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for the location of the extra hump, the threshold of the test is changed Multiresolution ESPRIT Algorithm

to maintain the false alarm probability of 0.01. In all cases, if the

hump is added in the reference data performance improves, but fweke N. Lemma, Alle-Jan van der Veen, and Ed F. Deprettere
the hump is added to the test cell data, performance degrades. This

simple example illustrates the use of our equations in an airborne ) ) ) )
s Abstract—Multiresolution ESPRIT is an extension of the ESPRIT
radar application.

. o L direction finding algorithm to antenna arrays with multiple baselines. A
We can explain the results in Figs. 1-7 by considering the chang®grt (half wavelength) baseline is necessary to avoid aliasing, and a long

in the pdf of p caused by changes in Vl} or C. In these cases, a baseline is preferred for accuracy. The MR-ESPRIT algorithm allows

decrease in Vafd} or ¢; causes the mass in the pdf pfto move the combination of both estimates. The ratio of the longest baseline to

toward larger values of. Due to the decreasing nature of the functiofi® Shortest one is a measure of the gain in accuracy. Because of various

L . . . actors, including noise, signal bandwidth, and measurement error, the
multiplying the pdf ofy in the integrand of (30), this causes a decreasgievable gain in accuracy is bounded.
in the probability of false alarm. It is possible to apply similar analysis

to also explain changes in probability of detection. Index Terms—Dual shift-invariance, joint diagonalization, multiple

baseline, multiresolution ESPRIT.

I. INTRODUCTION

VI. CONCLUSIONS . . . . . .
In many signal processing applications, it is required to estimate

An analysis of the performance of the adaptive matched filtgfgnal parameters such as DOA and carrier frequencies from measure-
algorithm has been provided for cases where the data used to estim@é@it data. To this end, there have been several approaches, including
the covariance matrix is not matched to the true.covarlance matfhe so-called ESPRIT algorithm [1]. Since its derivation, the ESPRIT
of the data to be tested. Such cases can occur in nonhomogenggysrithm has been used for direction-of-arrival estimation, harmonic
environments that appear to occur frequently in real radars. Closggn|ysis, frequency estimation, delay estimation, and combinations
form approximatg expressions are given for the probability of falggereof. In essence, the algorithm makes use of a single shift
alarm and detection. These expressions apply for any amount of d@t@riance structure present in the array response ve¢gor where
used in the covariance matrix estimation. The analysis indicates whjch_ ¢/, andp is a phase shift to be estimated. In narrowband
types of covariance matrix mismatches are important and which tyR@gsction-of-arrival estimation, the phase shift is due to the difference
are not. The equations indicate that performance depends on a fgWyrival times of the wavefront at the elements of an antenna
critical parameters. An airborne radar example is provided to sh%ay. For a uniform linear array (ULA), it is well known that
that the changes in performance due to mismatch can be significgm) =[1 ¢ ¢> -7 andp = 27A sin(a), whereA is the
in some practical situations. distance between the elements (in wavelengths),caisl the angle
of arrival measured with respect to the normal of the array axis.
It was shown in the literature [2]-[6] that the accuracy of the
estimation ofsin(«) is directly proportional tol/A. Thus, it is
[1] W. S. Chen and I. S. Reed, “A new CFAR detection test for radarpreferable to have a large baseline separafioso that we collect a
Digital Signal Process.vol. 4, pp. 198-214, Oct. 1991. large phase shift. Unfortunately, however, we cannot collect more

(2] F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptivghan a single cycle-w < y < = because the inverse of the mapping
matczrz)%d 2f||1tgr Jdaert]ecltgggEEE Trans. Aerosp. Electron. Systol. 28, "y _ ik js ambiguous outside this range. To prevent aliasing,

3] \;]J.ps' Goldstein and |. S. Reed, “Theory of partially adaptive radarWe thus have to ensure that< 1/2, which is essentially Shannon’s
IEEE Trans. Aerosp. Electron. Systol. 33, pp. 1309-1325, Oct. 1997. sampling theorem in space.

