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ABSTRACT 

Multi-resolution ESPFLIT is an extension of the ESPRIT 
direction finding algorithm to antenna arrays with multiple 
baselines. A short (half wavelength) baseline is necessary 
to avoid aliasing, a long baseline is preferred for accuracy. 
The MR-ESPRIT algorithm allows to combine both esti- 
mates. The same algorithm can be used for multi-resolution 
frequency estimation, by combining two different sampling 
frequencies. We show how this can be used to construct a 
joint angle-frequency estimator. 

1 INTRODUCTION 

Since its derivation in 1983, the ESPRIT algorithm [l] 
Inas been used for direct ion-of-arrival estimation, harmonic 
iinalysis, frequency estimation, delay estimation, and com- 
binations thereof. In essence, the algorithm makes use of 
a single shift invariance structure present in the array re- 
sponse vector a(6),  whore 6 = e3”, and p is a phase shift 
t.o be estimated. In narrowband direction-of-arrival esti- 
mation, the phase shift is due to the difference in arrival 
times of the wavefront at the elements of an antenna array. 
For a uniform linear array (ULA), it is well known that 
t r (6 )  = [l 6 6’ ...I’ and p = 2nAsin(a), where A is the 
distance between the elements (in wavelengths), and a is 
the angle of arrival meamred with respect to the normal of 
the array axis. A simila, situation occurs in frequency esti- 
rnation where we have p = -27r f 2’. Here, T is the sampling 
period and f is the frequency to be estimated. 

In the above simple #case (estimation of a single para- 
meter), the accuracy of the estimate of sin(a) or f is di- 
rectly proportional to f; and $, respectively. Thus, it is 
preferable to have a large baseline A or a large sampling 
period T ,  so that we collect a large phase shift p. Un- 
fortunately, however, we cannot collect more than a single 
cycle, -7r <, ,U < 7r, because the inverse of the mapping 
p --t 6 = e3p is ambiguclus outside this ran e. To prevent 
aliasing, we thus have to ensure that A 5 wavelengths, 
or T 5 ifmax, which is essentially Shannon’s theorem in 
slpace and time. 

The idea behind multi-resolution parameter estimation is 
to obtain two or more esitimates of p: the first based on a 
sinall baseline or short sampling period, yielding a coarse 
estimate p1 of p without aliasing, and the second based on 
a large baseline or much larger sampling period, providing 
a n  aliased estimate p2 of p at  a finer scale. Both estimates 
can be combined to obtain a final estimate fi  = 27rn + pa, 
where the integer number of cycles n is estimated from pi .  
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Fig. 1. Multi-resolution spatial sampling 

In this paper, we elaborate on this idea, and apply it to 
DOA estimation, frequency estimation, and a combination 
of the two. It should be remarked that none of the ideas 
is truly new. In particular, Zoltowski e.a. [2] discuss a sim- 
ilar problem of angle-frequency estimation using multiple 
scales in time and space. Because of ambitious goals, how- 
ever, their solutions are very much directed by engineering 
considerations, which incurs a certain sacrifice in elegance 
and clarity. In particular, the coarse frequency estimation 
is done by applying ESPRIT to a small set of DFT val- 
ues around specltral peaks which are determined via peak 
searching algorithms. The fine frequency estimates and the 
angle estimates i re  obtained sequentially and for each esti- 
mated coarse frequency independently, which assumes that 
they are sufficiently unique. Here, we derive a one-shot joint 
estimation procedure referred to as MR-ESPRIT. 

There is a coionection of MR-ESPRIT to MI-ESPRIT 
[3, 41 as well. MLESPRIT also exploits the multiple shift- 
invariance structme present in multi-baseline arrays. A 
distinction is that MI-ESPRIT is formulated in terms of 
(iterative) subspace fitting, and basically attempts to find 
more accurate beamforming vectors by considering multiple 
shift invariances. The original paper [3] did not specifically 
recognize the fact that also more accurate direction esti- 
mates can be found. Results in that direction, as well as a 
non-iterative algorithm, can be found in [4]. 

