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Abstract-Multi-resolution ESPRIT is an extension of 
the ESPRIT direction finding algorithm to antenna ar- 
rays with multiple baselines. A short (half wavelength) 
baseline is necessary to avoid aliasing, a long baseline is 
preferred for accuracy. The MR-ESPRIT algorithm al- 
lows to combine both estimates. The ratio of the longest 
baseline to the shortest one is a measure of the gain in 
resolution. In this work, we show that because of various 
factors, including noise, signal bandwidth and measure- 
ment error, the achievable gain in resolution is bounded. 

1 INTRODUCTION 

Since its derivation, the ESPRIT [l] algorithm has been 
used for direction-of-arrival estimation, harmonic analysis, 
frequency estimation, delay estimation, and combinations 
thereof. In essence, the algorithm makes use of a single shift 
invariance structure present in the array response vector 
a(@) ,  where 6' = e J P ,  and p is a phase shift to be estimated. 
In narrowband direction-of-arrival estimation, the phase 
shift is due to the difference in arrival times of the wavefront 
at the elements of an antenna array. For a uniform linear 
array (ULA), it is well known that a(@)  = [l 6' 82 -..I' 
and p = 27rAsin(a), where A is the distance between the 
elements (in wavelengths), and a is the angle of arrival mea- 
sured with respect to the norma€ of the array axis. 

In the literature [2-61, it was shown that the resolution 
of the estimation of sin(cy) is directly proportional to i. 
Thus, it is preferable to have a large baseline separation 
A, so that we collect a large phase shift p.  Unfortunately, 
however, we cannot collect more than a single cycle, -,T 5 
p < IT, because the inverse of the mapping p + 8 = eJp is 
ambiguous outside this range. To prevent aliasing, we thus 
have to ensure that A 5 i, which is essentially Shannon's 
sampling theorem in space. 

The idea behind multi-resolution parameter estimation 
[7,8] is to obtain two or more estimates of p: the first based 
on a small baseline, yielding a coarse estimate p1 of p with- 
out aliasing, and the second based on a large baseline or 
(much) larger sampling period, providing an aliased esti- 
mate p2 of p at a finer scale. These two estimates are com- 
bined to obtain a final estimate ji = 271-71 + p ~ ,  where the 
integer number of cycles n is estimated from p1. The ratio 
of the longest baseline to the shortest baseline (denoted by 
k ,  and referred to as the resolution gain factor) is a mea- 
sure of the gain in resolution. Theoretically, the resolution 
gain factor can be made arbitrarily large. In practice, how- 
ever, there are factors that bound k,. These include, among 
others, the SNR and the array imperfection. 

In this work, we give a theoretical analysis of the proper- 
ties of the MR-ESPRIT. Particularly, we find the bounds on 
k ,  and on the tolerated array imperfection that will allow 
the proper functioning of the algorithm. 

'The research of A.N. Lemma is supported by TNO-FEL, The 
Hague, The Netherlands. 

Fig. 1. Multi-resolution spatial sampling 
2 THE MR-ESPRIT 

The original ESPRIT algorithm is based on arrays with a 
doublet structure, Le. consisting of several antenna pairs 
with the same baseline vectors. However, the chosen array 
geometries often admit other pairings with different base- 
lines. For instance, the array structure shown in Fig. 1 
combines two spatial sampling rates. The minimal num- 
ber of antennas to have two baseline vector pairs is four. 
With more antennas, several interesting configurations are 
possible. 

The M-dimensional array response vector u(a) is defined 
as the response of the M-element antenna array to a nar- 
rowband signal from a direction cy. It can be parameterized 
in several ways. The usual parameterization is in terms of 

, where A is a reference distance. In our case 
of an array with two baselines, we can (redundantly) para- 
meterize the array by two parameters, 6'1 = ej2aA1sin(a) 
and e2 = e j 2 ? r b  W a )  . I n the case of the array of Fig. 1, we 
have 

6' = ejZ?rAsin(ar) 

1 

a(el,ez) = [ :; ] . (1) 
61 $2 

The idea is to treat the two parameters as independent and 
estimate both of them from the measurement data, and 
only then combine them into a single estimate of sin(a). 
Estimation is done by exploiting the dual shift-invariance 
structure of a(&, OZ), Le., in the above example 

a x 2  = [ 3 , a y z  = [ 3 =+ a y z  = a z z 8 2 ,  

where ai is the i-th entry of a(&,&).  For more general 
arrays with a dual shift-invariance structure, we can define 
selection matrices J,i and J,i (i = 1,2) such that the above 
relations hold for J,ia and Jyia.  

