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ABSTRACT

In this paper we present a sparse reconstruction algorithm
for the deconvolution of Radio astronomical synthesis im-
ages. We present the deconvolution problem as an `1 opti-
mization. Using the sparsity of the astronomical image we
obtain that the `1 reconstruction recovers the sparse image
consistent with the observed data. We end up with a simu-
lated example of the reconstruction, using a simulated radio
telescope array.

Index Terms— Radio astronomy, images reconstruction,
deconvolution algorithm, `1

1. INTRODUCTION

High sensitivity, fine resolution, and robust immunity to
terrestrial interference, are the requirements from modern
radio observations. This never ending quest for improving
all those parameters has led to the development of both new
instruments and novel signal processing methods. The build-
ing of the Square Kilometer Array (SKA) [1] and the Low
Frequency Array (LOFAR) [2] are two examples of these
advanced instruments. In these two instruments, the pre-
processing of the received signal is done in hardware due to
the vast amount of data collected by the antennas. Image
formation algorithms are implemented in software and are
applied to the pre-processed data.

Below, we briefly describe the several radio astronomical
imaging techniques. For a more extensive overview the reader
is referred to [3].

Two principles dominate the astronomical imaging decon-
volution. The first is the CLEAN method proposed by Hog-
bom [4]. It is an iterative sequential Least-Squares (LS) fitting
procedure, in which the brightest source location and power
are estimated, to enable its removal from the image. The pro-
cess then continues to find the next brightest source, and it is
also removed. These iterations continue until the residual im-
age is noise-like. and no distinctive source can be observed.
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A second approach proposed by Jaynes [5] is the maxi-
mum entropy method (MEM). An entropy function is define
so the entropy function maximum is achieved by a positive
image with a compressed pixels intensities. There are many
different ways to define the entropy [6]. The reconstructed
image is the image that fits the measured visibility data and
maximize the defined entropy function. The compressed pix-
els values leads to smooth images. This idea has also been
proposed by Frieden [7] and applied to radio astronomical
imaging by Gull and Skilling [8].

Briggs [9] proposed a non-negative least squares approach
(NNLS) which eliminates the need for iterative processing.
However, the computational complexity is very large. A para-
metric approach was proposed and discussed by Leshem [10],
[11] and by Ben-David [12].

Marsh and Richardson [13] proved that the CLEAN algo-
rithm can be regarded as an approximation to `1 minimization
for images with point sources. `1 is not the only criterion. Re-
covery of noisy and blurred images using total variation (TV )
optimization (3) for smooth images is discussed by Dobson
and Santosa [14]. Chen et al. [15] deal with `1 minimiza-
tion of image basis to achieve image sparseness using lin-
ear programming. Feuer and Nemirovski [16] and Elad and
Bruckstein [17] establish sufficient and necessary condition
for replacing `0 optimization (with hight computational com-
plexity) by linear programming when searching for the unique
sparse representation. Rudelson and Vershynin [18] prove the
guarantees for exact reconstruction of a sparse signal from
its Fourier measurements. In this paper, we demonstrate how
sparse image reconstruction via `1 minimization can be used
for the radio astronomical image formation problem. We re-
duced the `1 optimization problem into linear programming
to reduce computational complexity.

2. DATA MODEL

Radio Telescopes (RTs) observation method is based on cor-
relations between the signals received at antenna pairs. Fig (1)
shows a source observed by such antenna pair, the observation
coordinate system i.e. (u, v, w) and (l, m, n). The visibilities



measured by the radio telescope corresponds to the specific
antenna location (the base line length and orientation at the
time of the measurement) and the source intensity I(l, m) can
be written as:

V (u, v) =
N∑

l=1

N∑
m=1

I(l, m) exp
[
−2πi

N
(ul + vm)

]
. (1)

where N is the image size. The measurements location (i.e.
u, v points) determined by the observed source direction, the
radio telescope structure and earth rotation. The dirty image
can be calculated using the inverse fourier transform, where
points in the (u, v) domain that were not measured by the
radio telescope are interpolated using tapering and gridding
[6]. The dirty image is given by:

ID(l, m) =
1

N2

N∑
u=1

N∑
v=1

V (u, v) exp
[
2πi

N
(ul + vm)

]
.

(2)
The image I(l,m) should then be reconstructed from the
dirty image ID(l, m).

Fig. 1. A distance source is observed by antenna pair. The
base line connecting the two antennas is the origin of the
(u, v, w) coordinate system. The w axis is pointing from the
base line toward the source reference point. (u, v) are per-
pendicular to w and selected according to earth orientation.
(l,m, n) is a unit vector in the (u, v, w) system pointing to a
specific location in the source (at the source reference point
l = 0,m = 0 ), while n =

√
(l2 + m2).

3. SPARSE RECONSTRUCTION TECHNIQUE

From the nature of a distance source in the sky, many radio
telescope images are sparse (i.e. most of the image is empty

/ blank). Candes et al. [19] deal with sparse signal recon-
struction from partial knowledge of its fourier transform co-
efficients when both the signal and the known coefficients are
randomly uniformly selected.

