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Correspondence

Maximum Likelihood Separation of Constant Modulus In this correspondence, we derive an exact analytic expression for
Signals the inverse of the Fisher information matrix. We further show that the
updating of a scoring type Newton algorithm (i.e., an algorithm that

Amir Leshem uses the expected value of the Hessian instead of the Hessian itself)

can be done linearly in the number of samples, rather then cubic, as
) ] ) ] would be the case in direct numerical inversion. We then devise a
Abstract—in this correspondence, we derive aNewton scoring algorithm - g ring - algorithm for maximum likelihood source separation based
for the maximum likelihood separation and direction-of-arrival (DOA) esti- R . . .
mation of constant modulus (CM) signals using a sensors array. We present O initialization with a suboptimal method. Finally, we analyze the
arapidly converging scheme for the joint estimation of the signals and their computational complexity of the algorithm and demonstrate its effec-
directions based on their CM property. We discuss initialization and show  tiveness by simulations. This correspondence continues the research
that the complexity is moderate. presented in [6].

Index Terms—Constant modulus, DOA estimation, maximum likelihood,

source separation.
II. DATA MODEL

Consider an array witl sensors receiving narrowband constant
o _ o _ _ ~ modulus signals¢ < p). Under standard assumptions for the array
Direction-of-arrival (DOA) estimation of multiple signals im- manifold, we can describe the received signal as an instantaneous linear

pinging on an antenna array is a fundamental problem in sign@&mpination of the source signals, i.e.,
processing with applications to communication, radar, sonar, radio-

astronomy, and many other fields. Super-resolution methods that

exploit knowledge of the array manifold or its structure without z(t) = ABs(t) + n(t) 1)
using information on the signals have been thoroughly investigated.

A good overview of these is given in [5]. Other methods exploivhere we have used the following notatiae(t) = [zi(t), -+,
properties of the signals such as Gaussianity [2], non-Gaussianity(t)]” is ap x 1 vector of received signals at time A =

[7], or cyclostationarity [13]. These methods are more robust #(8) = [a(61), ---, a(f,)], a(#) is the array response vector for a
array manifold errors due to the extra information they use. kignal from directiord, andé = [,, ---, 6,] is the DOA vector of
communication applications, the signals are typically structured. Otie sourcesB = diag3) is the channel gain matrix, with parameters
very common property shared by frequency- and phase-modulatee: [3,, ---, 3,]", wheres; € R is the amplitude of théth signal
signals is the constant envelope or constant modulus (CM). Singgreceived by the array(t) = [s1(t), -+ -, s,(t)]" is ag x 1 vector

the pioneering work of Treichler and Agee [11], it is known that thef source signals at time =(t) is thep x 1 additive noise vector,
CM property is a strong property that is already sufficient for sourGghich is assumed spatially and temporally white Gaussian distributed
separation. After separation of the signals, the DOA estimatiqfith covariance matrix I, wherev = o2 is the noise variance.

problem is decoupled and can be done for each source individuallyThe derivation can be extended to spatially colored Gaussian noise
Such a scheme is proposed in [9], where the CM signals affh known covariance matriQ at the expense of greater notational
sequentially separated using the so-called CM array. Weak poigfsnplexity. In our problem, the array is assumed to be calibrated so

of this and related iterative CM algorithms are their initializationy, ot the array response vectcdd) is a known function. As usual, we
the recovery of weak signals, and their unpredictable relatively slqy,

' ) > uire that the array manifold satisfies the uniqueness condition, i.e.,
convergence, which may require several hundred samples per &gggi

. Y ry collection of vectors on the manifold are linearly independent.
Recent studies of the problem of DOA estimation based on the C\M

) . . e further assume that all sources have constant modulus. This is rep-
property [6] yielded good sub-optimal algorithms. However, a numefscanted by the assumption that foralls; ()| = L (i = 1, ---, q).

ical study shows that these algorithms are indeed suboptimal in #.equal source powers are absorbed in the gain mBwiRhase off-

sense that they do not achieve the CRB in some circumstances. Thi .