Let pi (i  = 1,2) be the argument of 8i. Then, if the 
distance Ai < 3, the angle of arrival a of the wavefront can 
be uniquely determined from pi using the transformation 

However, when Ai > f ,  because of aliasing we get a set of 
cyclically related candidates for a: 

p i  + 27rn 
a(.) = arcsin(- 2 ~ A i  ). 
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Fig. 2. (a) The aliased spatial frequency p : ~  as a 
function of the alias-free spatial frequency p. 
(b) The corresponding winding number n. 

In MR-ESPRIT we combine non-aliased and aliiased esti- 
mates of the parameters to obtain a better estimation ac- 
curacy. The resulting algorithm is very similar t 'o the case 
of joint azimuth-elevation estimation [9]. 

Thus, to be specific, consider 6 narrowband sources s ; ( t )  
impinging on the antenna array. Collecting N samples of 
the M antenna outputs into an A4 x N data makrix X in 
the usual way, we obtain the data model 

x = AS = U l S l  + ' .  . + U d S d  

where the columns of A are the array response vectors {a;}, 
and the rows of S are the sampled source signals. Assuming 
d < M ,  the first step of the algorithm is to estimate a basis 
U s  of the column span of X ,  typically using an SVD. U s  
and A are related by a d x d nonsingular matrix T as 

U s  = AT 

The second step in the algorithm is to form submatrices of 
U s  using the proper selection matrices: 

Uzi = JziUs 1 U,; = J , ;U , .  (i = 1,2) 

The shift-invariance structure of the array implies that 

uzi = A'T,  u.,; = A'O~T,  

where A' is a submatrix of A and the diagonal mattrix 0; = 
diag{8ij}y=l contains the d shift parameters of the d sources 
with reference to the i-th baseline. The final ,step is to 
estimate the parameters by considering 

= uLluyl = T - ~ O ~ T ,  
E2 = UL2Uy2 = T-l02T.  

It is seen that the data matrices E1 and E2 axe jointly 
diagonalizable by the same matrix T .  There are several 
algorithms to compute this joint diagonalization, e.g. by 
means of Jacobi iterations [9] or Q Z  iterations [lo]. For 
this to work, it is necessary that each submatrix Z/,i has at  
least d rows. After T has been found, we also have estimates 
of { ( e l k ,  e,,)} for each of the d sources. 

It remains, for each source, to combine' 81 and 8 2  into 
an estimate of the argument p of 8. Let us assume that 
A1 5 $, so that p1 (argument of 81) is not aliased and is 
a coarse estimate of p. Also assume that A2 >> f ,  so that 
in pz aliasing occurs: the estimate p is proportional to  pz 
plus an appropriate integer multiple of 27r (see Fig. 2). I t  
follows that we have two estimates of 27r sin(cu), 

2Here we drop the subscript k in 6'ik for readability purpose. 

The winding number n is determined as the best fitting 
integer to match the two right hand side expressions, 

n = round ( % ( x ; p ~  1 a2 - p2)) =: round(ii). (3) 

The ratio k ,  := 2 can be interpreted as the (spatial) gain 
in resolution. In particular, the estimate of 27rsin(a) based 
on 1.12 is a factor IC, more accurate than that based on p1.  
Thus a more accurate estimate of the spatial frequency p 
can be obtained as 

(4) 
p := --(27rn 1 +pz). 

k:; 