[4] R. J. Muirhead Aspects of Multivariate Statistical TheoryNew York: The idea behind multiresolution parameter estimation is to obtain
Wiley, 1982. two or more estimates of: the first based on a small baseline or short

[5] N. L. Johnson and S. KotzDistributions in Statistics: Continuous . . L . . .
Univariate Distributions-2 Boston, MA: Houghton Mifflin, 1970. sampling period, yielding a coarse estimateof 1 without aliasing,

[6] L. Caiand H. Wang “Further results on adaptive filtering with embedde@nd the second based on a large baseline or (much) larger sampling
CFAR,” IEEE Trans. Aerosp. Electron. Systol. 30, pp. 1009-1020, period, providing an aliased estimate of ;. at a finer scale. These
- SCtW;ag4énd L. Cai, *On adaptive spatial-temporal processing ftwo estima_tes are combined to obtr_:lin a_final estinate 27m+;z;)_,
ai.rborne surveillénce’radar system3PEE Trans. Aerosp. Electron. Where the Integer ”‘meer of cycless estlmatgd from.z‘l. The ratio
Syst, vol. 30, pp. 660-669, July 1994 of the largest baseline to the shortest baseline (which is denoted by
ks and referred to as theesolution gain factoris a measure of the
gain in resolution. In this work, we find the bounds bnthat will
allow the proper functioning of the MR-ESPRIT algorithm.
Similar works have been reported in the literature. In particular,
Zoltowski et al. [7] discuss a similar problem of angle-frequency
estimation using multiple scales in time and space. Because of
ambitious goals, however, their solutions are very much directed
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by engineering considerations, which incurs a certain sacrifice in P UG ¥ S v S X
elegance and clarity. In particular, the coarse frequency estimation A1 Aq

is done by applying ESPRIT to a small set of DFT values around

spectral peaks that are determined via peak searching algorithms. B Ao

The fine frequency estimates and the angle estimates are obtained I A2

sequentially and for each estimated coarse frequency independently,
which assumes that they are sufficiently unique. Here, we derive a
one-shot joint estimation procedure referred to as MR-ESPRIT.

There is a connection of MR-ESPRIT to MI-ESPRIT [8], [9] aHowever, whenA; > 1/2, because of aliasing, we get a set of
well. MI-ESPRIT, like the MR-ESPRIT, exploits the multiple shift-cyclically related candidates far:
invariance structure present in multibaseline arrays. A distinction is i + 27n
that MI-ESPRIT is formulated in terms of (iterative) subspace fitting a(n) = arcsin <—L )

- i . 2w A;

and basically attempts to find more accurate beamforming vectors
by considering multiple shift invariances. The original paper [8] dith MR-ESPRIT, we combine nonaliased and aliased estimates of
not specifically recognize the fact that also more accurate directitite parameters to obtain a better estimation accuracy. The resulting
estimates can be found. In [9], a noniterative MI-ESPRIT is givedlgorithm is very similar to the case of joint azimuth-elevation
There, the aliasing is resolved by searching for an optimum solutigatimation [10].
among formerly computed candidates. Our approach, on the otheffhus, to be specific, considérnarrowband sources (t) imping-
hand, resolves aliasing by merely solving a set of analytic expressioifigl on the antenna array. Collectiny output samples of the/
Moreover, the corresponding parameters are grouped automaticajenna outputs into al/ x N data matrixX in the usual way, we
without the need for any extra processing, which is not the casedhtain the data model

MI-ESPRIT. X=AS=a8 + - +ays4

Fig. 1. Multiresolution spatial sampling.

Il. THE MR-ESPRIT where the columns af are the array response vectdis }, and the

- . . . rows of S are the sampled source signals. Assuming: M, the
The original ESPRIT algorithm is based on arrays with a doublgf, step of the algorithm is to estimate a baEis of the column

structure, i.e., consisting of several antenna pairs with the Saglfan ofX, typically using an SVDU, andA are related by @ x d
baseline vectors. The chosen array geometries often admit OtHSﬁsinguI’ar matrixl” as '

pairings with different baselines. For instance, the array structure
shown in Fig. 1 combines two spatial sampling rates. The minimal U.=AT.
number of antennas to having two baseline vector pairs is four. Wi?rp]e second step in the algorithm is to form submatricel ofising
more antennas, several interesting configurations are possible. the proper selection matrices

The M-dimensional array response vecidry) is defined as the
response of thel/-element antenna array to a narrowband signal Uwi=J.Us, Uyi=Jd,U..  (i=1,2).
from a directiona. It can be parameterized in several ways. Th?he shift-
usual parameterization is in terms 6f= eI2mA sin(e) \where A
is a reference interantenna spacing smaller than half a wavelength. U,i=AT, U, =A0O,T
In our case of an array with two baselines, we can (redundant
parameterize the array by two parametérs= ¢/2721 5in(®) gnd
By = ¢??™2257(?) |n the case of the array of Fig. 1, we have

invariance structure of the array implies that

l%ere A’ is a submatrix of4, and the diagonal matrb®; =
diag{#:,}/-, contains thei shift parameters of the sources with
reference to theith baseline. The final step is to estimate the

1 parameters by considering
a(f1, 02) = gl 1) E =UU,=T""©,T
2 4 _
0162 E,=UUp=T '@,T.