2 MULTI-RESOLUTION ESPRIT 

The original ESF’RIT algorithm is based on arrays with a 
doublet structure, i.e. consisting of several antenna pairs 
with the same baseline vectors. The chosen array geome- 
tries often admit other pairings with different baselines. For 
instance, the arra.y structure shown in Fig. 1 combines two 
spatial sampling rates. The minimal number of antennas to 
have two baseline vector pairs is four. With more antennas, 
several interesting configurations are possible. 

The M-dimensional array response vector a(a) is defined 
as the response of the M-element antenna array to a nar- 
rowband signal from a direction a. It can be parameterized 
in several ways. The usual parameterization is in terms of 
the ‘electrical angle’ 0 = e32sAsin(a), where A is a refer- 
ence distance smaller than half a wavelength. In our case 
of an array with two baselines, we can (redundantly) pa- 
rameterize the array by two parameters, 61 = elzRA1 sin(cr) 
and O2 = e32”a2 S i m f Q )  I 1 n the case of the array of Fig. 1, we 



have 

The idea is to treat the two parameters as independent and 
estimate both of them from the measurement data, and 
only then combine them into a single estimate of sin(a). 
Estimation is done by exploiting the dual shift-invariance 
structure of a(&,&),  i.e., in the above example 

where a; is the i-th entry of a(81,&). For more general 
arrays with a dual shift-invariance structure, we can define 
selection matrices J,i and J,,  (i = 1,2) such that the above 
relations hold for J,;a and J,ia. The resulting ESPFUT- 
type algorithms are very similar to the case of joint azimuth- 
elevation estimation. 

Thus, to be specific, consider d narrowband sources s i ( t )  
impinging on the antenna array. Collecting N output sam- 
ples of the M antenna outputs into an M x N data matrix 
X in the usual way, we obtain the data model 

X = AS = a l S 1  +.  ' ' a d S d  

where the columns of A contain the array response vectors 
{a i } ,  and the rows of S are the sampled source signals. As- 
suming d < M ,  the first step of the algorithm is to estimate 
a basis U of the column span of X, typically using an SVD. 
U and A are related by a d x d nonsingular matrix T as 

U = A T  

The second step in the algorithm is to form submatrices of 
U using the proper selection matrices: 

U,, = J,iU, U,; = J , ; U .  (i = 1 ,2 )  

The shift-invariance structure of the array implies that 

U,, = A'T, U,; = A'O~T,  

where A' consists of the first M - 1 rows of A and the 
diagonal matrix 0, = diag{B,j}~,l contains the d shift pa- 
rameters of the d sources with reference to the i-th baseline. 
The final step is to estimate the parameters by considering 

It is seen that the data matrices E1 and E2 are jointly 
diagonalizable by the same matrix T. There are several 
algorithms to compute this joint diagonalization, e.g. by 
means of QZ iterations [5] or Jacobi iterations [6]. For this 
to work, it is necessary that each submatrix U,; has at least 
d rows. After T has been found, we also have estimates of 
{ ( O l k , & k ) }  for each of the d sources. 

It remains, for each source, to combine 81 and 0 2  into 
an estimate of the argument p of 8. Let us assume that 
A1 5 $, so that p1 (argument of 01) is not aliased and is 
a coarse estimate of p .  Also assume that A2 >> 4 ,  so that 
in p2 aliasing occurs: the estimate p is proportional to p2 
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Fig. 2. (a) The aliased spatial frequency p2 as a 
function of the alias-free spatial frequency p. 
(b) The corresponding winding number n. 

plus an appropriate integer multiple of 27r (see Fig. 2). It 
follows that we have two estimates of 27rsin(a), 

The winding number n is determined as the best fitting 
integer to match the two right hand side expressions, 

1 A2 n = round-(-p1 - p2). 
27r A1 

The ratio k, := 2 can be interpreted as the (spatial) gain 
in resolution. In particular, the estimate of 27rsin(a) based 
on p2 is a factor I C ,  more accurate than that based on p1. 

Assuming for simplicity that p1 and 1.12 are independent 
variables with equal variances, the two estimates can be 
optimally combined as 

SI + k , 2 ~ 2  sin(a) = ~ 

1 + k $  ' 
1 1  1 1  

2~ Ai 2~ A2 where S I  = --PI and s2 = --(27rn + p2) 

(This expression easily generalizes to the case of more than 
two baselines.) 

