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1. INTRODUCTION
1.1. Computational linear algebra and time-varying modeling

In the intersectionof linear algebraand systemtheory is the field of computatioal linear algebra

Its purposeis to find efficient algorithmsfor linear algebraproblems(matrix multiplication, inversion,
approximation).A usefulmodelfor matrix computationss providedby dynamicalsystemtheory Such
a modelis often quite natural: in any algorithmwhich computesa matrix multiplication or inversion,
the globaloperationis decomposethto a sequencef local operationghateachacton a limited number
of matrix entries(ultimately two), assistecby intermediatequantitiesthat connectthe local operations.
Thesequantites can be called the statesof the algorithm, and translateto the state of the dynamical
systemthatis the computationamodelof the matrix operation.Althoughmanymatrix operationcanbe
capturedthis way by somelinear dynamicalsystem,our interestis in matricesthat possessomekind of

structurewhich allows for efficient (“fast”) algorithms: algorithmsthat exploit this structure. Structure
in a matrix is inheritedfrom the origin of the linear algebraproblem,andis for our purposegypically

dueto the modelingof some(physical)dynamicalsystem.Many signalprocessingapplicationsjnverse
scatteringporoblemsandleastsquaresstimationproblemsgive rise to structuredmatricesthatcanindeed
be modeledby a low complexitycomputationakystem.

Besidessparsematrices(many zero entries),traditionalstructuredmatricesare Toeplitzand Hankel ma-
trices(constantalongdiagonalsor anti-diagonals)which translateto linear time-invariant(LTI) systems.
Associatedcomputationalalgorithmsare well-known, e.g., for Toeplitz systemswe have Schurrecur
sionsfor LU- and Choleskyfactorization[1], Levinsonrecursionsfor factorizationof the inverse[2],
Gohbeg/Semencutecursiongor computingtheinverse[3], andSchurbasedecursiondor QR factoriza-
tion [4]. The resultingalgorithmshavecomputingcomplexityof order@(n?) for matricesof size (nxn),
ascomparedo @(n®) for algorithmsthat do not takethe Toeplitz structureinto account.Generalizations
of the Toeplitz structureare obtainedby consideringmatriceswhich havea so-calleddisplacemenstruc-
ture [5, 6]: matricesG for which thereare (simple)matricesF;, F, suchthatG - F{GF; is of low rank.
Overviewsof inversionand factorizationalgorithmsfor suchmatricescanbe foundin [7, 8].

The Toeplitz, Hankeland displacemenstructuresgive rise to computationamodelswith a low number
of inputsand outputs. In this paper we pursuea complementarynotion of structurewhich we will call
the statestructure. The statestructureappliesto uppertriangularmatricesandis seeminglyunrelatecto
the Toeplitz or displacemenstructurementionedabove. A first purposeof the computationaschemes
consideredn this paperis to performa desiredlineartransformationil on somevector(‘input sequence’)
u,

u=[ur u -+ uy,

with an outputvector or sequencey = uT as the result. The key idea is that we can associatewith
this matrix-vectormultiplicationa computationahetworkthat takesu and computesy, andthat matrices
with a ‘small’ statestructurehavea computationahetworkof low complexityso that usingthe network
to computey is more efficient than computinguT directly. To introdwce this notion, consideran upper
triangularmatrix T alongwith its inverse,

1 12 U6 1/24 1 -12
. 1 13 112 . 1 -13
1 14 1 -14
1 1

Theinverseof T is sparsewhichis anindicationof a ‘small’ statestructure.Computationahetworksfor
the computationy = uT are depictedin figure 1. The computationsn the networkare split into sections,
which we will call stageswherethe k-th stageconsumesi, and producesyk. The dependencef yk on
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Figure 1. Computationahetworkscorrespondindo T. (a) Direct (trivial) realization,(b) minimal real-
ization.