The idea is to treat the two parameters as independent and estinfeieSeen that the data matrics andE- are jointly diagonalizable
both of them from the measured data and only then combine th& the same matriXxI’. There are several algorithms to compute
into a single estimate afin(a). Estimation is done by exploiting the this joint diagonalization, e.g., by means of Jacobi iterations [10]

dual shift-invariance structure af#;, 6-), i.e., in the above example or QZ iterations [11], [12]. For this to work, it is necessary that each
submatrixU ,.; has at leastl rows. AfterT has been found, we also

g1 = {“‘1 }g ay = {“Z} = ay1 = a1t have estimates of(f,;, f2;)} for each of thed sources.
a3 74 It remains for each source to combifie andé- into an estimate
_ | _ las _ of the argumeni: of . Let us assume thah; < 1/2 so that
A2 = | |, Qy2 = = ayo = @202 . . . .
a2 [ (argument of¢;) is not aliased and is a coarse estimateuofin

addition, assume thak, > 1/2 so that inu2, aliasing occurs. The
estimatey: is proportional top2 plus an appropriate integer multiple
of 27 (see Fig. 2). It follows that we have two estimate€ofsin(«)

wherea; is theith entry ofa(6:, 62). For more general arrays with a
dual shift-invariance structure, we can define selection matdges
andJ,; (i = 1. 2) such that the above relations hold f#r;a and

Jyia. 27 sin(a) = L, =L

. . 7 = = (2T + p2). )
Let u; (i = 1, 2) be the argument of;. Then, if the distance (@) ATTTA, 2
A; < 1/2, the angle of arrivakr of the wavefront can be uniquely The winding numbem is determined as the best fitting integer to
determined fromu; using the transformation match the two right-hand side expressions

a = arcsin <27’1:£i ) n= round<% <%N1 - /Lz)) =:roundn). (3)
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Fig. 2. (a) Aliased spatial frequengy as a function of the alias-free spatial o T
frequencyy. (b) Corresponding winding number. (1) ks=2
(2) ks=6 - ;
(8) ks=20 :
The ratioks := A/A; can be interpreted as the (spatial) gain in 0 ST i ;
resolution. In particular, the estimate ?f sin(«) based o is a 1072 1072 107" 10° 10
factor k, more accurate than that based;on Thus, a more accurate ou
estimate of the spatial frequengycan be obtained as Fig. 4. Family of curvesP(|An| < 0.5) as functions ofs,, for 1 = =
1 and Aks; = 0.75.
jo= (27 4 pi2). @)

Assuming thatP(-) is a Gaussian process, it can be shown [13] that
P(]An| < 0.5)
A. The Winding Number 1 f( T+ Ak, ) 1 < T — i Ak, )
= — _ | + ="
2

Il ANALYSIS

Consider the relations given in (3) and (4), where we have tacitly o \/m §er 2(k2 +1)
assumed that the relatioh, = k;A; holds perfectly. In practice,
however, due to measurement errors, this holds only approximaté¥eres,. represents the root mean square measurement eryarAn
Let Ak. represent the error o, such thatA, = (k. + Ak.)A,. In family of curvesP(|An| < 0.5) for p; = « (representing worst-case
addition, assume that; andy- are determined with estimation errorsscenario) and an arbitrarily chosen value'of. = 0.75 as functions
Apr and Apo, respectively. We further assume tha: and N of o, (for different values of.) are shown in Fig. 4. To obtain more
are independent processes, with:?} = E{Au%} = o2. With explicit expressions, let the functiof(x) be defined as

these assumptions, the erw. on 7 in (3) can be approxmated as fla) = é[erf 2(1 4 1 Aky)) + erf(e(n — Ak (8)
on on on _ . )
An =~ % a0 —Ap + a—Auz Then, P(|An| < 0.3) may be expressed in terms ffx) as
Replacing the value of from (3) into the above equation, we obtain P(|An| < 05)=f 1
2(k2 + 1)
An = —,ulAk + (k Apy — Apo). (5) ] o .
2m Now, putting this into (7) and solving fok., we get
For a given array configuration, the first term in (5) is a constant. 5
It represents the offset in due to the array imperfection. On the k, < \/ 1‘ <#) — 1 =: kmax 9)
other hand, both parameters;:;; and Ap, in the second term are 205 \ (L)

zero mean Gaussian processgd—[4]. ConsequentlyAr is also a

1 . . . . . )
Gaussian process with a mefélty27)1 Ak, and a variance where f~*(+) is the inverse function of (-). From this relation, it

is clear that the resolution gain factor cannot be made arbitrarily
2 7 7 large. It is bounded from above by a number that is a function of the
E{ <An - 5-mAk ) } = zz(ks+ 1o, (6) estimation error and the array imperfection factok.. Particularly,
we can clearly see that as the estimation error increases, the maximum