. . ; . _sets of the sources after demodulation are part ofth€hus, we can
suggests that an improvement can be achieved by using the maximum (1) . -
S 9F . . : . write s;(t) = ¢’?/'" whereg;(t) is the unknown phase modulation
likelihood estimator (MLE). The main problem with using the MLEfor sourcei, and we defings(t) = [61 () 6,(1)]" as the phase
together with the CM property is the large dimension of the parameter ! PIVE) 707y Pa P

. INTRODUCTION

space since unlike the case of arbitrary signals, one cannot perform gior folr all sourc:fs at time .T'T)?"ywwe assum(ihthta;&h sampI(Ts
maximization of the likelihood under the CM constraint analytically:” — [z(l )’('j' > 2(N)] are available. We assume that the signals are
This makes the estimation very hard, even using iterative numerigfjcorrelated.

methods.
Il. I NFORMATION MATRIX AND THE NEWTON UPDATE FORMULA

In this section, we present the log-likelihood function and the Fisher
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The log-likelihood function is given (after omitting some constantgnd define the x ¢ matrix

” xEE

T = - =

L(X|$y, s b, 8, B, v) AT g1
N

= —pNlog V—% > (x(k)—ABs(k))" (z(k)—ABs(k)).

k=1

[ [

22

”} . @)

The CRB for DOA's amplitudes and signal phases was presented in
[6] without derivation. We extend the derivation of the CRB and com-
@) pletely invert the information matrix and not only its diagonal elements.
This also provides the derivation omitted in [6]. For inverting the ma-
Following [10], the estimation of the noise variance is decoupled frofffX £~ we firstdivide it into four different parts (to simplify notation,
all other parameters and can be estimated by the MLE giten all Ve disregard the constahtr, remembering that its inverse has to mul-

the other parameters tiply the final result).
| X H, 0 AT ET
P=y > (x(k) — ABs(k))" (x(k) — ABs(k)).  (3) Fi= Fi=| :
=1 0 Hy AL EY
Substituting this intoL(X|é,, ---, ¢, 0, B, ) and eliminating g |T AT :
constant terms, we obtain ZTIA Y (®)
L(X|p) = —pNlog andFy, = FL,.
N Using Schur’s complement formula and (7), we obtain thaRthe
. (Z (z(k) — ABs(k))" (z(k) — ABs(k))) 24 lower right part of F';' is now given by
k=1

r = = -1
where the remaining parameters are collected in the vector (Fx')z =% "= <LI; I-Xr } - {;11 :ZD -9
p = [o()", -, 6(N), 8%, 871", Thus, the maximization T

of the likelihood can be reduced to minimization of the least squaresThe other parts of" ! are given by

p = argmin, Z;:;l lle(k)|*, where

H! 0 H'AT HT'ET
e(k) = z(k) — ABs(k). (4) (FyHn = +
—1 —1 T —1 T
Define 0 AHﬂN_l H iNHEN Ey
: .(Fﬂ)n{ L T NN } (10)
Si = diag(s(k)) and D= d_“(91)7 d_"'(gq) . N E\H' ....., ExH}
de de —1 1
i _1. [AHT' ,---, AxHjy
. . . . . . . (FN )21 = _(FN )22 —1 -1 (11)
The Fisher information matrix associated to the estimation of the pa- EH, v EnHy
rameter vector can be derived as (see [6]) and again,(Fy )21 = (Fy')12. Now that we have explicit ex-

H, 0 AT ET pressions forF' ', we are able to compute explicit expressions for
. the Newton update direction used in Section IV. To that end, let

