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for the location of the extra hump, the threshold of the test is changed
to maintain the false alarm probability of 0.01. In all cases, if the
hump is added in the reference data performance improves, but if
the hump is added to the test cell data, performance degrades. This
simple example illustrates the use of our equations in an airborne
radar application.

We can explain the results in Figs. 1–7 by considering the changes
in the pdf of� caused by changes in Varfdg or C: In these cases, a
decrease in Varfdg or �j causes the mass in the pdf of� to move
toward larger values of�: Due to the decreasing nature of the function
multiplying the pdf of� in the integrand of (30), this causes a decrease
in the probability of false alarm. It is possible to apply similar analysis
to also explain changes in probability of detection.

VI. CONCLUSIONS

An analysis of the performance of the adaptive matched filter
algorithm has been provided for cases where the data used to estimate
the covariance matrix is not matched to the true covariance matrix
of the data to be tested. Such cases can occur in nonhomogeneous
environments that appear to occur frequently in real radars. Closed-
form approximate expressions are given for the probability of false
alarm and detection. These expressions apply for any amount of data
used in the covariance matrix estimation. The analysis indicates which
types of covariance matrix mismatches are important and which types
are not. The equations indicate that performance depends on a few
critical parameters. An airborne radar example is provided to show
that the changes in performance due to mismatch can be significant
in some practical situations.
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Multiresolution ESPRIT Algorithm

Aweke N. Lemma, Alle-Jan van der Veen, and Ed F. Deprettere

Abstract—Multiresolution ESPRIT is an extension of the ESPRIT
direction finding algorithm to antenna arrays with multiple baselines. A
short (half wavelength) baseline is necessary to avoid aliasing, and a long
baseline is preferred for accuracy. The MR-ESPRIT algorithm allows
the combination of both estimates. The ratio of the longest baseline to
the shortest one is a measure of the gain in accuracy. Because of various
factors, including noise, signal bandwidth, and measurement error, the
achievable gain in accuracy is bounded.

Index Terms—Dual shift-invariance, joint diagonalization, multiple
baseline, multiresolution ESPRIT.

I. INTRODUCTION

In many signal processing applications, it is required to estimate
signal parameters such as DOA and carrier frequencies from measure-
ment data. To this end, there have been several approaches, including
the so-called ESPRIT algorithm [1]. Since its derivation, the ESPRIT
algorithm has been used for direction-of-arrival estimation, harmonic
analysis, frequency estimation, delay estimation, and combinations
thereof. In essence, the algorithm makes use of a single shift
invariance structure present in the array response vectoraaa(�), where
� = ej�, and � is a phase shift to be estimated. In narrowband
direction-of-arrival estimation, the phase shift is due to the difference
in arrival times of the wavefront at the elements of an antenna
array. For a uniform linear array (ULA), it is well known that
aaa(�) = [1 � �2 � � �]T and � = 2�� sin(�), where� is the
distance between the elements (in wavelengths), and� is the angle
of arrival measured with respect to the normal of the array axis.

It was shown in the literature [2]–[6] that the accuracy of the
estimation of sin(�) is directly proportional to1=�. Thus, it is
preferable to have a large baseline separation� so that we collect a
large phase shift�. Unfortunately, however, we cannot collect more
than a single cycle�� � � < � because the inverse of the mapping
� ! � = ej� is ambiguous outside this range. To prevent aliasing,
we thus have to ensure that� � 1=2, which is essentially Shannon’s
sampling theorem in space.

The idea behind multiresolution parameter estimation is to obtain
two or more estimates of�: the first based on a small baseline or short
sampling period, yielding a coarse estimate�1 of � without aliasing,
and the second based on a large baseline or (much) larger sampling
period, providing an aliased estimate�2 of � at a finer scale. These
two estimates are combined to obtain a final estimate�̂ = 2�n+�2,
where the integer number of cyclesn is estimated from�1. The ratio
of the largest baseline to the shortest baseline (which is denoted by
ks and referred to as theresolution gain factor) is a measure of the
gain in resolution. In this work, we find the bounds onks that will
allow the proper functioning of the MR-ESPRIT algorithm.