3 A.NALYSIS 

3.1 The winding number 

Consider the relations given in (3) and (4), where we have 
tacitly assumed that A2 == k,Al holds perfectly. In prac- 
tice however, due to measurement errors, this holds only 
approximately. Let A k ,  represent the error on k ,  such that 
A2 = ( k ,  + A k s ) A 1 .  Also assume that p1 and p2 are 
determined with estimation errors Ap1  and Ap2,  respec- 
tively. We further assume that A p l  and Ap2 are indepen- 
dent processes, with E{A&} = E{&;} = ~ 2 .  With these 
assumptions, the error An on 6 in (3) can be approximated 

Replacing the value of h from (3) into the above equation 
we obtain 

an = ' p l A k ,  + I ( k , A p l  - ap2).  
27r 27r (5) 

For a given array configuration, the first term in ( 5 )  is a 
constant. It represents the offset on h due to the array 
imperfection. On the other hand, both parameters A p l  and 
Ap2 in the second term are zero mean Gaussian :processes 
[4-6].3 Consequently, An is also a Gaussian process with a 
mean & p l A k ,  and a variance 

1 1 
a: = E{(& - - -phAks ) ' )  27r = - (kI  47r' + 1)~; .  (6 )  

A typical distribution function of An is shown in Fig. 3. It 

L L  
Fig. 3. A typical probability distribution function of 

is seen from (3) that n is determined correctly if lAn1 < 0.5. 
However, since An is a random process, we can satisfy this 
only with some uncertainty (confidence level). In particular, 
given a required confidence level L, we find the conditions 
under which the probability 

An, (An, = & p l A k , )  

P(lAn1 < 0.5) > L (7) 

3More precisely, these are Gaussian processes if the input 
noise is Gaussian. 
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-4ssuming that P( . )  is a Gaussian process, it can be shown 
that,  [Ill 

P(lAnl < 0.5) = 

where up represents the root mean square measurement er- 
ror in p.  A family of curves P(lAn1 < 0.5), for p1 = r 
(representing worst case scenario) and an arbitrarily cho- 
sen value of A k ,  = 0.75, as functions of up (for different 
values of k , )  are shown in Fig. 4. To obtain more explicit 

3 0.5 

a il - 
v 
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O U  

Fig. 4. A family of curves P(lAn] < 0.5) as functions 
of up for p1 = T and A k ,  = 0.75 

expressions, let the function f (z)  be defined as 

1 1 
2 f(z) = -erf ( ( T  + p l A k , ) z )  + Terf ( ( T  - p l A k , ) z ) ,  (9) 

then P(jAn1 < 0.5) may be expressed in terms of f(z) as 

Now, putting this into (7) and solving for k , ,  we get 

where f-'(.) is the inverse function of f(.). From this re- 
lation, it is clear that the resolution gain factor cannot be 
made arbitrarily large. It is bounded from above by a num- 
ber which is a function of the estimation error and the array 
imperfection factor A k ,  . Particularly, one can clearly see 
that, as the estimation error increases, the maximum value 
of k,  decreases. This is in perfect agreement with intuitive 
perception. For instance, for the case p1 = T ,  A k ,  = 0 
and .C = 0.998 , the bounds on k,  at up = 0.1 and 0.05 are 
10.1 and 20.3, respectively. Note that,  when Ak, = 0, (8) 
reduces to 

P((An(  < 0.5) = erf (Up&) ' 

and the expression for k,,, becomes 

3.2 

To establish the relation between IC,,, and SNR, we first 
need to determine the dependence of up (the phase estima- 
tion error) on the SNR. To this end, in [2,3], it is shown 
that the DOA estimation error and the SNR are related as, 

Dependence  of k,,, on SNR 

1 

where uai is the root mean square error (RMSE) obtained 
with reference to the i-th base line separation Ai. Recall 
that pi = 2nA, sin(@) and, hence 

p. + Api  = 2rAi sin(a + Aa) 
z 2 ~ A i  (sin(a) + Aa cos(cu)) . 

This implies that Api = (2nAi COS(Q)) Aa and 

Here, the index reference to the baseline in u; = E { ( A P ~ ) ~ }  
is drop ed because A p i  is independent of Ai. Now, using 
(12), up IS expressed in terms of array parameters as P .  