9 ' " Ve L, VoL, VgL be the derivatives of with respect to the signal
Fy=-10 Hy | Ay Ey (5) phases in théth sample the signals DOA's and the signals power,
A e An r AZ respectively. Exact expressions for these are given in [6].
El T E A T The Newton update directianis given now by = (v/2)F* VL.
oo N This is ag(N + 2) x 1 vector function of the parameters. The compo-
where nents ofv are given by
H, = ReS;B"A"ABS,); (ot = 5 Hy Vo L+ 5 [H;‘A[ H;‘EZ]
Ak. = —Im(StB*D*ABSL), < N _
E. = —-Im(S;A*ABS}); AH 'Yyl —Vel
r =3V ReS;B*D*DBS)); o Zl Lo ’
N * Ax . (P )22 | %
A = Zlﬁ:l Re(SkA DBSk), N N
Y =3,  ReS;A*AS,). S EH;'Vgi)L - VL
L= i
As usual, the Cramér—Rao bound on the variance of any unbiased es- r Vs N ATV p T
timator is then given by the diagonal elements of the inverg&ofThe » ) ok — Z il VgL
bounds on the individual parameters were already obtained in [6]. We (v)o, g = 5(F§ )22 ~ (12)
assume that thH , are invertible (an assumption that follows from the - Vgl — ZEiHi_1 Ve L
independence condition on the array manifold and the independence of L Py ' 4

the sources). Let where(v) 4(«) are the components related to the phase parameters, and

N o~ - (v)g, g are the components related to the DOA's and signal power pa-
o ZAkH;lAf» ZAkH;lEi rameters. Note that although the expressions above seems dependent on
{:11 212 - kfll k=1 (6) v, thisis not the case sincéL contains a factoz/v, which cancels
Sor Sao -

N . . - . .
AT 1T with the leadingv /2. This is very satisfactory as compared with the
ZE"H At ;E"H’“ B many gradient-based CMA algorithms, in which an arbitrary learning
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constant appears. Note that although we invert the matHgeghese TABLE |

matrices are smally(x ¢) and typically have a reasonable condition DESCRIPTION OF THEALGORITHM
number, which to a large extent is determined by the power @tio
and the angular separation between the soudces

1. Generate a structured separating matrix A = [a(6,), ..., a(,)] based on [6].
o=l

2. Compute an unstructured signal estimate by § = (AHA) AFx(1).

IV. ALGORITHM 3. Compute the initial phase estimates using the phases of the unstructured estimate,

. . . .. . ., _and estimate the power matrix B from the power of the unstructured signals.
In this section, we describe a method for obtaining maximum like P P ¢

lihood estimates (MLE) of the parameters. The MLE is giverpby
argmax, L(X|p), i.e., we would like to choose the parameters thg 2 Fstimate the Newton direction using (12)
maximize the likelihood of obtaining the observed data. Note thatma  b. Compute A using (15).

imizing the likelihood function is equivalent to minimizing£(X|p) ¢ Update the parameters using (14).
defined in Section lll. To that end, we devise a Newton-type local opts g,q.

mization algorithm, using the formulas derived in the previous sectiorr.
Since local optimization methods depends on good initializations, we
describe in detail two possible initialization methods.

4. Until termination condition is satisfied

TABLE I
COMPLEXITY OF COMPUTATION OF THE SUB-MATRICES OF THE

It_ is \_/veII known thgt optimization methods based on second-or_der INFORMATION MATRIX
derivatives are superior to other methods and that the Newton algorithm
is usua”y Considered to be “the Standard against Wh|Ch other a|gorith|matnx complexity | matrix complexity || matrix complexity | matrix complexity
are measured” [3]. It solves the unconstrained minimization proble*™* re* A'D 7 D'D 2y BS: |4
B*A*AB | ¢* (B*A*AB)™! | ¢* ABS; Py Hj 2¢?

p = argmin, f(p), and f: Rt — R is usually referred to as - , N , e ; - e
. . " . . & q k g k q g 4
the cost functlon. The pasm algorithm is based on the follqwmg upda, @+oN | T @+ON | HAAT | HOE] | o

scheme: Given an estimagg of the parameter vectgr, we improve  a,moiar | 2 BHIET | o AHCET | ¢
the estimate by