Similar works have been reported in the literature. In particular,
Zoltowski et al. [7] discuss a similar problem of angle-frequency
estimation using multiple scales in time and space. Because of
ambitious goals, however, their solutions are very much directed
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by engineering considerations, which incurs a certain sacrifice in
elegance and clarity. In particular, the coarse frequency estimation
is done by applying ESPRIT to a small set of DFT values around
spectral peaks that are determined via peak searching algorithms.
The fine frequency estimates and the angle estimates are obtained
sequentially and for each estimated coarse frequency independently,
which assumes that they are sufficiently unique. Here, we derive a
one-shot joint estimation procedure referred to as MR-ESPRIT.

There is a connection of MR-ESPRIT to MI-ESPRIT [8], [9] as
well. MI-ESPRIT, like the MR-ESPRIT, exploits the multiple shift-
invariance structure present in multibaseline arrays. A distinction is
that MI-ESPRIT is formulated in terms of (iterative) subspace fitting
and basically attempts to find more accurate beamforming vectors
by considering multiple shift invariances. The original paper [8] did
not specifically recognize the fact that also more accurate direction
estimates can be found. In [9], a noniterative MI-ESPRIT is given.
There, the aliasing is resolved by searching for an optimum solution
among formerly computed candidates. Our approach, on the other
hand, resolves aliasing by merely solving a set of analytic expressions.
Moreover, the corresponding parameters are grouped automatically
without the need for any extra processing, which is not the case in
MI-ESPRIT.

II. THE MR-ESPRIT

The original ESPRIT algorithm is based on arrays with a doublet
structure, i.e., consisting of several antenna pairs with the same
baseline vectors. The chosen array geometries often admit other
pairings with different baselines. For instance, the array structure
shown in Fig. 1 combines two spatial sampling rates. The minimal
number of antennas to having two baseline vector pairs is four. With
more antennas, several interesting configurations are possible.

TheM -dimensional array response vectoraaa(�) is defined as the
response of theM -element antenna array to a narrowband signal
from a direction�. It can be parameterized in several ways. The
usual parameterization is in terms of� = ej2�� sin(�), where�
is a reference interantenna spacing smaller than half a wavelength.
In our case of an array with two baselines, we can (redundantly)
parameterize the array by two parameters�1 = ej2�� sin(�) and
�2 = ej2�� sin(�). In the case of the array of Fig. 1, we have

aaa(�1; �2) =

1
�1
�2
�1�2

: (1)

The idea is to treat the two parameters as independent and estimate
both of them from the measured data and only then combine them
into a single estimate ofsin(�). Estimation is done by exploiting the
dual shift-invariance structure ofaaa(�1; �2), i.e., in the above example

aaax1 =
a1
a3

; aaay1 =
a2
a4

) aaay1 = aaax1�1

aaax2 =
a1
a2

; aaay2 =
a3
a4

) aaay2 = aaax2�2

whereai is theith entry ofaaa(�1; �2). For more general arrays with a
dual shift-invariance structure, we can define selection matricesJJJxi
andJJJyi (i = 1; 2) such that the above relations hold forJJJxiaaa and
JJJyiaaa.

Let �i (i = 1; 2) be the argument of�i. Then, if the distance
�i < 1=2, the angle of arrival� of the wavefront can be uniquely
determined from�i using the transformation

� = arcsin
�i

2��i

:

Fig. 1. Multiresolution spatial sampling.

However, when�i > 1=2, because of aliasing, we get a set of
cyclically related candidates for�:

�(n) = arcsin
�i + 2�n

2��i

:

In MR-ESPRIT, we combine nonaliased and aliased estimates of
the parameters to obtain a better estimation accuracy. The resulting
algorithm is very similar to the case of joint azimuth-elevation
estimation [10].

Thus, to be specific, considerd narrowband sourcessi(t) imping-
ing on the antenna array. CollectingN output samples of theM
antenna outputs into anM �N data matrixXXX in the usual way, we
obtain the data model

XXX = AAASSS = aaa1sss1 + � � �+ aaadsssd

where the columns ofaaa are the array response vectorsfaaaig, and the
rows of SSS are the sampled source signals. Assumingd < M , the
first step of the algorithm is to estimate a basisUUUs of the column
span ofXXX, typically using an SVD.UUUs andAAA are related by ad� d
nonsingular matrixTTT as

UUUs = AAATTT :

The second step in the algorithm is to form submatrices ofUUUs using
the proper selection matrices

UUUxi = JJJxiUUUs; UUUyi = JJJyiUUU s: (i = 1; 2):

