax and Γk is increasing

for kmin ≤ k < kmax, we must have that Γkmax−1 ≤ Γ =
L(kmax). Therefore, the only possibility that a solution exists
is by setting ks = kmax, and α (ks) = g ≥ 0.
Based on the pervious lemmas the algorithm is described in
table I. In the first stage the algorithm computes L(k) and sorts
them in a non increasing order. Then kmin, kmax, Ak, and Bk

are computed. In the second stage the algorithm computes ks

and α. Note that the sorting stage which is O (K log2 K) has
the largest complexity. All other computations are linear in K .

VI. SIMULATIONS

In this section we compare in simulations the bargaining
solution to the competitive solution for various situations with
medium interference. The simulations are done both for flat
slow fading and for frequency selective fading. First, we
demonstrate the effect of the channel matrix and the signal
to noise ratio on the gain of the NBS for flat fading channel.
Then we performed extensive simulations that demonstrate the
advantage of the NBS over the competitive approach for the
frequency selective fading channel, as a function of the mean
interference power.

A. Flat fading

We have tested the gain of the Nash bargaining solution
relative to the Nash equilibrium competitive rate pair as a
function of channel coefficients as well as signal to noise ratio
for the flat fading channel. To that end we define the minimum
relative improvement,Δmin, describing the individual price of
anarchy and the usual price of anarchy [27], Δsum, describing
total loss due to lack of cooperation by:

Δmin = min
{
RNBS

1 /RC
1 , RNBS

2 /RC
2

}
Δsum =

(
RNBS

1 + RNBS
2

)
/
(
RC

1 + RC
2

)
.

(39)

In the first set of experiments we have fixed α, β and varied
SNR1, SNR2 from 0 to 40 dB in steps of 0.25dB. Figure 2
presents Δmin for an interference channel with α = β = 0.7.
We can see that for high SNR we obtain significant improve-
ment. Figure 3 presents the relative sum rate improvement
Δsum for the same channel. We can see that the achieved
rates are 5.5 times those of the competitive solution.
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Fig. 2. Per user price of anarchy (relative improvement of NBS sum rate
over NE), as a function of SNR. Flat channel. α = β = 0.7.

Fig. 3. Price of anarchy, as a function of SNR. Flat channel α = β = 0.7.

We have now studied the effect of the interference coeffi-
cients on the Nash bargaining solution. We have set the signal
to additive white Gaussian noise ratio for both users to 20 dB,
and varied α and β between 0 and 1. Similarly to the previous
case we present the minimal price of anarchy per user Δmin

and the sum rate price of anarchyΔsum. The results are shown
in figures 4,5. We can clearly see that even with SINR of 10
dB we obtain 50 percent capacity gain per user.

B. Frequency selective Gaussian channel

In this experiment we demonstrate the advantage of the
Nash bargaining solution over competitive approaches for a
frequency selective interference channel. We assumed that
two users having direct channels that are standard Rayleigh
fading channels (σ2 = 1), with SNR=30 dB, suffer from
interference, with SINR of each user into the other channel
(hij) was varied from -10 dB to 0 dB (σ2

hij
= 0.1, ...1).

We have used 32 frequency bins. At each pair of variances
σ2

1 = σ2
h21

, σ2
2 = σ2

h12
we randomly picked 25 channels

(each comprising of 32 2x2 matrices). The results of the
minimal relative improvement (39) are depicted in figure 6.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Minimal improvement of NBS realtive to NE

α

β

1

1.5

2

2.5

3

3.5

Fig. 4. Per user price of anarchy as a function of interference power. Flat
channel. SNR=20 dB.

Fig. 5. Sum rate price of anarchy as a function of interference power. Flat
channel. SNR=20 dB.

We can clearly see that the relative gain of the Nash bargaining
solution over the competitive solution is 1.5 to 3.5 times,
which clearly demonstrates the merits of the method.

VII. CONCLUSIONS

In this paper we have defined the game theoretic rate
region for the interference channel. The region is a subset of
the rate region of the interference channel. We have shown
that a specific point in the rate region given by the Nash
bargaining solution is better than other points in the context of
bargaining theory. We have shown conditions for the existence
of such a point in the case of the FDM rate region. We have
shown that computing the Nash bargaining solution over a
frequency selective channel can be described as a convex
optimization problem. Moreover, we have provided a very
simple algorithm for solving the problem in the 2xK case that
is O(K log2 K), where K is the number of tones. Finally,
we have demonstrated through simulations the significant
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Fig. 6. Per user price of anarchy for frequency selective Rayleigh fading
channel. SNR=30 dB.

improvement of the cooperative solution over the competitive
Nash equilibrium.
The adaptation of game theory approach for rate allocation

in existing wireless and wireline system is very appealing.
In many wireless LAN systems there is a central access
point with full knowledge on the channel transfer functions.
Moreover, it has been recognized by the 802.11 committee
that radio resource management is important, especially when
multiple networks are interfering with other. Knowledge of the
transfer functions allows the access point to allocate the band
for the subscribers on the uplink. Moreover, the results here
can be extended to MIMO systems as well as for networks
with multiple access points.
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