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Array Calibration in the Presence of Multipath

Amir Leshem Member, IEEEand Mati Wax Fellow, IEEE

Abstract—We present an algorithm for the calibration of sensor
arrays in the presence of multipath. The algorithm is based on X/ \/
two sets of calibration data obtained from two angularly separated \ /
transmitting points. We show the similarity between the calibra-
tion problem and blind identification of SIMO systems and analyze

the identifiability of the problem. Simulation results demonstrating
the performance of the algorithm are included.

Index Terms—Array calibration, blind channel identification, 0
DOA estimation, multipath.
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Calibrating
. INTRODUCTION

Source
ODERN super-resolution direction finding technique  penna
such as minimum variance [1], MUSIC [4], subspac Array

fitting methods [8], and maximum likelihood [12] presume the

knowledge of the array response. Fig. 1. Calibration setup (with one reflection).
As the analysis of these techniques show [6], [7], [11], any in-
accuracy in the presumed array response results in severe degra- Il. PROBLEM FORMULATION

dation of performance. The measurement of the array response,
which is referred to as array calibration, is therefore a crucial Lt a(¢) denote thep x 1 vector of the array response to
step in the implementation of these techniques. a source impinging from dlrgctloﬁ. The array caI|bratl|on
The existing calibration techniques [5], [9] are based on moBroblem amounts to measuringd) for 6 € [0, 27). Itis
eling the array response by a free-space model perturbedlﬁy‘a_”y performed by transmitting a signal from some location,
an unknown coupling matrix and sensor location uncertainftating the array, and measuring the array response at each
These unknown parameters are estimated together with the @fgle. Unfortunately, in many cases, the measured response
known signal parameters, assuming known or unknown soufé&eomposed not only of the direct path from the transmitting
location. Yet, for general arrays with arbitrary sensor respons88int but also of multiple reflections from the surroundings;
these methods are no longer adequate since these modeling@&8-Fig- 1. In the case of arbitrary array response, we can no
sumptions are no longer valid. onger resolve the multipath from a smgl_e set of measurements
In this paper, we address the problem of measuring the ar@ijce the measured data can be considered to be the “true”
response of arrays with arbitrary sensor response in the pragay manifold. This situation is similar to the problem of blind
ence of multipath. This problem is important since multipath {gentification of SIMO systems, wherein without aaypriori

essentially unavoidable in practice, and it sets the limit on tigowledge of the signal, a single channel is not identifiable,
achievable calibration accuracy. and two channels are identifiable, even using second-order

The organization of the paper is as follows. In Section II, wgfatistics only. _
formulate the problem. In Section I1l, we present the proposed 10 cope with the multipath problem, we propose to carry
solution. In Section VI, we present simulation results demoRUt the calibration twice, i.e., rotate the array and measure
strating the performance of the algorithm. Finally, in Sectiofe recglved array vector as a function éfyet each time
VI, we present some concluding remarks. In Section V, we colse @ different transmitting point. Lgt(6) denote thep x 1
sider the similarity and the differences between the calibrati§gctor received at the angkefrom the /th transmitting point

problem as presented here as well as the problem of blind idéh-= 1, 2)- Assuming that the reflections are considered as
tification of multiple FIR channels. point sources and all multipath effects are completely coherent

with calibrating signals, i.e., each path differs by a complex

reflection coefficient from the direct path, we get
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pi,1  complex coefficient representing the phase shift and To carry out the derivation of the MLE, lai; denote theV x 1

the amplitude of théth reflection in theth set; vector whosekth element isp; ; if 2nk/N = 6; ; and zero
7y number of reflections in th&h set; otherwise. Mathematically, this is expressed as
n;(#) noise vector for the angkin thelth set. N
. . . . . 27rk
Slr)ce the array mgnlfold is measured relative to some arbl_trary w(k) = Z pitd (25 g, ®)
point and the relative angle between the measurement points is N

