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Array Calibration in the Presence of Multipath
Amir Leshem, Member, IEEE,and Mati Wax, Fellow, IEEE

Abstract—We present an algorithm for the calibration of sensor
arrays in the presence of multipath. The algorithm is based on
two sets of calibration data obtained from two angularly separated
transmitting points. We show the similarity between the calibra-
tion problem and blind identification of SIMO systems and analyze
the identifiability of the problem. Simulation results demonstrating
the performance of the algorithm are included.

Index Terms—Array calibration, blind channel identification,
DOA estimation, multipath.

I. INTRODUCTION

M ODERN super-resolution direction finding techniques
such as minimum variance [1], MUSIC [4], subspace

fitting methods [8], and maximum likelihood [12] presume the
knowledge of the array response.

As the analysis of these techniques show [6], [7], [11], any in-
accuracy in the presumed array response results in severe degra-
dation of performance. The measurement of the array response,
which is referred to as array calibration, is therefore a crucial
step in the implementation of these techniques.

The existing calibration techniques [5], [9] are based on mod-
eling the array response by a free-space model perturbed by
an unknown coupling matrix and sensor location uncertainty.
These unknown parameters are estimated together with the un-
known signal parameters, assuming known or unknown source
location. Yet, for general arrays with arbitrary sensor responses,
these methods are no longer adequate since these modeling as-
sumptions are no longer valid.

In this paper, we address the problem of measuring the array
response of arrays with arbitrary sensor response in the pres-
ence of multipath. This problem is important since multipath is
essentially unavoidable in practice, and it sets the limit on the
achievable calibration accuracy.

The organization of the paper is as follows. In Section II, we
formulate the problem. In Section III, we present the proposed
solution. In Section VI, we present simulation results demon-
strating the performance of the algorithm. Finally, in Section
VII, we present some concluding remarks. In Section V, we con-
sider the similarity and the differences between the calibration
problem as presented here as well as the problem of blind iden-
tification of multiple FIR channels.
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Fig. 1. Calibration setup (with one reflection).

II. PROBLEM FORMULATION

Let denote the vector of the array response to
a source impinging from direction. The array calibration
problem amounts to measuring for . It is
usually performed by transmitting a signal from some location,
rotating the array, and measuring the array response at each
angle. Unfortunately, in many cases, the measured response
is composed not only of the direct path from the transmitting
point but also of multiple reflections from the surroundings;
see Fig. 1. In the case of arbitrary array response, we can no
longer resolve the multipath from a single set of measurements
since the measured data can be considered to be the “true”
array manifold. This situation is similar to the problem of blind
identification of SIMO systems, wherein without anya priori
knowledge of the signal, a single channel is not identifiable,
and two channels are identifiable, even using second-order
statistics only.

To cope with the multipath problem, we propose to carry
out the calibration twice, i.e., rotate the array and measure
the received array vector as a function of, yet each time
use a different transmitting point. Let denote the
vector received at the anglefrom the th transmitting point
( ). Assuming that the reflections are considered as
point sources and all multipath effects are completely coherent
with calibrating signals, i.e., each path differs by a complex
reflection coefficient from the direct path, we get

(1)

where
direction of the th reflection in the th set;
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complex coefficient representing the phase shift and
the amplitude of theth reflection in the th set;
number of reflections in theth set;
noise vector for the anglein the th set.

Since the array manifold is measured relative to some arbitrary
point and the relative angle between the measurement points is
known, we can assume without loss of generality that
and . In addition, since the reflecting objects
remain fixed while the transmitting point change, the relative
directions of the reflections are different, i.e., (
).
Assuming that the calibration process consists ofmeasure-

ments taken uniformly on , it follows from (1) that
the measured data is given by

(2)

where we use to emphasize that the noise is not angle
dependent. Note that we have included the direct path with the
multipath.

In our solution, we make the following assumption:

A1) All reflections are a multiple of the basic rotation
.