The shift-invariance structure of the array implies that

UUUxi = AAA0TTT ; UUUyi = AAA0
�iTTT

where AAA0 is a submatrix ofAAA, and the diagonal matrix�i =
diagf�ijgdj=1 contains thed shift parameters of thed sources with
reference to theith baseline. The final step is to estimate the
parameters by considering

EEE1 =UUUy
x1UUUy1 = TTT�1

�1TTT

EEE2 =UUUy
x2UUUy2 = TTT�1

�2TTT :

It is seen that the data matricesEEE1 andEEE2 are jointly diagonalizable
by the same matrixTTT . There are several algorithms to compute
this joint diagonalization, e.g., by means of Jacobi iterations [10]
or QZ iterations [11], [12]. For this to work, it is necessary that each
submatrixUUUxi has at leastd rows. AfterTTT has been found, we also
have estimates off(�1j; �2j)g for each of thed sources.

It remains for each source to combine�1 and�2 into an estimate
of the argument� of �. Let us assume that�1 � 1=2 so that�1
(argument of�1) is not aliased and is a coarse estimate of�. In
addition, assume that�2 � 1=2 so that in�2, aliasing occurs. The
estimate� is proportional to�2 plus an appropriate integer multiple
of 2� (see Fig. 2). It follows that we have two estimates of2� sin(�)

2� sin(�) =
1

�1
�1 =

1

�2
(2�n+ �2): (2)

The winding numbern is determined as the best fitting integer to
match the two right-hand side expressions

n = round
1

2�

�2

�1
�1 � �2 =: round(n̂): (3)
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(a)

(b)

Fig. 2. (a) Aliased spatial frequency�2 as a function of the alias-free spatial
frequency�. (b) Corresponding winding numbern.

The ratioks := �2=�1 can be interpreted as the (spatial) gain in
resolution. In particular, the estimate of2� sin(�) based on�2 is a
factorks more accurate than that based on�1. Thus, a more accurate
estimate of the spatial frequency� can be obtained as

� =
1

ks
(2�n+ �2): (4)

III. A NALYSIS

A. The Winding Number

Consider the relations given in (3) and (4), where we have tacitly
assumed that the relation�2 = ks�1 holds perfectly. In practice,
however, due to measurement errors, this holds only approximately.
Let �ks represent the error onks such that�2 = (ks+�ks)�1. In
addition, assume that�1 and�2 are determined with estimation errors
��1 and��2, respectively. We further assume that��1 and��2
are independent processes, with Ef��21g = Ef��22g = �2�. With
these assumptions, the error�n on n̂ in (3) can be approximated as

�n �
@n̂

@ks
�ks +

@n̂

@�1
��1 +

@n̂

@�2
��2:

Replacing the value of̂n from (3) into the above equation, we obtain

�n =
1

2�
�1�ks +

1

2�
(ks��1 ���2): (5)

For a given array configuration, the first term in (5) is a constant.
It represents the offset in̂n due to the array imperfection. On the
other hand, both parameters��1 and��2 in the second term are
zero mean Gaussian processes1 [2]–[4]. Consequently,�n is also a
Gaussian process with a mean(1=2�)�1�ks and a variance

�2n = E �n�
1

2�
�1�ks

2

=
1

4�2
(k2s + 1)�2�: (6)

A typical distribution function of�n is shown in Fig. 3. It is seen
from (3) thatn is determined correctly ifj�nj < 0:5. However,
since �n is a random process, we can satisfy this only with
some uncertainty (confidence level). In particular, given a required
confidence levelL, we find the conditions under which the probability

P (j�nj < 0:5) > L: (7)

1More precisely, these are Gaussian processes if the input noise is Gaussian.

Fig. 3. Typical probability distribution function of�n, [�no = (1=2�)
�1�ks].

Fig. 4. Family of curvesP (j�nj < 0:5) as functions of�� for �1 = �
and �ks = 0:75.