=1
known, we can assume without loss of generality that = 1
andé; ; = 6#; » = 0°. In addition, since the reflecting objectswhereé(6) is the delta function. Lea,, be theN x 1 array

remain fixed while the transmitting point change, the relativanifold of themth sensor

directions of the reflections are different, i.6;,; # 8, 2 (i # T
: 2m 27(N —1)
1) Ay, = arn(o)v A\ =7 ), Om | — (4)
Assuming that the calibration process consist¥ aheasure- N N
ments taken uniformly ol € [0, 2x), it follows from (1) that ¥y, ; =[¥m, (1), ==+, Ym, o (N)]F (5)
the measured data is given by T, 1 =[1m, 1(1), -+, R, 1 (N)]F (6)
2nk S 2nk andz,, (k) andn,, (k) are themth element ofy,(2xk/N
27y = i =~ 40 L Ym,1 m, 1 T l( 4 / )
v < N ) ; “ ’la< N T ’l) +mu(k) andn(k), respectively.
1=1,2,k=0,---,N—1 ) With this notation, we can rewrite (2) as
Ty
where we usen,; (k) to emphasize that the noise is not angle Y, = Z i tl(Pr, am +ny
dependent. Note that we have included the direct path with the ? = b
multipath. Ty
In our solution, we make the following assumption: = Z wi(ki, 1)) P, @m +m
Al) All reflectionsd; ; are a multiple of the basic rotation i=}
27 /N. &
= kz Py, m
Assumption Al) serves as a very good approximation when the l; wiki, )P (| @m &1
grid is fine. N_1
The array calibration problem can now be formulated as fol- - Z wi(k)Pr| am +m )
lows. Given the two measured data sets =0
2k N-1 (i=1,2) wherek; ; = (8; :/(2x/N)), and Py, is a permutation matrix
Y\"n e - that rotates the zeroth elementaoihto thekth position defined

by
estimate the array manifold
1, fm+k=norm+k—N=n

{a <ﬂ> }N_l : (B, = { 0, otherwise. (8)

N
k=0 The last equality in (7) is due to the fact th€k) = 0 if Ai
such thank/N = 6, ;. Denoting

lll. THE MAXIMUM LIKELIHOOD ESTIMATOR N-1

L A= k) Py 9
The proposed solution is based on two steps: ! kz=0 wi( k)P ©)
i) estimating the reflections’ parametelg;, 6;};

ii) estimating the array manifold using the estimated refleétfollows thatA; is anV x N circulant matrix generated hy;

tions; w(0) o w(N—2) w(N-1)
where p;, = [p11, -+, pr,1] is the vector of the re- wi(N —1) w(0) w (N — 2)
flection coefficients at thelth set of measurements, and A; = ) )

0, = [61,4, ---, 0, 1] is the vector of the reflections’ DOA's . .

at thelth set of measurements. wi(1) o w(N=1)  w(0) 10
For the first step, we have two approaches. The first approaﬂ!?us we can rewrite (2) as (10)

uses the LS estimator, which is identical to the MLE under the ™™’

assumption of white Gaussian noise. This estimator is derived in W 1 = At + M 1 1<m<p. (11)

this section. The second approach uses a simplified LS, which

we derive in the next section. Since 4, is a circulant matrix, it is diagonalized by the DFT

The second step is derived by a least squares solution, whightrix of order:V, and its eigenvalues are given by the DFT of
is the MLE under the assumption of white Gaussian noise. Thife generating vectap; [2]. Therefore

step is performed identically in the two approaches using the
results of the first step. F" A F = diag{ Fw;} = diag{w,;} (12)



LESHEM AND WAX: ARRAY CALIBRATION IN THE PRESENCE OF MULTIPATH 55

whereF is the normalized DFT matrix of ordé¥ (FF = I), which can also be rewritten as

andw; = Fw, is the DFT ofw; given by [91’ 0,, pL, ﬁ2:|
) = 3 g w3 S| wow)s, | v
- i : = arg min — .
\/N i=1 & 01,02,p1.p me1 =1 ‘ ¢ )Ym.
Hence Notice that this estimator involves all the reflections parameters,
P i.e., the DOA's and the reflection coefficients, in a highly non-
A, = Fdiagli } . (14)  linear fashion and, hence, is computationally unattractive.
With this representation of the matricels, we can derive a
somewhat simplified expression of the MLE. V. SIMPLE LS ESTIMATOR
Let In this section, we derive a simplified LS estimator for the re-
A flections DOA's and reflection coefficients. This estimator, to-
Y, = {y’":l} and A= {Al} . gether with the estimator fat,, given in (18), consists of the
m, 2 2

simplified LS estimator for the array manifold.

