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Abstract—In this correspondence, we derive a Newton scoring algorithm
for the maximum likelihood separation and direction-of-arrival (DOA) esti-
mation of constant modulus (CM) signals using a sensors array. We present
a rapidly converging scheme for the joint estimation of the signals and their
directions based on their CM property. We discuss initialization and show
that the complexity is moderate.

Index Terms—Constant modulus, DOA estimation, maximum likelihood,
source separation.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation of multiple signals im-
pinging on an antenna array is a fundamental problem in signal
processing with applications to communication, radar, sonar, radio-
astronomy, and many other fields. Super-resolution methods that
exploit knowledge of the array manifold or its structure without
using information on the signals have been thoroughly investigated.
A good overview of these is given in [5]. Other methods exploit
properties of the signals such as Gaussianity [2], non-Gaussianity
[7], or cyclostationarity [13]. These methods are more robust to
array manifold errors due to the extra information they use. In
communication applications, the signals are typically structured. One
very common property shared by frequency- and phase-modulated
signals is the constant envelope or constant modulus (CM). Since
the pioneering work of Treichler and Agee [11], it is known that the
CM property is a strong property that is already sufficient for source
separation. After separation of the signals, the DOA estimation
problem is decoupled and can be done for each source individually.
Such a scheme is proposed in [9], where the CM signals are
sequentially separated using the so-called CM array. Weak points
of this and related iterative CM algorithms are their initialization,
the recovery of weak signals, and their unpredictable relatively slow
convergence, which may require several hundred samples per signal.

Recent studies of the problem of DOA estimation based on the CM
property [6] yielded good sub-optimal algorithms. However, a numer-
ical study shows that these algorithms are indeed suboptimal in the
sense that they do not achieve the CRB in some circumstances. This
suggests that an improvement can be achieved by using the maximum
likelihood estimator (MLE). The main problem with using the MLE
together with the CM property is the large dimension of the parameter
space since unlike the case of arbitrary signals, one cannot perform the
maximization of the likelihood under the CM constraint analytically.
This makes the estimation very hard, even using iterative numerical
methods.
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In this correspondence, we derive an exact analytic expression for
the inverse of the Fisher information matrix. We further show that the
updating of a scoring type Newton algorithm (i.e., an algorithm that
uses the expected value of the Hessian instead of the Hessian itself)
can be done linearly in the number of samples, rather then cubic, as
would be the case in direct numerical inversion. We then devise a
scoring algorithm for maximum likelihood source separation based
on initialization with a suboptimal method. Finally, we analyze the
computational complexity of the algorithm and demonstrate its effec-
tiveness by simulations. This correspondence continues the research
presented in [6].

II. DATA MODEL

Consider an array withp sensors receivingq narrowband constant
modulus signals (q < p). Under standard assumptions for the array
manifold, we can describe the received signal as an instantaneous linear
combination of the source signals, i.e.,

xxx(t) = ABsABsABs(t) + nnn(t) (1)

where we have used the following notation:xxx(t) = [x1(t); � � � ;

xp(t)]
T is a p � 1 vector of received signals at timet. AAA =

AAA(���) = [aaa(�1); � � � ; aaa(�q)], aaa(�) is the array response vector for a
signal from direction�, and��� = [�1; � � � ; �q] is the DOA vector of
the sources.BBB = diag(���) is the channel gain matrix, with parameters
��� = [�1; � � � ; �q]

T , where�i 2 + is the amplitude of theith signal
as received by the array.sss(t) = [s1(t); � � � ; sq(t)]

T is aq � 1 vector
of source signals at timet. nnn(t) is thep � 1 additive noise vector,
which is assumed spatially and temporally white Gaussian distributed
with covariance matrix�III, where� = �2 is the noise variance.

The derivation can be extended to spatially colored Gaussian noise
with known covariance matrixQQQ at the expense of greater notational
complexity. In our problem, the array is assumed to be calibrated so
that the array response vectoraaa(�) is a known function. As usual, we
require that the array manifold satisfies the uniqueness condition, i.e.,
every collection ofp vectors on the manifold are linearly independent.
We further assume that all sources have constant modulus. This is rep-
resented by the assumption that for allt, jsi(t)j = 1 (i = 1; � � � ; q).
Unequal source powers are absorbed in the gain matrixBBB. Phase off-
sets of the sources after demodulation are part of thesi. Thus, we can
write si(t) = ej� (t), where�i(t) is the unknown phase modulation
for sourcei, and we define���(t) = [�1(t); � � � ; �q(t)]

T as the phase
vector for all sources at timet. Finally, we assume thatN samples
XXX = [xxx(1); � � � ; xxx(N)] are available. We assume that the signals are
uncorrelated.