Assumption A1) serves as a very good approximation when the
grid is fine.

The array calibration problem can now be formulated as fol-
lows. Given the two measured data sets

estimate the array manifold

III. T HE MAXIMUM LIKELIHOOD ESTIMATOR

The proposed solution is based on two steps:

i) estimating the reflections’ parameters ;
ii) estimating the array manifold using the estimated reflec-

tions;
where is the vector of the re-
flection coefficients at the th set of measurements, and

is the vector of the reflections’ DOA’s
at the th set of measurements.

For the first step, we have two approaches. The first approach
uses the LS estimator, which is identical to the MLE under the
assumption of white Gaussian noise. This estimator is derived in
this section. The second approach uses a simplified LS, which
we derive in the next section.

The second step is derived by a least squares solution, which
is the MLE under the assumption of white Gaussian noise. This
step is performed identically in the two approaches using the
results of the first step.

To carry out the derivation of the MLE, let denote the
vector whose th element is if and zero
otherwise. Mathematically, this is expressed as

(3)

where is the delta function. Let be the array
manifold of the th sensor

(4)

(5)

(6)

and and are the th element of
and , respectively.

With this notation, we can rewrite (2) as

(7)

where , and is a permutation matrix
that rotates the zeroth element ofinto the th position defined
by

if or
otherwise.

(8)

The last equality in (7) is due to the fact the if
such that . Denoting

(9)

it follows that is an circulant matrix generated by

...
...

(10)
Thus, we can rewrite (2) as

(11)

Since is a circulant matrix, it is diagonalized by the DFT
matrix of order , and its eigenvalues are given by the DFT of
the generating vector [2]. Therefore

diag diag (12)
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where is the normalized DFT matrix of order ( ),
and is the DFT of given by

(13)

Hence

diag (14)

With this representation of the matrices, we can derive a
somewhat simplified expression of the MLE.

Let

and

Assuming that the noise is white and Gaussian from (11), the
MLE is given by

(15)

Minimizing first with respect to , we obtain

(16)

Now, from the definition of and (14), we obtain

(17)

where diag . Substituting (14) and (17) into (16)
yields

(18)

where

(19)

and . Finally, substituting (14) and (18) into
(15), we obtain

(20)

which can also be rewritten as

(21)

Notice that this estimator involves all the reflections parameters,
i.e., the DOA’s and the reflection coefficients, in a highly non-
linear fashion and, hence, is computationally unattractive.

IV. SIMPLE LS ESTIMATOR

In this section, we derive a simplified LS estimator for the re-
flections DOA’s and reflection coefficients. This estimator, to-
gether with the estimator for given in (18), consists of the
simplified LS estimator for the array manifold.

Substituting (14) into (11), we obtain

diag (22)

where . Since this holds for both sets of mea-
surements, we obtain

(23)

which can be rewritten as

(24)

where denotes elementwise multiplication.
Since the right-hand side of (24) is “noise,” a possible LS

estimator for the reflections’ parameters is given by

(25)

Substituting (13) into (25) yields

(26)

where . Denoting

(27)

(28)

and (29), shown at the bottom of the page, we can rewrite (26)
as a linear problem in (recall that we have assumed
and )

(30)

...
...

(29)
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This estimator is based on the data of theth sensor only.
Clearly, we can improve the performance by combining the in-
formation from all sensors. This yields

(31)
To evaluate this estimator, we first rewrite it in matrix form as

(32)

where

(33)

and

(34)

Minimizing first with respect to , with being fixed, we
obtain the well-known least squares solution

(35)

Substituting (35) back into (32), the resulting estimator of the
directions-of-arrival of the reflections is

(36)

where is the projection on the orthogonal comple-
ment of the subspace spanned by the columns of

(37)

The structure of this estimator is similar to that of the deter-
ministic signal maximum likelihood DOA estimator. Hence, the
optimization methods developed for this problem, including the
alternating projections [12] and the clustering methods [3] can
be used.