3 JOINT ANGLEFREQUENCY ESTIMATION 
3.1 Model 
Suppose that we observe a frequency band of interest, and 
want to separate all sources that are present. The sources 
are narrow band, typically with different carrier frequencies, 
but the spectra might be partly overlapping. The objective 
is to construct a beamformer to separate the sources based 
on differences in angles or carrier frequencies. This is a 
problem of joint angle-frequency estimation [2, 7, 81. We 
will assume that the sample rates are much higher than the 
data rates of each source, and that there is no multipath, 
although generalizations are possible. 

Suppose that the narrow band signals have a bandwidth 
of less than +, so that they can be sampled with a period 
T to satisfy the Nyquist rate. We normalize to T = 1. Let 
us say that the bandwidth of the band to be scanned is an 
integer number F times larger: after demodulation to IF we 
have to sample a t  a rate F .  Without multipath, the data 
model of the modulated sources at the receiver is 

,i 
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where fi is the residud modulation frequency of the i-th 
source (-f 5 fz < $) In matrix form this is written as 

z ( t )  = AIPts(t) (2) 

where @ = diag(+,}~:,, and 4, = e J % f s .  Since F can 
be quite large (order 20, say), it would be very expensive 
to construct a fuli data matrix of all samples. In fact, it 
is sufficient to subsamFle: collect m subsequent samples at 
rate F ,  then wait till the next period before sampling again, 
resulting in a data matrix 

1 .  z(0) zp:t . . . z ( N  - 1) 
z( f )  e( l+ 9 )  . . .  z ( N -  1 + f )  x =  1 .  , 

Li(m-i, i ( l+W) . . .  i(N-l+W)] 
With the model of s(t) in (2), we find that X has a factor- 
ization 

:Let us assume at this point that F >> m. In that case, 
. s ( t )  is relatively band limited with respect to the observed 
lband, which allows to make the crucial assumption that 

s ( t )  x s( t  + +) = . . ' = s(t  + 9) 
so that the model of X simplifies to 

1 A*"-' 1 
= ( F O A ) ( F ' O S ) .  

where o represents a column-wise Kronecker product, 0 
denotes an entry-wise (Schur-Hadamard) matrix product 
and 

r 1 . . .  :1 1 

F' is similar to F except for a transpose and different pow- 
ers, and represents the modulation on the signals. Obvi- 
ously, beamforming will not remove this modulation but 
after estimating I P ,  we citn easily correct for it. 

3.2 Estimation algorithm 

At this point, we have obtained a model with much the 
same structure as before, but with A replaced by F o A. 
The construction of the beamformer can now follow the 
same strategy as well. First note that the rank of X is only 
d ,  since this is the numbi?r ';'fJoys of S .  Thus we compute 
the SVD of X, i.e. X =:  UCV where 0 has d columns, 
spanning the column space of X. As before, we have 

U = ( F o A ) T ,  S = ( T U H ) X  

Fig. 3. Multi-resolution temporal sampling 
To estimate T ,  we begin by defining two types of selection 
matrices: a pair to select submatrices from F ,  and a pair 
to select from A,  

J z +  := n-i 011 8 IM .-Im 8 [ I M - ~  011 
{JY4 := [:I l ,m-i] 8 IM, {Pe ,e : = I n  '- 8 [OI I M - I ] .  

To estimate I P ,  we take submatrices consisting of the first 
and respectively last M(m - 1) rows of U, i.e. 

U,,, = J z + U ,  U, ,  = J,+U , 
whereas to estimate 0 we stack, for all m blocks, its first 
and respectively last M - 1 rows: 

&ti = J , e 6 ,  = J,eU 

These data matrices have the structures 

(4) 
UT,+ = A'T O,e = A"T { U,+ = A'IPT { AI'OT 

If dimensions are such that these are low-rank factoriza- 
tions, then 

(5) 
t & ~ , +  = T - ~ * T  
OLoO,e = T - ~ O T ,  

and T can be computed by joint diagonalization. 

3.3 Multi-resolution estimation algorithm 

If the frequency lband to be monitored is much wider than 
the bandwidth of the signals, then in the above algorithm 
F has to be chosen very large. This implies that the fre- 
quency estimates will not be very accurate. To overcome 
this problem, we can employ the multi-resolution ideas of 
section 2, but now in the temporal domain. 