III. I NFORMATION MATRIX AND THE NEWTON UPDATE FORMULA

In this section, we present the log-likelihood function and the Fisher
information matrix. Then, we obtain an analytic expression for the
inverse of the information matrix. This extends the derivation of the
Cramér–Rao bound on the parameters, as given in [6].

Finally, we give a very simple update scheme for computing the
Newton directions. This update formula is the heart of the MLE al-
gorithm presented in Section IV.
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The log-likelihood function is given (after omitting some constants)
by

L (XXXj���1; � � � ; ���N ; ���; ���; �)

= �pN log ��
1

�

N

k=1

(xxx(k)�ABsABsABs(k))� (xxx(k)�ABsABsABs(k)) :

(2)

Following [10], the estimation of the noise variance is decoupled from
all other parameters and can be estimated by the MLE of� given all
the other parameters

�̂ =
1

pN

N

k=1

(xxx(k)�ABsABsABs(k))� (xxx(k)�ABsABsABs(k)) : (3)

Substituting this intoL(XXXj���1; � � � ; ���N ; ���; ���; �) and eliminating
constant terms, we obtain

L(XXXj���) =�pN log

�

N

k=1

(xxx(k)�ABsABsABs(k))� (xxx(k)�ABsABsABs(k))

where the remaining parameters are collected in the vector
��� = [���(1)T ; � � � ; ���(N)T ; ���T ; ���T ]T . Thus, the maximization
of the likelihood can be reduced to minimization of the least squares
�̂�� = argmin���

N

k=1 keee(k)k
2, where

eee(k) = xxx(k)�ABsABsABs(k): (4)

Define

SSSk = diag(sss(k)) and DDD =
daaa

d�
(�1); � � � ;

daaa

d�
(�q) :

The Fisher information matrix associated to the estimation of the pa-
rameter vector can be derived as (see [6])

FFFN =
2

�

HHH1 0 �
T
1 EEET

1

. . .
...

...
0 HHHN ���T

N EEET
N

���1 ; � � � ; ���N � �
T

EEE1 ; � � � ; EEEN � �

(5)

where

HHHk = Re(SSS�kBBB
�AAA�ABSABSABSk);

�k = �Im(SSS�kBBB
�DDD�ABSABSABSk);

EEEk = �Im(SSS�kAAA
�ABSABSABSk);

� = N

k=1 Re(SSS�kBBB
�DDD�DBSDBSDBSk);

� = N

k=1 Re(SSS�kAAA
�DBSDBSDBSk);

� = N

k=1 Re(SSS�kAAA
�ASASASk).

As usual, the Cramér–Rao bound on the variance of any unbiased es-
timator is then given by the diagonal elements of the inverse ofFFFN . The
bounds on the individual parameters were already obtained in [6]. We
assume that theHHHk are invertible (an assumption that follows from the
independence condition on the array manifold and the independence of
the sources). Let

�11 �12

�21 �22
=

N

k=1

�kHHH
�1
k �

T
k

N

k=1

�kHHH
�1
k EEET

k

N

k=1

EEEkHHH
�1
k �

T
k

N

k=1

EEEkHHH
�1
k EEET

k

(6)

and define theq � q matrix

	 =
� �

T

� �
�

�11 �12

�21 �22
: (7)

The CRB for DOA’s amplitudes and signal phases was presented in
[6] without derivation. We extend the derivation of the CRB and com-
pletely invert the information matrix and not only its diagonal elements.
This also provides the derivation omitted in [6]. For inverting the ma-
trix FFFN , we first divide it into four different parts (to simplify notation,
we disregard the constant2=�, remembering that its inverse has to mul-
tiply the final result).

FFF 11 =

HHH1 0
. . .

0 HHHN

FFF 12 =

�
T
1 EEET

1

...
...

�
T
N EEET

N

FFF 22 =
� �

T

� �
(8)

andFFF 21 = FFF T
12.

Using Schur’s complement formula and (7), we obtain that the2q�
2q lower right part ofFFF�1N is now given by

(FFF�1N )22 = 	�1 =
� �

T

� �
�

�11 �12

�21 �22

�1

: (9)

The other parts ofFFF�1 are given by

(FFF�1N )11 =

HHH�1
1 0

. . .