) o . ) Substituting (14) into (11), we obtain
Assuming that the noise is white and Gaussian from (11), the

H f A N—1/~ .
MLE is given by Fay, = diag(w) ™! (1 — fom, 1) (22)
o wheren,, ; = FHnm’l. Since this holds for both sets of mea-
[&1, e, G, 01,00, py, /32} surements, we obtain
P Wit W1 = 1) = W3 @0 — o 2)  (23)
1 m, 1 m, 1 2 yrn 2 m, 2
= arg i — Aa,||?. (15 . . ’
e a1,~~~,apf%}{102,p1,p2 g_:l 1y @[> (15) which can be rewritten as

. ! . . 1 7 —u Y =u n — U 7 24
Minimizing first with respect taz,,,, we obtain W1 OG5 = W20 Yy 1 = W1 0T 2 — Wy O, 1 (24)

. whereo denotes elementwise multiplication.
am = (A"A) " Ay, (16)  Since the right-hand side of (24) is “noise,” a possible LS
estimator for the reflections’ parameters is given by
Now, from the definition of4 and (14), we obtain

|:éla é?a ﬁl’ ﬁ2:| = min ||ﬁ]1 o@rn,? - ﬁl? ogrn,,1||2'
i ~ 2 ~ 2 i 017027p17p2
ATA=F ‘Wl‘ n ‘WQ‘ F 17) (25)
whereW,; = diag Fw,). Substituting (14) and (17) into (16) >ubstituting (13) into (25) yields
yields (61,82, 51, ]
&, = FD (W{’ g+ Wy 2) (18) =L /N
: : =, dmn Z Um, 2(k) Z pi,1e? 1
ERGE S Wt i=1
where )
T2
2 o2\t 5 e d 2Tk /N)k; 2
D= <‘W1‘ + |W2| ) (19) Gon,1(K) ; pi,2¢ (26)
wherek; ; = (8;/(2nk/N)). Denoting
andy,, ; = FH?/m,z- Finally, substituting (14) and (18) into Yok 0) —i )ik 27
(15), we obtain 1(F, ) =, 1 (R)e no (7)
L TQ(kv 9) :gm,Q(k)Cij (28)
[917 0, py, /’2} and (29), shown at the bottom of the page, we can rewrite (26)

as a linear problem ip (recall that we have assumed ; = 1

A ~ 2
Y1 — FW.DW{ Fly,, " andé, ;= 0°)

P 2
=arg min E E ‘

01,02,p1,pP

m=1 [=1 -~ -~ ~| . . 2
(20) [01, 62, p} —oggzrfplle(ﬂl, 02)p+ 14,0 (30)
T2(07 92,1) T2(07 91‘1,1) _Tl(ov 91,2) _Tl(ov 91‘2,2)
B, = : :
TQ(N — 1, 9271) e TQ(N — 1, 9”71) —Tl(N — 1, 9172) e —Tl(N — 1, 91’2,2)

p:[pQ,la"'apTl:lapl,Qa"'ap1’2,2]T (29)



56 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2000

This estimator is based on the data of th¢h sensor only. V. THE RELATION TO THE SIMO BLIND EQUALIZATION AND

Clearly, we can improve the performance by combining the in- IDENTIFIABILITY RESULTS

formation from all sensors. This yields
P

(02,02, 0) = arg min D" |1 Buu(6r. 6200+ 5,1

01,02,p 1

In this section, we cast the calibration problem as the identi-
fication of a single input multiple output (SIMO) system. This
will enable us to derive identifiability conditions, as well as