Ui, (i <k) introducesintermediatequantitiesxy called states At eachpoint k the processoiin the stage
at that point takesits input datauy from the input sequences and computesa new outputdatayy which
is part of the outputsequencey generatedoy the system. To executethe computation,the processor
will usesomeremainderof its pasthistory; i.e., the statexx, which hasbeencomputedby the previous
stagesand which was temporarilystoredin registersindicatedby the symbolz. The complexity of the
computationahetworkis equalto the numberof statesat eachpoint. The total numberof multiplicatiors
requiredin the minimal realization(figure 1(b)) that are differentfrom 1 is 5, as comparedto 6 in a
direct computationusing T (figure 1(a)). Althoughwe have gainedonly one multiplicationhere, for a
lessmoderateexample,say an (n x n) uppertriangularmatrix with n = 10000andd < n statesat each
point, the numberof multiplicationsin the networkis in the order of O(d?n) and can evenbe further
reducedo @ (4dn), insteadof ¥(1/2n?) for a directcomputatiorusingT. Note howeverthatthe number
of statescanvary from one point to the other dependingon the natureof T. In the exampleabove,the
numberof statesenteringthe networkat point 1 is zero, and the numberof statesleaving the network
at point4 is alsozero. If we would changethe value of one of the entriesof the 2 x 2 submatrixin the
upperright cornerof T to a differentvalue, then, in the minimal network, two stateswould have been
requiredto connectstage?2 to stage3.

The computationsn the networkcan be summarizedoy the following recursion for k =1 to n:

Xie+1 XAy + UkBy

=uT P 1.1
Y W = XCx+uDy D
or
A¢ C
. =% ud Tk, T =
X1 Vi =% ud T k [Bk Dx

in which xy is the statevectorat time k (takento havedy entries)Ay is a di x di+1 (possiblynon-square)
matrix, Bk is a 1 x dy+1 vector, Cy is a d¢ x 1 vector and Dy is a scalar More generalcomputational

3



networkswill havethe numberof inputsandoutputsat eachstageto be differentfrom one,andpossibly
alsovaryingfrom stageto stage.In theexample(figure 1(b)), we haveassequencef realizationmatrices

o o 173 1 /4 1 01
T4 = T- = T2 = T4=
! [1/21 2 [1/3 1] s [1/4 1] ! [Dl]
wherethe ‘[ indicatesentriesthat actually have dimension0 becausehe correspondingtatesdo not
exist. The recursionin equation(1.1) showsthat it is a recursionfor increasingvaluesof k: the orderof
computationsn the networkis strictly from left to right, and we cannotcomputey x unlesswe know Xx,
i.e., unlesswe haveprocessedy, - - -, Ui—1. On the otherhand,yx doesnot dependon Uiy, - - -, Uy. This

is a direct consequencef the fact that T hasbeenchosenuppertriangular so that suchan orderingof
computationss indeedpossible.

A link with systemtheoryis obtainedwhenT is regardedasthetransfermatrix of a non-statimary causal
linearsystemwith inputu andoutputy = uT. Thek-th row of T thencorresponds$o theimpulseresponse
of the systemwhen excitedby an impulseat time instanti, thatis, the outputy dueto an input vector
u with entriesu; = g, where g\ is the Kroneckerdelta. The casewhereT hasa Toeplitz structurethen
correspondsvith a time-invariantsystemfor which the impulseresponsealueto animpulseattimei + 1
is justthe sameasthe responselueto animpulseat time i, shiftedoveroneposition. The computational
networkis calleda statespacerealizationof T, andthe numberof statesat eachpointof thecomputational
networkis called the systemorder of the realizationat that point in time. For time-invariantsystems,
the staterealizationcan be chosenconstantin time. Sincefor time-varyingsystemsthe numberof state
variablesneed not be constantin time, but can increaseor shrink, it is seenthat in this respectthe
time-varyingrealizationtheoryis muchricher, andthatthe accuracyof an approximatingcomputational
networkof T canbe variedin time at will.