With the estimated parameters at hand, we can use (16) to
estimate the array manifold. First, we obtain an estimateof
by substituting the ’s and the ’s into (13). We then get

(38)

By substituting diag into (14), we obtain

(39)

which when substituted into (16) yields

(40)

where

(41)

V. THE RELATION TO THE SIMO BLIND EQUALIZATION AND

IDENTIFIABILITY RESULTS

In this section, we cast the calibration problem as the identi-
fication of a single input multiple output (SIMO) system. This
will enable us to derive identifiability conditions, as well as
present an alternative derivation of the LS estimator for reflec-
tions parameters.

First, note that we can rewrite (11) as

(42)

where

if

otherwise.
(43)

That is, the measurements are just a spatially filtered version of
the “signal” by FIR filters with coefficients at and
zeros otherwise. Our problem can now be stated as follows.

Given the output of two linear systems driven by the same
signal, reconstruct the input signal.

The problem is in the form of blind identification. However,
several differences between our problem and the conventional
blind identification problem exist.

1) The signal is periodic with known period.
2) The measurements are taken along a single period.
3) We have several pairs of output signals: one for each ele-

ment of the array.
4) The filters are sparse, i.e., most of the coefficients are

zero.
5) The length of the filters may be the same as the number

of samples.

We next develop the LS estimator as a natural variation on the
method of [10] in the frequency domain.

Using the convolution theorem (remembering that our signal
is periodic), we obtain

(44)

where denotes element-wise multiplication. Hence

(45)

After some algebraic manipulations, using the relation between
and , we obtain the noiseless version of (24).
The fact that our LS estimator can be derived using the ap-

proach of [10] enables us to give a sufficient condition for iden-
tifiability. This condition is obtained by translating the sufficient
condition for identifiability of [10]. However, since our channel
is sparse, we will be able to obtain stronger identifiability con-
ditions.

To that end, note that the problem is identifiable for channels
with signature (i.e., has a unique solution with at most

reflections in the first set of measurements, and, at most,
reflections in the second set in the noiseless case) if (32) has a
unique solution with the true while having no solution
with any other substitution of . For this condition to hold,
it is sufficient and necessary that for any pair where

and , the matrix has full column
rank. We shall elaborate on this to obtain some further condi-
tions, which will be easier to verify. To simplify notation, we
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will work with a single matrix instead of with the full ma-
trix . The generalization is straightforward though notation-
ally complex.

Let

... (46)

and (47), shown at the bottom of the next page. Note that

(48)

The second matrix is always full column rank due to the Van-
dermonde structure of each block. Thus, the identifiability con-
dition boils down to having the first matrix preserve the column
rank. Similar to the condition in [10], we can now split this
condition into two conditions. The first demanding informative
array manifold, and the second is a condition on identifiable
channels. Factoring similarly to (7), we obtain

...

... (49)

Thus, the following immediately follows.
Theorem 5.1:Let . Assume that for

every , and and are
not simultaneously zero; then, there is a unique solution to the
problem (30).

Note that our conditions depend on the number of reflections
rather than the channel length. We can, of course, weaken the
condition above. However, the above condition for the array
manifold typically holds, leaving us with conditions on the
channels that hold, e.g., if the channel polynomials do not have
common zeros on the unit circle.

VI. SIMULATION RESULTS

In this section, we present the results of several simulated
experiments that demonstrate the performance of the algorithm.
In all experiments, the array consisted of two sensors that were
2.5 apart , and the number of reflections was 2, i.e.,
.
In the first experiment, the directions of the signals

were , and those of the multipath were

Fig. 2. Array manifold errors versus SNR. Multipath conditions:� = 1,
� = 0:03 + 0:05j, � = 1, � = 0:13 + 0:19j. � = � = 0 ,
� = 15 , � = 40 . S=M = 25 dB, S=M = 13 dB. Solid line: error
after application of the algorithm. Dashed line: error due to multipath (first set
of measurements).