0 HHH�1
N

+

HHH�1
1 �

T
1 HHH�1

1 EEET
1

...
...

HHH�1
N �

T
N HHH�1

N EEET
N

� (FFF�1N )22
�1HHH

�1
1 ; � � � ; �NHHH

�1
N

EEE1HHH
�1
1 ; � � � ; EEENHHH

�1
N

(10)

(FFF�1N )21 =�(FFF�1N )22
�1HHH

�1
1 ; � � � ; �NHHH

�1
N

EEE1HHH
�1
1 ; � � � ; EEENHHH

�1
N

(11)

and again,(FFF�1N )21 = (FFF�1N )T12. Now that we have explicit ex-
pressions forFFF�1N , we are able to compute explicit expressions for
the Newton update direction used in Section IV. To that end, let
r���(k)L; r���L; r���L be the derivatives ofL with respect to the signal
phases in thekth sample the signals DOA’s and the signals power,
respectively. Exact expressions for these are given in [6].

The Newton update directionvvv is given now byvvv = (�=2)FFF�1N rL.
This is aq(N +2)� 1 vector function of the parameters. The compo-
nents ofvvv are given by

(vvv)���(k) =
�

2
HHH�1

k r���(k)L+
�

2
HHH�1

k �
T
k HHH�1

k EEET
k

� (FFF�1N )22

N

i=1

�iHHH
�1
i r���(i)L �r���L

N

i=1

EEEiHHH
�1
i r���(i)L �r���L

(vvv)���;��� =
�

2
(FFF�1N )22

r���L �

N

i=1

�iHHH
�1
i r���(i)L

r���L �

N

i=1

EEEiHHH
�1
i r���(i)L

(12)

where(vvv)���(k) are the components related to the phase parameters, and
(vvv)���; ��� are the components related to the DOA’s and signal power pa-
rameters. Note that although the expressions above seems dependent on
�, this is not the case sincerL contains a factor2=�, which cancels
with the leading�=2. This is very satisfactory as compared with the
many gradient-based CMA algorithms, in which an arbitrary learning
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constant appears. Note that although we invert the matricesHHHk, these
matrices are small (q � q) and typically have a reasonable condition
number, which to a large extent is determined by the power ratioBBB

and the angular separation between the sourcesAAA.

IV. A LGORITHM

In this section, we describe a method for obtaining maximum like-
lihood estimates (MLE) of the parameters. The MLE is given by�̂�� =
argmax��� L(XXXj���), i.e., we would like to choose the parameters that
maximize the likelihood of obtaining the observed data. Note that max-
imizing the likelihood function is equivalent to minimizing�L(XXXj���)
defined in Section III. To that end, we devise a Newton-type local opti-
mization algorithm, using the formulas derived in the previous section.
Since local optimization methods depends on good initializations, we
describe in detail two possible initialization methods.

It is well known that optimization methods based on second-order
derivatives are superior to other methods and that the Newton algorithm
is usually considered to be “the standard against which other algorithms
are measured” [3]. It solves the unconstrained minimization problem
�̂�� = argmin��� f(���), andf :RRR(N+2)q ! RRR is usually referred to as
the cost function. The basic algorithm is based on the following update
scheme: Given an estimate���n of the parameter vector���, we improve
the estimate by

���n+1 = ���n �HHH
�1(���n)rf(���n) (13)

whereHHH(���n) is the Hessian matrix, andrf(���n) is the gradient of
the cost function evaluated at���n. ���n+1 is obtained by maximizing the
quadratic approximation forf at���n.

In statistical inference when maximizing the likelihood function, one
usually prefers to replace the Hessian by its expected value, i.e., the
Fisher information matrix. This change contributes to the numerical
stability of the algorithm (see [4, pp. 177–182]). Under this change,
the algorithm is called a Newton-type scoring algorithm. In our case,
the cost function is given by�L(XXXj���), which we will denote from now
on as�L(���). The expected value of the Hessian is just the information
matrix, i.e.,EHHH = FFFN . Therefore, the update formula becomes

���n+1 = ���n � FFF
�1
N (���n)rL(���n):

The Newton approach has another very appealing interpretation as
a natural gradient method. Any parametric family of distributions can
be considered to be a Riemannian manifold with the metric defined
by the Fisher information matrix [1]. Under this metric, the scoring
algorithm becomes the stochastic gradient method with respect to the
above metric using the natural gradient on the manifold.