A typical distribution function ofAn is shown in Fig. 3. It is seen value of k. decreases. This is in perfect agreement with intuitive
from (3) thatn is determined correctly ifAn| < 0.5. However, perception. For instance, for the cage = =, Ak, = 0.75, and
since An is a random process, we can satisfy this only wit = 0.998, the bounds ork, ato, = 0.1 and 0.05 are 9 and 17.6,
some uncertainty (confidence level). In particular, given a requirégspectively.
confidence levelL, we find the conditions under which the probability
@ B. Dependence df...x on SNR

To establish the relation betwedn and SNR, we first need to
1More precisely, these are Gaussian processes if the input noise is Gaussletermine the dependence @of (the phase estimation error) on the
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SNR. To this end, in [5] and [€], it is shown that the DOA estimation 10’

error and the SNR are related as
. EL
: 1 1 1 ? ~ -45 Deg
Uii = SND 2AT | ¢ (10) 100 ks= E
SNR\ M2N \ 27A; cos(a) (1) ks=2
& (2) ks=7
where ¢,; is the root mean square error (RMSE) obtained wntﬁ? 10" (3) ks=25
reference to theith base line separatiol\;. Recall thaty; = 3
27 A; sin(a) and, hence a
¢ 107k
Wi + Aps =27A; sin(a + Aa) g """"
27 A (sin(a) + Aa cos(a)). - I
10 ¢
This implies thatAu; = (27A; cos(a))Aa and
= (2mA; cos(a’))zaii (11) 107 . . . . .
. . ; . 0 5 10 15 20 25 30
Here, the index reference to the baselinesipn = E{(Apu;)?} is SNR (dB)

dropped becausa p; is independent ofA;. Now, using (10)¢}, is
expressed in terms of array parameters as

. 1 [ 1
= SNR<M'2N> (12)

Fig. 5. Root mean square error of the frequency estimates as functions of
SNR. s = 2 corresponds to ULA).

Finally, putting (12) into (9), we find the following expression for 10 ' '
kma‘x:
SNR 1\ 1o’ ¢
kmax = M?N -1 13) &
2 ( <f l(ﬁ))) g
510

Note that (10) and, therefore, (13) are derived, assuming that therg9s Z
only one source in the channel. For more than one sodrseifrces, . . _»
say), lets,; represent the variance of the phase estimation error @ 10
the jth sourcé Then, the bound oit. is generalized as

3

10

2
kmax = min % % -1
j=led 20//] fj (£) -4

10 I1 ‘2

wheref;(-) is as defined in (8), but witp, replaced by ; (thejth 10 k 10
phase shift measured with referenceAg). S

Fig. 6. Root mean square error of the DOA estimates, corresponding to the
wavefront with DOA= 45° as functions ofk,.

C. Bias onu Due to Imperfect Array and a
Self-Calibrating MR-ESPRIT

Once the winding number is determined correctly, the next stepis Tne results are shown in Figs. 5 and 6. From the first plot, it is
to use (4) to estimate the spatial frequepcyf the array is imperfect, seen that the accuracy of MR-ESPRIT is proportional to the gain
the estimate of. will be biased. The bias (offseth on n due to  factor k.. An upper limit for this gain is reached when the winding
Ak, can be approximated by (ViZ- 4) numbersn. can no longer be estimated accurately. This is shown in
Fig. 6, where the RMSE of the parameter estimator as a function of
varying k, is analyzed. To make the figure less crowded, only the
which indicates that for a given value df,, angles associated behavior corresponding to DOA 45° is plotted. It is seen that for

s given SNR, there exists a limit ol beyond which the performance

with "'?“ge W|_nd|ng num_ber_s are more affect(_ed_ ‘by” th_an _those of the estimator degrades sharply. Moreover, this bound is seen to be
associated with small winding humbers. To minimize this biasela .
]proportlonal to the SNR, as expected.

calibrating MR-ESPRIT may be implemented as described in [14].

op
Ap = WAkg =2 (Z‘rn + p2) Ak, (14)