Poi1i =P —H (p,)VIp,) (13) Ao = 1, which is optimal for the quadratic approximation of the like-
lihood. For more details about the 1-D optimization as well as the pos-
whereH(p,,) is the Hessian matrix, an¥ f(p,,) is the gradient of gjple termination criteria of the Newton algorithm, see [3].
the cost function evaluated af. p,, .., is obtained by maximizing the  Finally, we would like to discuss the choice of initial parameter es-
quadratic approximation fof atp,, . timate. A good initial point is very important to any local optimization
In statistical inference when maximizing the likelihood function, ongcheme to prevent convergence to a local minimum that is not a global
usually prefers to replace the Hessian by its expected value, i.e., giimum. For that purpose, we propose two alternatives. The first is
Fisher information matrix. This change contributes to the numericg(l)mputationa”y simple but might fail in hard cases of closely spaced
stability of the algorithm (see [4, pp. 177-182]). Under this changggurces, whereas the other is almost optimal and assures convergence
the algorithm is called a Newton-type scoring algorithm. In our casg the MLE at the price of further complexity. The exposition of the
the cost function is given by £(Xp), which we will denote from now two initialization has been done in [6], where analysis and simulations
onas—L(p). The expected value of the Hessian is just the informatiast the initialization is done. We will shortly describe the methods.
matrix, i.e.,EH = Fx. Therefore, the update formula becomes The first initialization scheme we propose is by the ESPRIT algo-
i . rithm [8] (or any other super-resolution DOA estimation method, which
Pot1 = pPn = Fr (p)VL(p,)- is based the sample covariance matrix without taking the signal struc-

The Newton approach has another very appealing interpretation!d§ into account). First, we estimate the DOA's. Then, the signals are
a natural gradient method. Any parametric family of distributions cafstimated using the unconstrained ML estimator. Finally, the signals
be considered to be a Riemannian manifold with the metric defin&€ Projected to the family of CM signals. .
by the Fisher information matrix [1]. Under this metric, the scoring 1€ second initialization method is based on the suboptimal algo-

algorithm becomes the stochastic gradient method with respect to ff{gm presented in [6]. Using the ACMA, the CM sources are blindly

above metric using the natural gradient on the manifold. sep.ar.ated basgd on their CM property. The DOA's are then es.timated
As is well known in the numerical analysis literature, although a urf®Y fitting the weight vectors given by the ACMA to the array manifold.
step in the Newton direction Then, we can compute improved signal estimates using the DOA esti-
mates.
Fy' (p,,)VL(p,) The algorithm using the weighted ACMA initialization is described
in Table I.

assures improvement in the quadratic approximation of the likelihood\we now estimate the computational complexity of the algorithm.
function, it does not assure improvement in the likelihood function ijnce the initialization method can vary and, in each case, has a known
self. To overcome this difficulty, a line search along the Newton dire%omplexity, we will concentrate on the complexity of the update step.
tion is devised either for an optimal step or for a suboptimal step. Th@e details are described in Tables Il and I1l. The overall complexity is
update step becomes thus given by(6¢® + 5pq + 12¢> + p+ 8¢+ )N + ¢*(3p + 9¢ + 13) +

5¢. Finally, we comment that the algorithm usually converges after a

—1
Puir =P = AN (p)VL(P,) (14) few iterations due to the quadratic convergence properties of Newton

where) is defined by [3] algorithms. This means that another small multiplicative constant has
to be added to the expression above. In the simulation section, we will

A= arg mgn —L(p, — uF;rl(p")V[,(pn)) . (15) demonstrate the convergence. Note that the overall complexity is not

prohibitive, i.e., not exponential in the problem dimension, and linear
The optimal\ can be computed very efficiently by standard one-din the data length. This puts the algorithm in the class of moderate
mensional (1-D) optimization methods using the good initializatiooomplexity algorithms.
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TABLE I
COMPLEXITY OF COMPUTATION OF THE GRADIENT
AND THE NEWTON DIRECTION

Expression defined by equation | complexity
e(k),1<k<N ) plg+1)N

vL see [6] 3¢(1+p +pN)
S, 822 ©6) 4N

Fa ® 4q?