As is well known in the numerical analysis literature, although a unit
step in the Newton direction

FFF
�1
N (���n)rL(���n)

assures improvement in the quadratic approximation of the likelihood
function, it does not assure improvement in the likelihood function it-
self. To overcome this difficulty, a line search along the Newton direc-
tion is devised either for an optimal step or for a suboptimal step. The
update step becomes thus

���n+1 = ���n � �FFF
�1
N (���n)rL(���n) (14)

where� is defined by [3]

� = argmin
�
�L ���n � �FFF

�1
N (���n)rL(���n) : (15)

The optimal� can be computed very efficiently by standard one-di-
mensional (1-D) optimization methods using the good initialization

TABLE I
DESCRIPTION OF THEALGORITHM

TABLE II
COMPLEXITY OF COMPUTATION OF THE SUB-MATRICES OF THE

INFORMATION MATRIX

�0 = 1, which is optimal for the quadratic approximation of the like-
lihood. For more details about the 1-D optimization as well as the pos-
sible termination criteria of the Newton algorithm, see [3].

Finally, we would like to discuss the choice of initial parameter es-
timate. A good initial point is very important to any local optimization
scheme to prevent convergence to a local minimum that is not a global
minimum. For that purpose, we propose two alternatives. The first is
computationally simple but might fail in hard cases of closely spaced
sources, whereas the other is almost optimal and assures convergence
to the MLE at the price of further complexity. The exposition of the
two initialization has been done in [6], where analysis and simulations
of the initialization is done. We will shortly describe the methods.

The first initialization scheme we propose is by the ESPRIT algo-
rithm [8] (or any other super-resolution DOA estimation method, which
is based the sample covariance matrix without taking the signal struc-
ture into account). First, we estimate the DOA’s. Then, the signals are
estimated using the unconstrained ML estimator. Finally, the signals
are projected to the family of CM signals.

The second initialization method is based on the suboptimal algo-
rithm presented in [6]. Using the ACMA, the CM sources are blindly
separated based on their CM property. The DOA’s are then estimated
by fitting the weight vectors given by the ACMA to the array manifold.
Then, we can compute improved signal estimates using the DOA esti-
mates.

The algorithm using the weighted ACMA initialization is described
in Table I.

We now estimate the computational complexity of the algorithm.
Since the initialization method can vary and, in each case, has a known
complexity, we will concentrate on the complexity of the update step.
The details are described in Tables II and III. The overall complexity is
given by(6q3 + 5pq+ 12q2 + p+ 8q+ 7)N + q2(3p+ 9q+ 13)+
5q. Finally, we comment that the algorithm usually converges after a
few iterations due to the quadratic convergence properties of Newton
algorithms. This means that another small multiplicative constant has
to be added to the expression above. In the simulation section, we will
demonstrate the convergence. Note that the overall complexity is not
prohibitive, i.e., not exponential in the problem dimension, and linear
in the data length. This puts the algorithm in the class of moderate
complexity algorithms.
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TABLE III
COMPLEXITY OF COMPUTATION OF THE GRADIENT

AND THE NEWTON DIRECTION

(a)

(b)

Fig. 1. DOA estimation accuracy and SINR versus SNR. (a) DOA estimation
accuracy versus SNR. (b) SINR versus SNR.

V. SIMULATION RESULTS

In this section, we describe some simulations demonstrating the ef-
ficiency of the proposed MLE method. We present both signal to inter-
ference plus noise (SINR) improvement and DOA estimation perfor-
mance.

In the first two experiments, we have tested the performance as a func-
tion of source separation and signal-to-noise ratio (SNR). We have used

(a)

(b)

Fig. 2. DOA estimation accuracy and SINR versus separation. (a) DOA
estimation accuracy versus separation. (b) SINR versus separation.

a five-element ULA and three sources. The number of samples was held
fixed asN =20. Each experiment included 100 Monte Carlo trials.

The first experiment tested the dependence on SNR. Three equipow-
ered sources were located at�15�; 0�; 15�, and the SNR was varied
from 5 to 50 dB. We can clearly see the convergence of the DOA esti-
mation to the CRB, as expected from a maximum likelihood estimator.

The second experiment tested the performance as a function of
the separation. We have used three equipowered signals. The central
source was fixed at0�, whereas the two other sources were located at
��

�; ��, and� was changed from4� to 30� at steps of2�. As was
demonstrated in [12], in large separation, the ESPRIT algorithm tends
to have better performance than the ACMA in terms of SINR. We
show that the MLE outperforms both the ESPRIT and the CM-DOA
algorithms over the complete range of separations. However, at the
very small separations, the MLE iterations increased the DOA estima-
tion RMSE. This is caused by convergence failure of the iterations in
some cases.

