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ABSTRACT 

Radio-astronomical observations are increasingly contaminated by 
interference, and suppression techniques become essential. Apow- 
erful candidate for interference mitigation is adaptive spatial filter- 
ing. We study the effect of spatial filtering techniques on rad0 
astronomical imaging. Current deconvolution procedures such as 
CLEAN are shown to be unsuitable to spatially filtered data, and 
the necessary corrections are derived. To that end, we reformulate 
the imaging (deconvolutiodcalibration) process as a sequential es- 
timation of the locations of astronomical sources. 

1. INTRODUCTION 

Future radio astronomical observations depends on two important 
factors: Increased resolution and sensitivity, and robustness to the 
increasingly corrupted electromagnetic environment. These emis- 
sion sources generates alot of radio frequency interference (RFI) 
to the sensitive radio astronomical instruments. Recently many al- 
gorithms for on-line suppression of RFI for radio astronomy have 
been proposed, among these we can find spatial projections [4] 
generalized sidelobe cancelhng, and LMS based adaptive interfer- 
ence cancellation [l]. However no study of the possible effects 
on the final product (i.e., the image) has been done. In this paper 
we take initial step in this direction. We reformulate the radio as- 
tronomical image formation problem parametrically. This enables 
us to incorporate spatial filtering techniques into the imaging pro- 
cess, in a natural way. For a more detailed account on this research 
the reader is referred to [3], which presents a full account on the 
results, as well as extensive literature overview. 

2. ASTRONOMICAL MEASUREMENT EQUATIONS 

In this section we describe a simplified mathematical model for 
the astronomical measurement and imaging process. Our discus- 
sion follows the introduction in [SI. We begin with the measure- 
ment equation, to reformulate it into a matrix form in the next sec- 
tion. This will allow us to obtain a uniform description of various 
astronomical imaging operations such as deconvolution and self- 
calibration. 

The signals received from the celestial sphere may be consid- 
ered as spatially incoherent wideband random noise. Rather than 
considering the emitted electric field at a location on the celestial 
sphere, astronomers try to recover the intensity I f ( s )  in the di- 
rection of unit-length vectors s, where f is a specific frequency. 
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Let Ef(r) be the received celestial electric field at a location r 
on earth. The measured covariance of the electric fields between 
two identical sensors i and j with locations r; and r, is called a 
visibiliry and is (approximately) given by [SI 

(E{ . } is the mathematical expectation operator, the superscript * 
denotes the transpose of a vector, and overbar denotes the complex 
conjugate). We denote E{Ef(r;)Ef(rj)} by Vf(r,, rj). Note 
that i t  is only dependent on the oriented distance ri - rj between 
the two telescopes; this vector is called a baseline. 

For simplification, we may sometimes assume that the astro- 
nomical sky is a collection of d dscrete point sources (maybe un- 
resolved). This gives 

d 

If(S) = r,(sl)a(s - s o ,  
1=1 

where S I  is the coordinate of the Z'th source, and thus 

Upon a proper choice of coordinate systems, for the telescope loca- 
tions, ( U ,  v, w) and for theimage plane (orthogonal to the pointing 
direction of the telescope ( I ,  m), we obtain after compensating for 
the delay between the antennas, that the measurement equation in 
( U ,  v) coordinates becomes [7 ] :  

It has the form of a Fourier transformation. The function Vf ( U ,  v)  
is sampled at various coordinates ( U ,  v) by first of all taking all 
possible sensor pairs i, j or baselines ri - rj , and second by re- 
alizing that the sensor locations r;, rj are actually time-varying 
since the earth rotates. Given a sufficient number of samples in the 
( U ,  v) domain, the relation can be inverted to obtain an image (the 
'map'), whch is the topic of section 5 .  

3. ARRAY SIGNAL PROCESSING FORMULATION 

We will now describe the situation from an array signal processing 
point of view. The signals received by the telescopes are ampli- 
fied and down-converted to baseband. A time-varying delay for 



every telescope is also introduced, to compensate for the geomet- 
rical delay. Following traditional array signal processing practices, 
the signals at this point are called xi ( t )  rather than E! (r), and are 
stacked in vectors 

where p is the number of telescopes. These are then processed by 
a correlation stage. 