IV. SIMULATION REFERENCES

In this section, we give simulation results that confirm our theoryyy) R H. Roy, “ESPRIT-estimation of signal parameters via rotational
The simulation example considers a processing band of 10 MHz and invariance techniques,” Ph.D. dissertation, Stanford Univ., Stanford, CA,
a linear antenna array with/ = 4 antenna elements arranged as in ~ 1987.

ia. ith A, = 1/2 iNaA.. ; ; [2] M. Viberg, B. Ottersten, and A. Nehorai, “Performance analysis of
Fig. 1 with A, /2 and varyingA:. The data is collected into direction finding with large arrays and finite datdEEE Trans. Signal

a 4 x 64 matrix at a sampling rate df;, = 20 MHz. Two sources Processingvol. 43, pp. 469477, Feb. 1995,
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multi-invariance ESPRIT,” inProc. ICASSPMunich, Germany, Apr.
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2] ’Ii/'aé’ 19|_93-] Sianal o based il eh angle) measured in the plane containing the elements. We assume
. gde Lathauwer, Ignal processing based on mulitilinear algeor . ) .
Ph.D. dissertation, Katholieke Univ. Leuven, Leuven, Belgium, 19978.‘&)r simplicity that the sources are in the same plane as the UCA. The

[13] S. Haykin, An Introduction to Analog and Digital Communications.Steering vector of the UCA w.r.t. the center of the array can then
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where ¢ = 2mr/\, X\ is the wavelength, and(.)T

represents the transpose of.). The weight vector that
excites the array withmth phase mode is given by [2]

Analysis of Spatial Smoothing wio = ML P et EEDE]L The  array
with Uniform Circular Arrays pattern for themth phase mode is [1], [2]

:'n 9) = 5 . §) = ] 4]’777/9
K. Maheswara Reddy and V. U. Reddy fm () =Wimac(t) = i (§)e

_|_.]'_|m\ Z |:]»ng(£)(3—,1'99 _|_]»h‘]h(£)cjh,9:|
q=1

Abstract—In this correspondence, we analyze spatial smoothing with
uniform circular arrays (UCA’s). In particular, we study the performance -D<m<D (2
of the Root-MUSIC with smoothing in the presence of correlated sources, . . .
finite data perturbations, and errors in transformed steering vector that WhereD is the maximum number of phase modes and given by [2]
arise due to some approximations made while extending the Root-MUSIC D ~ |27r /)|, J..(£) is the Bessel function of the first kind of order
and smoothing to UCA. Expressions are derived for the asymptotic per- , j = Lg+m, g = L¢—m, (.)* represents the complex conjugate

formance of the Root-MUSIC with smoothing applied to the transformed .
UCA data. An attempt has been made to bring out the impact of both transpose of (.), anflz| denotes the largest integer less than or equal

the forward and forward—backward smoothing. We consider UCA’s with {0 @ The first term in (2) becomes dominantdfis less thar).5A.
isotropic as well as directional sensors in our study. Computer simulations In our analysis, we considef < 0.5\ and assume the second term

are provided to demonstrate the usefulness of the analysis. of (2) to be small.
The normalized transformation matrRR to excite the array pat-
|. INTRODUCTION terns corresponding t¢2D + 1) phase modes is given bf =
Uniform circular arrays (UCA’s) are commonly employed wherf/z[w"D" rr Wo. -, wpl. Using this transformation, we express

360° coverage is required in the plane of the array. Circular arrays a,(8) = Fa (8) = Jea(h) + Aa(f) 3)
are nonuniform linear arrays, and hence, the rooting techniques and

preprocessing schemes like spatial smoothing [7] cannot be direstiereJ: = VL diadJp (), -+, J1(€), Jo(€), J1(E), -+, Jp(€)]
applied to these arrays. In [8], Tewfik and Hong have shown that
it is possible to extend the Root-MUSIC to UCA using the phase

mode excitation concept. In [2], Mathews and Zoltowski proposeghgaa(s) is the contribution due to the second term in (2). Note that

the vectora(#) has a structure similar to that of the steering vector
Manuscript received December 11, 1996; revised November 19, 1998. Tdfea uniform linear array (ULA). We treaha(#) as the error in the
associate editor coordinating the review of this paper and approving it fo4nsformed steering vector caused due toka'pproximation.

publication was Dr. Gary F. Hatke. ) N ,
K. M. Reddy is with CASSA, Defence Research and Development Organ—Assume thal! sources are impinging on the UCA and the DOA’s

ization, New Thippasandra, Bangalore, India. of these sources am, 02, ---, 8,/. The covariance matrix at the
V. U. Reddy is with the Department of Electrical Communication Engioutput of UCA can be expressed as

neering, Indian Institute of Science, Bangalore, India. u R
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