Thus suppose we have two sampling rates, F1 (fast) and 
Fz (intermediate, compared to the source bandwidths), re- 
lated via a temporal gain factor kt = 2 >> 1. It usu- 
ally suffices to collect only two subsequent samples at the 
fastest rate F1, for every m samples at the intermediate 
rate Fz. See Fig. 3. In the figure, the outputs X, and Y,, 
i = 1,. . . , m, are id1 M x N matrices, where M is the num- 
ber of antenna elements and N is the number of temporal 
samples. This means that the data matrices X and Y are 
each of size mM x N and have a structure as in equation 
(3)2.  Let 2 be the overall data matrix, with a factorization 

2Note that Fz corresponds to the sampling rate F in (3) 
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where A is constructed from A as 

A= i:’I 1 .  
A*T-1 

The estimation of the parameters follows by defining 
three types of selection matrices operating on the data ma- 
trix 2: 

Jz4 i  = [1 
Jy+i = [O 
Jz92  = 1 2 @ [ I m - - l  O ] @ I M  
Jy42 = 1 2  @ [O I,-1]@ I M  
J,e = I z @ L  @ [ I M - ~  01 
Jye = 1 2 @ I m @ [ 0  I M - ~ ]  

After similar processing steps as before (SVD of 2, appli- 
cation of the selection matrices), we obtain the model 

01 @ I ,  @ I M  
11 @ 1, 8 I M  

uL41uy+1 = T - ‘ + ~ T  
uL+2uy+2 = T - ‘ * ~ T  
ULeU,e = T-’OT 

A joint diagonalization of the three matrices now provides 
estimates of ( r ) l , r ) ~ l Q )  of each source. If the array has 
an additional multiresolution structure, then 0 splits into 
01, 0 2  and can be estimated with multi-resolution ES- 
PRIT as discussed in section 2. 

To complete our estimation procedure, we need to esti- 
mate for each source the argument p of 4 by combining 41 
and $2 in the same way as we did for the DOA estimation in 
section 2. We assume that the two sampling frequencies F1 
and FZ are such that F1 > ifmax and FZ << ifmax. Based 
on these two sampling rates we obtain two estimates of the 
frequency f: 

f = F ’ p l  = 3 ( 2 n n + p z ) .  
2n 2 K  

The winding number n is determined as before using 

1 Fi n = round-( --pi - pz) 
2~ F2 

Note that if p1 and p2 have estimation errors of equal size, 
then the noise on the second estimate is a factor kt = 2 
smaller than the first estimate. Thus, we would either use 
the second equation to estimate fi, or optimally combine 
the two estimates using an equation similar to (1). 

4 SIMULATION RESULTS 

In this section we give simple simulation results that demon- 
strate the theory developed in this paper. The simulation 
example considers a processing band of 10 MHz and a lin- 
ear antenna array with M = 4 antenna elements arranged 
as in Fig. 1 with A1 = 1 and varying Az. The data is 
collected into a 2mM x d m a t r i x  using the setup of Fig. 3 
with m = 2, N = 64, F1 = 20MHz and varying Fz. We 
consider two sources emitting narrowband signals (25 kHz) 
at center frequencies f = [6,6.5] MHz, and propagating in 
distinct directions with respective DOAs a = [40,45] de- 
grees. The simulations are intended to indicate the effects 
of the spatial gain factor k ,  and the temporal gain factor 
k t .  Note that k ,  = 2 and kt = 1 correspond to uniform 
spatial and temporal sampling, respectively. 

lo‘ i 
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Fig. 4. (a) Standard deviation of the frequency 
timates for various temporal aain factors 

es- 
kt ; 

(b) similar for the azimith angle and spatial 
gain I C , .  

The results are plotted in Fig. 4 as functions of varying 
SNR. From the plots, it is evident that the multi-resolution 
ESPRIT gives frequency and DOA estimates whose accu- 
racies are proportional to the temporal gain factor kt and 
the spatial gain factor I C , ,  respectively. An upper limit for 
these gains is reached when the winding numbers n can no 
longer be estimated accurately; this is dependent on several 
factors including the SNR. 
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