It will be convenient to assume that x ( t )  is first split by a bank 
of narrow-band sub-band filters into a collection of frequency- 
components xf ( t )  . The main output of the telescope hardware is 
then a sequence of empirical covariance matrices Rf ( t )  of cross- 
correlations of x j ( t ) ,  for a set of frequencies f E {fk} covering 
a 10 MHz band or so, and for a set of times t E { t k }  covering up 
to 12 hours I .  Each covariance matrix Rf(t) is an estimate of the 
true covariancematrix Rf(t) = E{xf(t)xf(t)H} and given by: 

N - 1  
1 -  ~ a,@)= E C x f ( t + n T ) x f ( t + n T ) H ,  (3) 

n = O  

where the superscript denotes a complex conjugate transpose, 
T is the sample period of x j ( t )  and N is the number of samples 
over which is averaged. The matrices Rf( t )  are stored for off- 
line spectral analysis and imaging. From now on we consider the 
sub-bands independently ignoring that they are really connected. 
Consequently, in future equations we drop the dependence on f in 
the notation. 

The connection of the covariance matrices R(t) to the visibili- 
ties V ( U ,  v) in section2 is as follows. Eachentry rlJ ( t )  of thema- 
trix R(t) is a sample of this visibility function for a specific coor- 
dinate ( U ,  v) corresponding to the baseline vector r, ( t )  - rj ( t )  = 
X [ u i j ( t ) ,  v,j(t), wij(t)] between telescopes i and j  at timet: 

V ( U i j ( t ) , v i j ( t ) )  E r i j ( t ) .  (4) 

3.1. Matrix formulation 

For the mscrete source model, we can now formulate our mea- 
surement equations in terms of m a ~ c e s .  Let r O ( t k )  be an arbi- 
trary and timevarying reference point, typically at one of the ele- 
ments of the array, and let us take the ( U ,  v ,  w) coordinates of the 
other telescopes withrespect to this reference, ri(t) - ro(t) = 

then be written slightly differently in terms of correlation matrices 
as 

X [ U i O ( t ) ,  wio( t ) ,  wio( t )] ,  i = l , . . .  , p .  Equatim(1) can 

Rk = &BA:, (5)  
where Ak = [a&(&, ml) ,  . . . ,a&(&, md)], Rk E R(tk) and 

e-2lr3(ulO(tk)f+ulO(tk)m) ] (6) 
e-2"3(UpO(tk)(+'JpO(tk )m) 

O 1  
[ ak(e,m) = 

r I(el ,ml) 

'Many telescope sites including WSRT follow actually a different 
scheme where the signals are first correlated at several lags and subse- 
quently Fourier transformed. This leads to similar results. 

The vector function a,+ ( e ,  m) is called the array response vecror 
in array signal processing. It describes the response of the tele- 
scope array to a source in the direction ( e ,  m) . As usual, the array 
response is frequency dependent. In this case, the response is also 
slowly time-varying due to the earth rotation. Note, very impr- 
tantly, that the function as shown here is completely known. 

More realistically, the array response is less perfect. An im- 
portant effect is that each telescope may have a hfferent complex 
receiver gain, -y, ( t )  , dependent on many angle-independent effects 
such as cable losses, amplifier gains, and (slowly) varying atmo- 
spheric conditions. We also have to realize that most of the re- 
ceived signal consists of additive system noise. When h s  noise is 
zero mean, independent among the antennas (thus spatially white), 
and identically distributed, then it has a covariance matrix that is a 
multiple of the identity matrix, a21, where a2 is the noise power 
on a single antenna inside the subband which we consider. Usually 
the noise is assumed to be Gaussian. The resulting model of the 
received covariance matrix then becomes 

Rk = I'kAkBA:I': + a21 (7) 

r k  = diag{-n,k ,..., - ip ,k}  (8) 
Assuming that q interferers are present and assuming that we 

work in sufficiently narrow bands we obtain [4] that the interfer- 
ence contributes to the covariance matrix Rk a term similar to the 
astronomical term. The corresponding overall model including as- 
tronomical signals, array imperfections, interference and noise is 
given by: 

Rk = I'kAkBAFI'k + (AS)k(R,)k(AS): +a21,k = 0 , 1 , . . .  . 
(9) 

where we assume that the interference term A, is unstructured, 
andrkA, = q < p .  