(Note that this does not limit the
generality of the simulations since, as explained earlier, we
can align the direct paths of the two measurements and only
estimate the angles of the multipaths relative to the direct
path. Typically, after alignment, the multipath will arrive
with different AOA’s, due to the fixed geometry of the re-
flectors.) The reflection coefficients were ,

, , which corresponds
to signal to multipath ratios of 25 and 13 dB, respectively. At
each SNR, we have performed 25 Monte Carlo trials. Fig. 2
shows the array manifold error averaged over all DOA’s as a
function of the SNR. While the solid line represents the error
after application of the algorithm, the dashed line presents the
array manifold error in the first set of measurements. The array
manifold estimation MSE is computed by

MSE (50)

where is the number of trials, and is the grid size. In all
experiments, , , and is the th
estimate of . To gain further insight into the perfor-
mance of the algorithm, we present in Fig. 3 the results of a

...
...

...
...

(47)
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Fig. 3. Array manifold errors versus DOA. Multipath conditions:� = 1,
� = 0:03 + 0:05j, � = 1, � = 0:13 + 0:19j. � = � = 0 ,
� = 15 , � = 40 . S=M = 24 dB,S=M = 13 dB. Bottom line: error
after application of the algorithm. Upper lines: Error due to multipath (in two
sets of measurements).

Fig. 4. Array manifold errors versus SNR. Multipath conditions:� = 1,
� = 0:21 + 0:05j, � = 1, � = 0:13 + 0:19j. � = � = 0 ,
� = 15 , � = 25 . S=M = 13 dB. S=M = 12 dB. Solid line: error
after application of the algorithm. Dashed line: error due to multipath (first set
of measurements).

single experiment performed at SNR of 50 dB. We can see that
the error after the application of the algorithm is much smaller
than the error at the raw set of measurements. Moreover we see
that the error is about the same for all DOA’s.

In the second experiment, the directions of the signals
were , and those of the multipath were

. The reflection coefficients were

corresponding to signal to multipath ratios of 13 and 12 dB.
At each SNR, we have performed 25 trials. Fig. 4 shows the
array manifold error averaged over all DOA’s as a function
of the SNR. Whereas the solid line represents the error after

Fig. 5. Array manifold errors versus DOA. Multipath conditions:� = 1,
� = 0:21 + 0:05j, � = 1, � = 0:13 + 0:19j. � = � = 0 ,
� = 15 , � = 25 . S=M = 13 dB.S=M = 12 dB. Bottom line: error
after application of the algorithm. Upper lines: error due to multipath (in two
sets of measurements).

Fig. 6. Error as a function of� � �� . Multipath conditions:� = 1,
� = 0:11+0:2j,� = 0:7,� = 0:055+0:2j.SNR= 30 dB. Dashed
line: the error due to the multipath. Solid line: the error after the application of
the algorithm.

application of the algorithm, the dashed line presents the array
manifold error in the first set of measurements. Fig. 5 shows
the results of a single experiment performed at SNR of 50 dB.
We can see that the error after the application of the algorithm
is much smaller than the error at the raw set of measurements.
Moreover, we see that the error is about the same for all DOA’s.

In these two experiments, we clearly see that the improve-
ment is not only obvious, but the error reduces to the level of
the measurement noise. This demonstrates that the multipath is
completely removed.

In the third experiment, the relative angular separation
between the reflections in the first set of measurements was
held fixed at 15, whereas the relative angular separation in the
second set of measurements varied from 19–51in steps of 4.
The reflection coefficients were , ,

, and , and the SNR was
30 dB. The results are presented in Fig. 6. Notice that the
performance of the algorithm is essentially independent of the
angular separation.

VII. CONCLUDING REMARKS

We have presented a novel method for the calibration of
sensor arrays in the presence of multipath. The method is based
on measuring the array manifold from two angularly separated
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locations and involves a solution of a multidimensional opti-
mization. The method does not depend on the relative angular
locations of the reflections.
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