(31) present an alternative derivation of the LS estimator for reflec-
To evaluate this estimator, we first rewrite it in matrix form astions parameters.

s ) - First, note that we can rewrite (11) as
01,02, 5] —awe min [1BO:. 0)p+3l*  (32) (1)
1,9V2,

Y1 = B * @ + 1 [=1,2 (42)
where
T where
B(6y,05) = [B{ (61, 65), ---, B.,(61, 6)] (33)
and p; ifg , = M
ha(k) = ¢ Pt UOE T (43)
. AT 0, otherwise.
Yy = [‘!712a T gpQ] (34)

That is, the measurements are just a spatially filtered version of

Minimizing first with respect tg, with 8;, 8, being fixed, we the “signal”a,, by FIR filters with coefficients; ; at; ; and
obtain the well-known least squares solution zeros otherwise. Our problem can now be stated as follows.

. H -1 H- Given the output of two linear systems driven by the same

p=—(B(01,0:)" B(6y, 02)) " B(01, )79, (35) signal, reconstruct the input signal
Substituting (35) back into (32), the resulting estimator of the The problem is in the form of blind identification. However,
directions-of-arrival of the reflections is several differences between our problem and the conventional
Pﬁ(ol,oz)(i/m, 2)H2 36) blind identif?catioh proplem e>$ist. .

1) The signal is periodic with known period.

wherePJ,;(,,h,,Z) is the projection on the orthogonal comple- 2) The measurements are taken along a single period.
ment of the subspace spanned by the columr3(éf, 6-) 3) We have several pairs of output signals: one for each ele-

91 92} = arg min
[ ’ gol,oz

Pﬁ(el 0:) ment of the array.
’ 1 4) The filters are sparse, i.e., most of the coefficients are
=1-B(0,, 02) (B(6, 6:)B(61, 6)) B (61, 62). sero.
(37) 5) The length of the filters may be the same as the number
of samples.

The structure of this estimator is similar to that of the detelVe next develop the LS estimator as a natural variation on the
ministic signal maximum likelihood DOA estimator. Hence, th&1ethod of [10] in the frequency domain.
optimization methods developed for this problem, including the Using the convolution theorem (remembering that our signal
alternating projections [12] and the clustering methods [3] c&hPeriodic), we obtain
be used. Yyt = hioa,, (44)
With the estimated parameters at hand, we can use (16

. . . ! O Were denotes element-wise multiplication. Hence
estimate the array manifold. First, we obtain an estiniaté w ° P

by substituting the's and thed’s into (13). We then get Ym,10h2 =9, 20h1. (45)
1 X . After some algebraic manipulations, using the relation between
wi(k) = id > piae Ik (38) w andh, we obtain the noiseless version of (24).
B =1 The fact that our LS estimator can be derived using the ap-
By substituting’ = diag(w;) into (14), we obtain proach of [10] enables us to give a sufficient condition for iden-

tifiability. This condition is obtained by translating the sufficient
condition for identifiability of [10]. However, since our channel
A, = FW,FH (39) Etgparse, we will be able to obtain stronger identifiability con-
itions.
To that end, note that the problem is identifiable for channels
with signature(rq, 7o) (i.e., has a unique solution with at most
-1 r1 reflections in the first set of measurements, and, at megst,
Qn = (AHA) Ay, reflections in the second set in the noiseless case) if (32) has a
sl g unique solution with the tru@;, #>) while having no solution
=FD (Wl Ym 1+ W3 ymﬂ) (40)  with any other substitution @, , €,. For this condition to hold,
where it is sufficient and necessary that for any péf, 8.) where
6, € C?" andf, € C?"2, the matrixB(6y, @-) has full column
~ [Al} (41) rank. We shall elaborate on this to obtain some further condi-
’ tions, which will be easier to verify. To simplify notation, we

which when substituted into (16) yields
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will work with a single matrixB;, instead of with the full ma- Array Marifold MSE vs. SNR

trix B. The generalization is straightforward though notatior
ally complex.
Let

m, 1(0)
A= (46)
Um, 1(N = 1)
and (47), shown at the bottom of the next page. Note that
B, (01, 05) = [A1A5]C(0,, 62). (48)