1 1 
S N R  M 2 N  u; = - (-) 

Finally, putting (14) into ( lo) ,  we find the following expres- 
sion for kmax: 

Note that (12) and, therefore, (15) are derived assuming 
that there is only one source in the channel. For more than 
one source (d sources, say), let u& represent the variance 
of the phase estimation error for the j-th s o u ~ c e . ~  Then, 
the bound on k,  is generalized as 

where fj (.) is as defined in (9), with p1 replaced by p1j (the 
j - th  spatial frequency measured with reference to AI ) .  

3.3 Bias on p due to array imperfections and a self 
calibrating MR-ESPRIT 

Once the winding number n is determined correctly, the 
next step is to use (4) to estimate the spatial frequency p. 
If the array is imperfect, the estimate of p will be biased. 
The bias (offset) A p  on p due to A k ,  can be approximated 
by (viz. (4)) 

1 
dk ,  - kz Ap rz *Ak - - ( 2 m  + p 2 ) A k s ,  

which indicates that, for a given value of k , ,  angles associ- 
ated with large winding numbers are more affected by A k ,  
than those associated with smaller winding numbers. 

To minimize the bias, a self calibrating MR-ESPRIT may 
be implemented. Let T be a finite positive integer, and for 
j = 1, . . . , d, let plj ( t )  and p2, ( t )  represent the coarse and 
fine spatial frequency estimates of the j - th  wave front at  a 

*For more than one sources apj depends on the SNR in a more 
complicated way. Interested readers are referred to [3] and [5] for 
more information. 
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time index t E [to, to + T - 11, respectively. Let also nj ( t )  
be the estimate of the corresponding winding number. The 
idea is to  first estimate the resolution gain factor as 

and then insert this estimate into (4) for the computation 
of the spatial frequency /I. Assuming that the mean of 
the estimation errors is zero, f ,  asymptotically converges 
to its true value. The performance of a self calibrating 
MR-ESPRIT is compared against a non calibratting MR- 
ESPRIT in the simulation results. 

4 SIMULATION 

In this section, we give simulation results that confirm our 
theory. The simulation example considers a processing band 
of 10 MHz and a linear antenna array with M = 4 antenna 
elements arranged as in Fig. 1 with AI = $ and varying A,. 
The data is collected into a 4 x 64 matrix at a sampling 
rate of FI = 20MHz. Two sources emitting narrowband 
signals (25 kHz) at center frequencies f = [6,6.5] MHz, and 
propagating in distinct directions with DOAs a = [40,45] 
degrees are considered. 

The results are shown in Fig. 5 through Fig. 7. From the 
first plot, it  is seen that the accuracy of MR-ESPRIT is 
indeed proportional to the gain factor k, .  An upper limit 
for this gain is reached when the winding numbers n can 
no longer be estimated accurately. This is shown in Fig. 6, 
where the RMSE of the parameter estimator as ;a function 
of varying k,  is analyzed. To make the figure less crowded, 
only the behavior corresponding to DOA = 45 degrees is 
plotted (the same is true for Fig. 7). It is seen that, for a 
given SNR, there exists a limit on k, beyond which the per- 
formance of the estimator degrades sharply. Moreover, this 
bound is seen to be proportional to the SNR as expected. 

Finally, simulations showing the improvements in the bi- 
ases due to self calibration are shown in Fig. 7. The results 
correspond to k ,  = 20, and the averaging for the self cal- 
ibration is taken with T = 20. It is seen that when the 
bias Ak, > 0.05, the self calibrating MR-ESPRIT gives 
lower bias. This means that, if array placement errors are 
expected to  be large, it is advantageous to  im:plement a 
self calibrating MR-ESPRIT. Moreover, one call see that 
there exists a limit on Ak, beyond which the self calibra- 
tion process fails. It is further seen that the bireak away 
point gets smaller with decreasing SNR as expected. 

_J 
lo4A 5 IO 15 20 25 30 

SNR (dB) 

Fig. 5. The root mean square error of the frequency 
estimates as functions of SNR. ( k ,  = 2 cor- 
responds to ULA) 
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