Assuming thatP (�) is a Gaussian process, it can be shown [13] that

P (j�nj < 0:5)

=
1

2
erf

� + �1�ks

�� 2(k2s + 1)
+

1

2
erf

� � �1�ks

�� 2(k2s + 1)

where�� represents the root mean square measurement error on�. A
family of curvesP (j�nj < 0:5) for �1 = � (representing worst-case
scenario) and an arbitrarily chosen value of�ks = 0:75 as functions
of �� (for different values ofks) are shown in Fig. 4. To obtain more
explicit expressions, let the functionf(x) be defined as

f(x) = 1

2
[erf(x(� + �1�ks)) + erf(x(� � �1�ks))]: (8)

Then,P (j�nj < 0:5) may be expressed in terms off(x) as

P (j�nj < 0:5) = f
1

�� 2(k2s + 1)
:

Now, putting this into (7) and solving forks, we get

ks <
1

2�2�

1

f�1(L)

2

� 1 =: kmax (9)

wheref�1(�) is the inverse function off(�). From this relation, it
is clear that the resolution gain factor cannot be made arbitrarily
large. It is bounded from above by a number that is a function of the
estimation error and the array imperfection factor�ks. Particularly,
we can clearly see that as the estimation error increases, the maximum
value of ks decreases. This is in perfect agreement with intuitive
perception. For instance, for the case�1 = �, �ks = 0:75, and
L = 0:998, the bounds onks at �� = 0.1 and 0.05 are 9 and 17.6,
respectively.

B. Dependence ofkmax on SNR

To establish the relation betweenks and SNR, we first need to
determine the dependence of�� (the phase estimation error) on the
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SNR. To this end, in [5] and [6], it is shown that the DOA estimation
error and the SNR are related as

�2�i =
1

SNR
1

M2N

1

2��i cos(�)

2

(10)

where ��i is the root mean square error (RMSE) obtained with
reference to theith base line separation�i. Recall that�i =
2��i sin(�) and, hence

�i +��i =2��i sin(�+��)

� 2��i(sin(�) + �� cos(�)):

This implies that��i = (2��i cos(�))�� and

�2� = (2��i cos(�))
2�2�i (11)

Here, the index reference to the baseline in�2� = Ef(��i)
2g is

dropped because��i is independent of�i. Now, using (10),�2� is
expressed in terms of array parameters as

�2� =
1

SNR
1

M2N
(12)

Finally, putting (12) into (9), we find the following expression for
kmax:

kmax =
SNR
2

M2N
1

f�1(L)

2

� 1: (13)

Note that (10) and, therefore, (13) are derived, assuming that there is
only one source in the channel. For more than one source (d sources,
say), let��j represent the variance of the phase estimation error of
the jth source.2 Then, the bound onks is generalized as

kmax = min
j=1���d

1

2�2�j

1

f�1j (L)

2

� 1

wherefj(�) is as defined in (8), but with�1 replaced by�1j (thejth
phase shift measured with reference to�1).

C. Bias on� Due to Imperfect Array and a
Self-Calibrating MR-ESPRIT

Once the winding numbern is determined correctly, the next step is
to use (4) to estimate the spatial frequency�. If the array is imperfect,
the estimate of� will be biased. The bias (offset)�� on � due to
�ks can be approximated by (viz. 4)

�� �
@�

@ks
�ks =

1

k2s
(2�n+ �2)�ks (14)

which indicates that for a given value ofks, angles associated
with large winding numbers are more affected by�ks than those
associated with small winding numbers. To minimize this bias, aself
calibrating MR-ESPRIT may be implemented as described in [14].

IV. SIMULATION

In this section, we give simulation results that confirm our theory.
The simulation example considers a processing band of 10 MHz and
a linear antenna array withM = 4 antenna elements arranged as in
Fig. 1 with �1 = 1=2 and varying�2. The data is collected into
a 4� 64 matrix at a sampling rate ofF1 = 20 MHz. Two sources
emitting narrowband signals (25 kHz) at center frequenciesfff = [6,
6.5] MHz, and propagating in distinct directions with DOA’s��� =
[40, 45]� are considered.

2For more than one source,�� depends on the SNR in a more complicated
way. Refer to [4] and [6] for more information.

Fig. 5. Root mean square error of the frequency estimates as functions of
SNR. (ks = 2 corresponds to ULA).

Fig. 6. Root mean square error of the DOA estimates, corresponding to the
wavefront with DOA= 45

� as functions ofks.