The second matrix is always full column rank due to the Vai
dermonde structure of each block. Thus, the identifiability col
dition boils down to having the first matrix preserve the colum
rank. Similar to the condition in [10], we can now split this : ;
condition into two conditions. The first demanding informative -s&2 20 25 s o m pre %
array manifold, and the second is a condition on identifiab SNRIdB]

channels. Factoring.; similarly to (7), we obtain

Fig. 2. Array manifold errors versus SNR. Multipath conditiops;; = 1,

(vl,m(o) p1,2 = 0.03 +0.057, p2,1 = 1,p2,2 = 0.13 4+ 0.195. 6, = 62, = 0°,
A= ' b15 = 15°, 855 = 40°. §/M; = 25 dB, S/M, = 13 dB. Solid line: error
. B after application of the algorithm. Dashed line: error due to multipath (first set
G, (N — 1) of measurements).
w,,,(0)

(49) 61,2 = 15° 6, » = 40° (Note that this does not limit the
generality of the simulations since, as explained earlier, we
can align the direct paths of the two measurements and only
estimate the angles of the multipaths relative to the direct
path. Typically, after alignment, the multipath will arrive
with different AOA's, due to the fixed geometry of the re-
tﬁ@ctors.) The reflection coefficients wepg 1 = p1 2 = 1,

gg = 0.03 4 0.057, p2 2 = 0.13 4 0.195, which corresponds

111,,,,71(]\7 — 1)
Thus, the following immediately follows.

Theorem 5.1:Let L = 2(r; + r2 — 1). Assume that for
every0 < k < L — 1, an(k) # 0 andw, (k) andw.(k) are
not simultaneously zero; then, there is a unique solution to
problem (30).

Note that our conditions depend on the number of reflectio signal to multipath ratios of 25 and 13 dB, respectively. At

rather than the channel length. We can, of course, weaken &h SNR. we have performed 25 Monte Carlo trials. Fig. 2
condition above. However, the above condition for the array, .« the ’array manifold error averaged over all DOA's as a
manifold typically holds, leaving us with conditions on thg,ion of the SNR. While the solid line represents the error

channels that hold, E'g" if the clzhannel polynomials do not hayg anpication of the algorithm, the dashed line presents the
common zeros on the unit circle. array manifold error in the first set of measurements. The array

manifold estimation MSE is computed by
- 2rk 2k
experiments that demonstrate the performance of the algorithm. @ <T’ m) —e <T>
In all experiments, the array consisted of two sensors that were
2.5\ apart, and the number of reflectionswas 2, ke~ ro = whereM is the number of trials, and/ is the grid size. In all
2. experimentsM = 25, N = 360, anda(27k/N, m) is themth
In the first experiment, the directions of the signalestimate ofa(27%/N). To gain further insight into the perfor-
weref; 1 = 6012 = 0° and those of the multipath weremance of the algorithm, we present in Fig. 3 the results of a

VI. SIMULATION RESULTS
2

. . . M N
In this section, we present the results of several simulate 1
(?\/ISE_ N E E (50)

m=1 k=1

=021 o —3082r, 1

e_j(N.—l)On e—j(/\"—ll)92r111
0(017 02) = (47)

e~ 0012 - e—i002r5,2

e I(N=1)612 ... —i(N—1)far, >
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Array manifolds MSE - before and after calibration
"1 0 T T T T T T T

R

MSE [dB]
b
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SPYOY RO B T 4 G O L I I UYL 00 | OO OO

L ] i 1 1
50 100 150 200 250 300 350 400
Angle of arrival [deg]

Fig. 3. Array manifold errors versus DOA. Multipath conditiops; 1 = 1,
p1,2 = 0.03 +0.055, p2,1 = 1, p2,2 = 0.13 + 0.195. 611 = 621 = 0°,
012 = 15°, 825 = 40°. /M, = 24 dB, S/M> = 13 dB. Bottom line: error

after application of the algorithm. Upper lines: Error due to multipath (in tw

sets of measurements).