It is interesting to notice that the DOA estimation achieved the same
performance no matter what the initialization was. This is caused by
the accuracy of the DOA’s, which depends on1=M , in contrast to the
SINR, which depends only on the array gain, and SNR. This effect is
similar to the difference in phase and frequency estimation for sinusoid
in noise (see Figs. 1 and 2).
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(a)

(b)

Fig. 3. DOA estimation accuracy and SINR versus separation for the weak
source. (a) DOA estimation accuracy versus separation. (b) SINR versus
separation.

We have performed a third experiment to demonstrate the robust-
ness of the estimator to source power variability. We have located a
first source at0� and a second strong source at�

�, where� varied
from 4

� to 30�. The weak source was 20 dB below the strong source,
and the SNR for the weak source was 20 dB. This demonstrates pos-
sible near-far robustness of the method. At each separation, we have
performed 400 Monte Carlo trials. Fig. 3 presents the RMSE of DOA
and the SINR for the weak source. We can clearly see the improved
performance, even at separation of5

�. We see again the importance of
exploiting both the array manifold and the CM property.

Finally, we demonstrate the statistics of number of iterations until
convergence as function of SNR in the first experiment. The average
number of iterations is shown in Fig. 4. We can see that as expected,
the better ACMA initialization yielded faster convergence.

VI. CONCLUSIONS

In this correspondence, we have derived an algorithm for the
maximum likelihood separation of constant modulus signals. We

Fig. 4. Average nunber of iterations versus SNR.

have demonstrated the good performance as well as the reasonable
computational complexity of the algorithm. We have also tested
various initialization methods. The algorithm yields good results for
diverse signal to interference ratios with as little as 20 samples, which
is a feature that is not offered by any adaptive CM array algorithm.

An important conclusion is that if one is only interested in the DOA’s
and not in the signals, then initialization by any method that yields
good DOA estimation for the unstructured signals will suffice; how-
ever, if one would like to estimate the signals, then the good initializa-
tion given by the ACMA gives improved SINR and more robustness to
local minima in the high-dimensional parameter space.

REFERENCES

[1] S. Amari,Differential-Geometrical Methods in Statistics. New York:
Springer-Verlag, 1985, vol. 28.

[2] J. F. Böhme, “Estimation of spectral parameters of correlated signals in
wavefields,”Signal Process., pp. 329–337, Oct. 1986.

[3] P. Gill, W. Murray, and M. H. Wright,Practical Optimization. New
York: Academic, 1981.

[4] S. M. Kay, Fundumentals of Statistical signal Processing: Estimation
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[5] H. Krim and M. Viberg, “Sensor array signal processing: The parameter
estimation approach,”Signal Process., June 1995.

[6] A. Leshem and A. J. van der Veen, “Direction-of-arival estimation for
constant modulus signals,”IEEE Trans. Signal Processing, vol. 47, pp.
3125–3129, Nov. 1999.

[7] B. Porat and B. Friedlander, “Direction finding algorithms based on
higher order statistics,”IEEE Trans. Signal Processing, vol. 37, pp.
2016–2024, Sept. 1991.

[8] R. Roy, A. Paulraj, and T. Kailath, “ESPRIT—A subspace rotation ap-
proach to estimation of parameters of cisoids in noise,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1340–1342, Oct.
1986.

[9] J. J. Shynk and R. P. Gooch, “The constant modulus array for cochannel
signal copy and direction finding,”IEEE Trans. Signal Processing, vol.
44, pp. 652–660, Mar. 1996.

[10] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and
Cramer–Rao bound,”IEEE Trans. Acoust. Speech Signal Processing,
vol. 37, pp. 720–743, May 1989.

[11] J. R. Treichler and B. G. Agee, “A new approach to multipath correc-
tion of constant modulus signals,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-31, pp. 459–471, Apr. 1983.

[12] A. J. van der Veen, “Blind source separation based on combined direc-
tion finding and constant modulus properties,” inProc. IEEE SP Work-
shop Stat. Signal Array Process., Portland, OR, Sept. 1998.

[13] G. Xu and T. Kailath, “DOA estimation via exploitation of cyclostation-
arity—A combination of spatial and temporal processing,”IEEE Trans.
Signal Processing, vol. 40, pp. 1775–1785, July 1992.