Reconstruction of the sparse signal g is done using one of
three cost functions

P0 min||g||`0 , (3)
P1 min||g||`1 ,

TV min||g||TV,

where ||g||`0 is the number of non-zero components of g,
||g||`1 is

∑
i |gi| and ||g||TV is the norm of the derivative of g

in the time domain. And proved the following theorem:

Theorem 3.1. Let g ∈ CN be a discrete signal supported on
an unknown set T , and choose Ω uniformly at random. For a
given accuracy parameter Macc, if

|T | < CMacc
(log N)−1|Ω|. (4)

Then with probability at least 1−O(N−Macc), the minimizer
to the problem P1 (3) is unique and equal to g.

Radio astronomical image reconstruction is done based on
the visibility measurement in the (u, v) domain. Reconstruc-
tion of the source image I(l,m) is equivalent to estimating the
missing visibility points. The missing V(u, v) measurements
together with the image itself are estimated by minimizing a
cost function ||I(l, m)||`1 in the (l, m) domain using the con-
straints of image positivity and the measured visibility data.

||I(l, m)||`1 =
N∑

l=1

N∑
m=1

I(l,m) (5)

since I(l, m) is a positive quantity. To solve the reconstruc-
tion problem fast, we represent the problem as a linear pro-
gramming problem with real variables. To that end let 〈·, ·〉
be a one-to-one pairing function mapping {0, ..., N − 1} ×
{0, ..., N − 1} onto

{
0, ..., N2 − 1

}
. Let F be an N2 × N2

matrix whose elements satisfy

F〈l,m〉,〈u,v〉 = e
−2πj

N (ul+vm). (6)

Let ξ = vec(V) and let t = vec(I). We have

ξ = Ft. (7)

Note that t is a real vector since the visibility measurements
satisfy V (u, v) = ¯V (−u,−v). To make the problem real
we define FR = Re(F),FI = Im(F) and variables ξR =
Re(ξ), ξI = Im(ξ). (7) now becomes

ξR = FRt (8)
ξI = FIt



For the measured locations (ui, vi) we have:

ξR(〈ui, vi〉) = Re (VMeasured(ui, vi)) i = 1, ..., M
ξI(〈ui, vi〉) = Im (VMeasured(ui, vi)) i = 1, ..., M

(9)
where M is the number of given measurements in the (u, v)
domain. The linear programming problem is described in Ta-
ble 1.

mint

∑N2

i=1 ti

Subject to
ξR(〈ui, vi〉) = Re (VMeasured(ui, vi))
ξI(〈ui, vi〉) = Im (VMeasured(ui, vi))
0 ≤ t

Table 1. `1 optimization using linear programming

4. SIMULATION RESULTS

In this section we demonstrate the performance of `1 recon-
struction on a sparse image. The simulation was done in two
steps. The first step is the radio telescope simulation. In this
simulation the visibility was generated according to the orig-
inal image, earth rotation and the radio telescope structure.
From the visibility measurements the dirty image was pro-
duced. In the second step, reconstruction of the dirty image
was done using `1 minimization (Table 1).

The simulated radio telescope is an east-west array con-
taining 14 antennas logarithmically spaced from 1 to 200λ.
The visibility was calculated according to the simulated im-
age I(l, m). Noise was added to the visibility measurements,
the SNR was−20dB per visibility measurement and 12 hours
observation has been used. A gridding was performed using
the pillbox convolution function. The dirty image was then
calculated from measured visibility (after gridding). Image
reconstruction was done using linear programming. We have
used the CVX minimization package by Grant et al. [20].
Example of the image reconstruction performance is given in
figures 2 and 3. Sub-figure (2(a)) depicts the original (sim-
ulated) image containing three sources: a point source, a Y
shape source with intensity varying tail and a point source
surrounded by a bright ring. Sub-figure (2(b)) shows the dirty
image, the Y shape source is smeared and the tail loses the
intensity structure, the ring is weakly seen. The reconstructed
image is shown in sub-figure (2(c)), all three sources recon-
structed. The Y shape is clearly seen (including the intensity
structure in the tail), the ring is clearly seen and the point
source intensity is reconstructed. Cross-sections location
marked at sub-figure (3(a)). A cross section of the images
throughout the ring is displayed at sub-figure (3(b)). At the
original image the ring intensity is half the size of the central
source. In the dirty image the ring is significantly weaker and

has negative parts. The ring intensity is reconstructed (almost
half the size of the central source in the reconstructed image)
and the negative parts vanishes. A cross-section of the Y
shape source tail is displayed at sub-figure (3(c)). At the orig-
inal image the tail has two levels of intensity, this intensity
structure is smeared in the dirty image, and reconstructed by
the `1 optimization

5. CONCLUSIONS

In this paper we proposed the use of `1 minimization for radio
astronomical images. We showed that the `1 deconvolution
can be solved by linear programming, and demonstrated the
method on simulated sky model. The great potential of the
methods proposed in this paper is a first step, towards the de-
velopment of more advanced imaging techniques, capable of
providing higher dynamic range and interference immunity as
required by the radio telescopes of the future.
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(a) Original image

(b) Dirty image

(c) Reconstructed image

Fig. 2. Example of reconstruction results.
(a) The true image (simulated). (b) The dirty image. (c) The
reconstructed image.

(a) Cross-section location
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(b) Cross-section throughout the ring
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(c) Cross-section of the Y shape source tail

Fig. 3. Two cross-sections of the original image, dirty image
and the reconstructed image. (a) cross-sections location (b)
cross-section throughout the ring. (c) cross-section of the Y
shape source tail
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