Finally to complete the model we assume that each covariance 
matrix Rk has been subject to a hy s atial filter Lk yielding a 
filtered covariance matrix Rk = Lk €Uk . A further discussion of 
the possible Lk is given in [4]. 

where 

If 

4. CLASSICAL INVERSE FOURIER IMAGING 

In the previous sections, we discussed spatial filtering techniques. 
It was shown that an attractive scheme for removing the interfer- 
ence is by projecting it out. However, by doing so we replace the 
observed visibilities V ( U ~ ,  v,) in the matrix I& by some (known) 
linear combination. In this section, we describe the classical Fourier 
imaging, as i t  is implemented in radio astronomy. 

V ( U ,  w) (where U ,  v are taken at frequency f) is 
The relation between sky brightness I ( [ ,  m)  and visibilities 

V ( U ,  v) = // I ( [ ,  m)  e-21rJ(u'+um) de dm 

We have measured V on a discrete set of baselines { (ui, vi)}. The 
"duty image" (a lumpy image obtained via direct Fourier inversion 
possibly modified with some weights c i )  is delined by 

I D ( e ,  m) := ci v ( U i ,  v i )  (10) 
a 

It is equal to the 2D convolution of the true image I with a point 
spread function known as the "dirty beam": 

Z D ( e ,  m)  = JJ Z(e', m') Bo([ - e', m - m') de' dm' 
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or 

1 

Bo is the dirty beam, centered at the origin. The weights {.t} are 
arbitrary coefficients designed to obtain an acceptable beam-shape, 
with low side lobes, in spite of the irregular sampling. 

Specializing to a point source model, I ( e ,  m) = Cl 1, a([- 
&, m - m l )  where Il is the intensity of the source at location 

Thus, every point source excites the dnty beam centered at its lo- 
cation (&, m c ) .  

From the dirty image I D  and the known dnty beam Bo, the 
desired image I is obtained via a deconvolution process. A popular 
method for doing this is the CLEAN algorithm [2] .  The algorithm 
assumes that Bo has its peak at the origin, and consists of a loop in 
which a canhdate location (!(, m l )  is selected as the largest peak 
in I D ,  and subsequently a small multiple of Bo([ - I! ,  m - m l )  
is subtracted from I D ,  The objective is to minimize the residual, 
until it converges to the noise level. The parameter -/ 5 1 is called 
the loop gain and serves the purpose of interpolation over the grid, 
XI is the estimated power of the source. 

5. IMAGING VIA BEAMFORMING TECHNIQUES 

In th~s section, we reformulate the classical inverse-Fourier imag- 
ing technique and the CLEAN algorithm for deconvolution in terms 
of a more general iterative beamforming procedure. This is possi- 
ble since we have a parametric point-source model, and the prime 
objective of the deconvolution step is to estimate the location of 
the point sources. The interpretation of the deconvolution problem 
as one of direction-of-arrival (DOA) estimation allows access to 
potentially a large number of algorithms that have been developed 
for this application. 

5.1. CLEAN and sequential beamforming 

We set out by showing how CLEAN can be interpreted as an iter- 
ative beam-forming procedure. 

Let us assume that we have available a collection of measured 
covariance matrices R k ,  obtained at times t k  with IC = 1 , .  . . , I<, 
and let us assume the paramehic model of (7), i.e., 

R k  = &BA: + a21. 

Here, the unknown parameters are the source locations SI = ( e l ,  m l  ) , 
I = 1, .  . . , d in each of the Ak. and the source brightness 11 in B. 
A natural formulation for the estimation of these parameters is to 
pose it as the solution of a LS cost function, given by 

K 

[ { K c } ,  B] = a r g m i n x  1 )  R k - A k ( { a } )  BAf({si}) -a21 I ~ F  
(11) 

(B is constrained to be diagonal with positive entries.) This is rec- 
ognized as the same model as used for DOA estimation in array 
processing. Note however that the array is moving (Ak is time- 
dependent), and that there are many more sources than the dimen- 
sion of each covariance matrix. 