The results are shown in Figs. 5 and 6. From the first plot, it is
seen that the accuracy of MR-ESPRIT is proportional to the gain
factor ks. An upper limit for this gain is reached when the winding
numbersn can no longer be estimated accurately. This is shown in
Fig. 6, where the RMSE of the parameter estimator as a function of
varying ks is analyzed. To make the figure less crowded, only the
behavior corresponding to DOA= 45� is plotted. It is seen that for
given SNR, there exists a limit onks beyond which the performance
of the estimator degrades sharply. Moreover, this bound is seen to be
proportional to the SNR, as expected.
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Analysis of Spatial Smoothing
with Uniform Circular Arrays

K. Maheswara Reddy and V. U. Reddy

Abstract—In this correspondence, we analyze spatial smoothing with
uniform circular arrays (UCA’s). In particular, we study the performance
of the Root-MUSIC with smoothing in the presence of correlated sources,
finite data perturbations, and errors in transformed steering vector that
arise due to some approximations made while extending the Root-MUSIC
and smoothing to UCA. Expressions are derived for the asymptotic per-
formance of the Root-MUSIC with smoothing applied to the transformed
UCA data. An attempt has been made to bring out the impact of both
the forward and forward–backward smoothing. We consider UCA’s with
isotropic as well as directional sensors in our study. Computer simulations
are provided to demonstrate the usefulness of the analysis.

I. INTRODUCTION

Uniform circular arrays (UCA’s) are commonly employed when
360� coverage is required in the plane of the array. Circular arrays
are nonuniform linear arrays, and hence, the rooting techniques and
preprocessing schemes like spatial smoothing [7] cannot be directly
applied to these arrays. In [8], Tewfik and Hong have shown that
it is possible to extend the Root-MUSIC to UCA using the phase
mode excitation concept. In [2], Mathews and Zoltowski proposed
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real beamspace MUSIC to UCA that yields reduced computation
and better resolution. In [10] and [11], the authors extend spatial
smoothing to UCA’s.

While extending the rooting techniques to UCA, all the authors
assumed that some of the terms in the transformed steering vector
of UCA are negligible when the circumferential spacing between the
elements is less than half wavelength. These approximations cause
errors in the DOA estimates obtained with the Root-MUSIC, even
when the number of snapshots tends to infinity, and we analyze the
effect of smoothing on these errors in this correspondence. We also
extend smoothing to UCA’s with directional elements.

II. BACKGROUND

Consider a UCA withL identical and omnidirectional sensors.
Let r be the radius of the array andd be the circumferential
spacing between the elements. Let� denote the angle (azimuth
angle) measured in the plane containing the elements. We assume
for simplicity that the sources are in the same plane as the UCA. The
steering vector of the UCA w.r.t. the center of the array can then
be expressed as

ac(�) = [ej� cos �; ej� cos(��2�=L); � � �
ej� cos(��2�(L�1)=L)]T (1)

where � = 2�r=�, � is the wavelength, and (:)T

represents the transpose of(:). The weight vector that
excites the array withmth phase mode is given by [2]
w
H
m = j�jmj=L[1; ej2�m=L; � � � ; ej2�m(L�1)=L]. The array

pattern for themth phase mode is [1], [2]

fm(�) =w
H
mac(�) = Jjmj(�)e

jm�

+ j�jmj
1

q=1

jgJg(�)e
�jg� + jhJh(�)e

jh�

�D � m � D (2)

whereD is the maximum number of phase modes and given by [2]
D ' b2�r=�c, Jm(�) is the Bessel function of the first kind of order
m, h = Lq+m, g = Lq�m, (:)H represents the complex conjugate
transpose of (.), andbxc denotes the largest integer less than or equal
to x. The first term in (2) becomes dominant ifd is less than0:5�.
In our analysis, we considerd < 0:5� and assume the second term
of (2) to be small.

The normalized transformation matrixF to excite the array pat-
terns corresponding to(2D + 1) phase modes is given byF =p
L[w�D; � � � ; w0; � � � ; wD]. Using this transformation, we express

at(�) = F
H
ac(�) = J�a(�) + �a(�) (3)

whereJ� =
p
Ldiag[JD(�); � � � ; J1(�); J0(�); J1(�); � � � ; JD(�)]

a(�) = [e�jD�; e�j(D�1)�; � � � ; 1; � � � ; ej(D�1)�; ejD�]T (4)

and�a(�) is the contribution due to the second term in (2). Note that
the vectora(�) has a structure similar to that of the steering vector
of a uniform linear array (ULA). We treat�a(�) as the error in the
transformed steering vector caused due to approximation.

Assume thatM sources are impinging on the UCA and the DOA’s
of these sources are�1; �2; � � � ; �M . The covariance matrix at the
output of UCA can be expressed as

Rc = AcSA
H
c + �2I (5)
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