(Fa2) ™! ©) 8¢°

SN AHIV 4L - Vel (q+1)N+q
SN EH V)L - VL (g+1)N +gq
The Newton direction for 8, 3 (12) 8q%

The Newton direction for each ¢p(k) | (12) 5q°
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Fig. 1. DOA estimation accuracy and SINR versus SNR. (a) DOA estimati

accuracy versus SNR. (b) SINR versus SNR.

V. SIMULATION RESULTS
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Fig. 2. DOA estimation accuracy and SINR versus separation. (a) DOA
estimation accuracy versus separation. (b) SINR versus separation.

afive-element ULA and three sources. The number of samples was held
fixedasN = 20. Each experimentincluded 100 Monte Carlo trials.

The first experiment tested the dependence on SNR. Three equipow-
ered sources were located-at5°, 0°, 15°, and the SNR was varied
from 5 to 50 dB. We can clearly see the convergence of the DOA esti-
mation to the CRB, as expected from a maximum likelihood estimator.

The second experiment tested the performance as a function of
the separation. We have used three equipowered signals. The central
source was fixed d°, whereas the two other sources were located at
—A°, A°, andA was changed from° to 30° at steps o2°. As was
demonstrated in [12], in large separation, the ESPRIT algorithm tends
to have better performance than the ACMA in terms of SINR. We
show that the MLE outperforms both the ESPRIT and the CM-DOA
arfgorithms over the complete range of separations. However, at the
very small separations, the MLE iterations increased the DOA estima-
tion RMSE. This is caused by convergence failure of the iterations in
some cases.

In this section, we describe some simulations demonstrating the efit is interesting to notice that the DOA estimation achieved the same
ficiency of the proposed MLE method. We present both signal to intgperformance no matter what the initialization was. This is caused by
ference plus noise (SINR) improvement and DOA estimation perfdihe accuracy of the DOA's, which dependsgfii/, in contrast to the

mance.

SINR, which depends only on the array gain, and SNR. This effect is

Inthe firsttwo experiments, we have tested the performance as a fusiilar to the difference in phase and frequency estimation for sinusoid
tion of source separation and signal-to-noise ratio (SNR). We have usedoise (see Figs. 1 and 2).
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Fig. 3. DOA estimation accuracy and SINR versus separation for the weak
source. (a) DOA estimation accuracy versus separation. (b) SINR versud4l
separation.

[5]

We have performed a third experiment to demonstrate the robust-[G]
ness of the estimator to source power variability. We have located a
first source ab® and a second strong source/st, whereA varied [71
from 4° to 30°. The weak source was 20 dB below the strong source,
and the SNR for the weak source was 20 dB. This demonstrates POSg)
sible near-far robustness of the method. At each separation, we have
performed 400 Monte Carlo trials. Fig. 3 presents the RMSE of DOA
and the SINR for the weak source. We can clearly see the improved[gl
performance, even at separatiorbdf We see again the importance of
exploiting both the array manifold and the CM property.

Finally, we demonstrate the statistics of number of iterations unti[10]
convergence as function of SNR in the first experiment. The average
number of iterations is shown in Fig. 4. We can see that as expecteﬁ,ll
the better ACMA initialization yielded faster convergence.

[12]
VI. CONCLUSIONS

; . ) 13
In this correspondence, we have derived an algorithm for thé ]
maximum likelihood separation of constant modulus signals. We
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Fig. 4. Average nunber of iterations versus SNR.

have demonstrated the good performance as well as the reasonable
computational complexity of the algorithm. We have also tested
various initialization methods. The algorithm yields good results for
diverse signal to interference ratios with as little as 20 samples, which
is a feature that is not offered by any adaptive CM array algorithm.
Animportant conclusion is that if one is only interested in the DOA's
and not in the signals, then initialization by any method that yields

DOA estimation for the unstructured signals will suffice; how-

ever, if one would like to estimate the signals, then the good initializa-
tion given by the ACMA gives improved SINR and more robustness to
local minima in the high-dimensional parameter space.
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