Array Manifold MSE vs. SNR

10k

60 i . ; ; ; ; .
10 15 20 25 30 40 45 50
SNRdB]

Fig. 4. Array manifold errors versus SNR. Multipath conditiops:, = 1,
pr,2 = 0.214+0.055,p2,1 = 1,pz,2 = 0.13 4+ 0.195. 011 = 65, = 0°,
012 = 15°, 055 = 25°. 5/M; = 13 dB. S/M, = 12 dB. Solid line: error

after application of the algorithm. Dashed line: error due to multipath (first set

of measurements).

single experiment performed at SNR of 50 dB. We can see' t
the error after the application of the algorithm is much small
than the error at the raw set of measurements. Moreover we
that the error is about the same for all DOA's.
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Array manifolds MSE — before and after calibration

o 50 100 150 200 250 300 350 400
Angle of arrival [deg]

Fig. 5. Array manifold errors versus DOA. Multipath conditiops;; = 1,
pr,2 = 02140.055,p2,1 = 1,p2,2 = 0.13+0.195.61; = ;1 = 0°,

612 = 15°, 655 = 25°. §/M; = 13 dB. S/M, = 12 dB. Bottom line: error
after application of the algorithm. Upper lines: error due to multipath (in two
sets of measurements).

Array Manifold MSE vs. Separation
—16 T T T T T T T

B e [P P .

© 5 10 15 30 35 a0

20
separation [deg]

Fig. 6. Error as a function dfz> — A615. Multipath conditionsp,,; = 1,

p1.2 =0.1140.25,p2.1 = 0.7, p2. » = 0.05540.25. SNR= 30 dB. Dashed
line: the error due to the multipath. Solid line: the error after the application of
the algorithm.

application of the algorithm, the dashed line presents the array

manifold error in the first set of measurements. Fig. 5 shows

the results of a single experiment performed at SNR of 50 dB.

We can see that the error after the application of the algorithm

is much smaller than the error at the raw set of measurements.

Moreover, we see that the error is about the same for all DOA's.
In these two experiments, we clearly see that the improve-

ment is not only obvious, but the error reduces to the level of

the measurement noise. This demonstrates that the multipath is

completely removed.

In the third experiment, the relative angular separation

between the reflections in the first set of measurements was

held fixed at 15, whereas the relative angular separation in the

ond set of measurements varied from 19-#b%teps of 4.

%he reflection coefficients werg 1 =1, p,2 = 0.11 +0.15,

$§€ = 0.7, andps» = 0.055 + 0.2j , and the SNR was

30 dB. The results are presented in Fig. 6. Notice that the

In the second experiment, the directions of the signgl3 formance of the algorithm is essentially independent of the

weref; ; = 6. » = 0° and those of the multipath were

01,2 = 15° 62, 2 = 25° The reflection coefficients were
p171 = p172 = 1, p172 =0.21 + 005J, p272 =0.13 + 019J

corresponding to signal to multipath ratios of 13 and 12 dB.

angular separation.

VIlI. CONCLUDING REMARKS

At each SNR, we have performed 25 trials. Fig. 4 shows theWe have presented a novel method for the calibration of
array manifold error averaged over all DOA's as a functiogensor arrays in the presence of multipath. The method is based
of the SNR. Whereas the solid line represents the error afer measuring the array manifold from two angularly separated
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locations and involves a solution of a multidimensional opti-[12] 1. Ziskind and M. Wax, “Maximum likelihood localization of multiple

mization. The method does not depend on the relative angular sources by alternating projectiontfEE Trans. Acoust., Speech, Signal
. . Processingvol. 36, pp. 1553-1560, Oct. 1988.
locations of the reflections.
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