{s!}>B k = l  

Table 1. The CLEAN algorithm with spatial filtering 

Compute k' usin (15)- 
I; ( s )  = E,"=, a k  (s)R',ak (s) 
1 = 0  
while I;, is not noiselike: 

$3 

= arg max I;, ( s )  
Compute B(s ,  S I )  using (16) 1 = ID(s l ) /B(s i ,  si) 

= z+1 
I ; , ( S )  := - - / x ~ B ( ~ , ~ ~ )  

I = I;, + 7 X l B s y n t h ( S  - Sf) 

In this notation, the image formation in section 4 can be for- 
mulated as follows. Using (4) and (6) and writing I D  ( s )  = I D  (e ,  m) 
andak(s) E a k ( C , m ) ,  weobtainthatthedirtyimage(10)isgiven 
by: 

(We omitted the optional weighting. Also note that, withnoise, we 
have to replace Rk by Rk - ~ ' 1 . )  The iterative beam removing 
in CLEAN can now be posed as an iterative LS fitting between the 
sky model and the observed visibility [6] .  Finding the brightest 
point so in the image is equivalent to trying to find a point source 
using classical Fourier beamforming, i.e, 

I D  ( s )  = c k  a t ( s ) R k a k  ( s )  , 

K 

$0 = argmax>aF(s)  ( R k  - 21) a k ( s ) .  

Thus, the CLEAN algorithm can beregarded as a generalized clas- 
sical sequential beamformer, where the brightest points are found 
one by one, and subsequently removed from & until the LS cost 
function (1 1) is minimized. An immediate consequence is that the 
estimated source locations will be biased a well known fact in 
array processing. When the sources are well separated the bias is 
negligible compared to the standard deviation, otherwise it might 
be significant. This gives an explanation for the poor performance 
of the CLEAN in imaging extended structures (see e.g., [5]). 

' k = l  

5.2. CLEAN with spatial filtering 

Let us ass-ume now that we have spatially filtered the covariance 
matrices R k  by linear operations L k .  for example projections. If 
we assume that all the interference is removed by the filtering, the 
measurement equation becomes 

R k  := L k R k L 3 f  = Lk [Ak({si})BAf;({s(}) + a21] Lf; . 
(12) 

This mo&fies the least squares optimization problem to 

.. . 

(13) 
and R k  ( { S I } ,  B) = & ( { S I } )  BA:({sl}) The cost function is 
similar to ordinary CLEAN cost function and thus itsminimization 
does not pose stronger computational demands. Indeed, we end up 
with a deconvolution problem with a space-varying beam, but the 
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CLEAN algorithm is simply extended to take this into account. 
Here, we develop the extension more carefully, taking note of the 
fact that the noise structure after projections is not white anymore. 

In the case of spatially Eltered signals the classical beamformer 
follows from the previous by replacing a k  (s) by the effective may 
response Lkak(s), i.e., 

where 

Therefore the step of finding the brightest point SO in the image can 
be implemented using in the same way it is implemented in 
the CLEAN algorithm, but acting on RL instead of the original vis- 
ibilities. Similarly, the co$ribution of a source at location SO in a 
single covariancematrixRk is amultipleofLkak(so)aT(so)L;, 
and hence the response in the dirty image Ib (s) is given by 

K 

B(s ,  SO) := 1 aF(S)LF (Lkak(SO)a:(SO)L;) Lkak(s). 
k=l 

(16) 
This is the space-varying beam. The extended CLEAN algorithm 
after spatial filtering now follows immediately and is given in table 
1. 

To test the algorithm, we have taken an array configuration 
with p = 14 telescopes as in WSRT, and generated two equal- 
powered point sources centered around right ascension 32“ and 
declination 60°,  with a signal to noise ratio of -20 dB for each of 
the sources. To simulate the effect of spatial filtering, we placed an 
interferer at a fixed terreshial location (hence varying compared to 
the look direction of the amax), and with INR = 30 dB. K = 100 
sample covariance matrices Rk were generated, uniformly spread 
along 12 hours, and each based on iV = 1000 samples. Figure 
l(a)-(c) shows the dirty image without interference present, the 
effect of the interferer on the dirty image, and the duty  image after 
estimating and removing the interferer using spatial projections. 
Clearly, with interference present but not removed, the sources are 
completely masked out (note the change in scale between the first 
two figures). After estimating and projecting out the interferer, 
in the third image, we obtain nominally the same image as in the 
interference-free case, but the sidelobe patterns are different (as 
we demonstrated before, they are in fact space-varying). 
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