If the numberof statevariablesis relatively small, thenthe computatiorof the outputsequencés efficient

in comparisorwith a straightcomputationof y = uT. One exampleof a matrix with a small statespace
is the casewhere T is an upper triangularband-matrix: T; = O for j —i > p. In this case,the state
dimensionis equalto or smallerthanp. However the statespacemodelcanbe muchmoregeneral e.g.,
if a bandeduppermatrix hasan inverse,thenthis inverseis knownto havea sparsestatespace(of the
samecomplexity) too, as we had in the exampleabove. Moreover this inversioncan be easily carried
out by local computationgon the realizationof T (we assumeDy square;for the generalcase,see[9)):

lety=uT = u=yT!=:yS then

{ Xir1 XA + UBy _ { X1 = X(A—CDEBe)  + WkDiB
Yk

XCi + uDyg Uk -xCxDit + Dt
sothata modelof Sis givenby

A — CkDilBk _CkDE1

= 12
S D; Bk D;! (12)

Observethatthe modelfor S= T! is obtainedin a local way from the modelof T: Sy dependsonly on
Tk. The sumandproductof matriceswith sparsestatestructurehaveagaina sparsestatestructurewith
numberof statesat eachpoint not largerthanthe sum of the numberof statesof its componensystems,
and computationalnetworks of these compositions(but not necessarilyminimal ones) can be easily
derivedfrom thoseof its components Finally, we mentionthata matrix T; thatis not uppertriangular
canbe splitinto an uppertriangularanda lower triangularpart, eachof which canbe separatelymodeled
by a computationahetwork. The computationamodelof the lower triangularparthasa recursiorwhich
runsbackwards:

X = XAt By

Yk X|é+lclé + Uleé .
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Figure 2. Hankelmatricesare (mirrored) submatriceof T.

The model of the lower triangularpart can be usedto determinea model of a unitary uppermatrix U
which is suchthat UMT is upperand hasa sparsestatestructure. In this way, resultsderivedfor upper
matrices,suchasthe aboveinversionformula, canbe generalizedo matricesof mixed type[9].

1.2. Realization algorithm

One might wonderfor which classof matricesT thereexistsa sparsecomputationahetwork (or state
spacerealization)thatrealizesthe samemultiplicationoperator For an uppertriangular(n x n) matrix T,
let the matricesH; (1 < i < n), which are submatricef T, be

Ti-1i Ti—zivr -+ Tizin

H = Ti2i T2+t :
. T2,n
Ty R E S

(seefigure 2). We call the H; (time-varying) Hankel matrices, as they will have a Hankel structure
(constantalong anti-diagonals)f T has a Toeplitz structure” In terms of the Hankel matrices, the
criterion by which matriceswith a sparsestate structurecan be detectedis given by the following
theorem.

Theorem 1.1. The numberof statesthat are neededat stagek in a minimal computatimal network
of an uppertriangular matrix T is equalto the rank of its k-th Hankelmatrix H .

PrROOF Supposehat {Ax, Bk, Ck, Dk} is arealizationfor T asin equation(1.1). Thena typical Hankel
matrix hasthe following structure:

[ B,C, B1A,Cs B1AACy
BoA1C2 BoA1AxCs
H, =
B—1A0A1C2
- Bl
BoAy |
= B-1AcA; [[CZ ACs ANAC, - ] =0,

Bwarning: in the currentcontext(arbitrary uppertriangularmatrices)the H; do not havea Hankelstructureandthe predicate
‘Hankel matrix’ could leadto misinterpretationsOur terminologyfinds its motivationin systemtheory wheretheH ; arerelated
to an abstractoperatorHt which is commonlycalled the Hankel operator For time-invariantsystemsH 1 reducego an operator
with a matrix representatiothat hasindeeda Hankelstructure.

5



Fromthe decompositiotHy = CkO it is directly inferredthatif A is of size (dkxdk+1), thenrank(Hy) is at
mostequalto dx. We haveto showthatthereexistsa realization{Ay, By, Ck, D} for which di = rankHy):

if it does,thenclearly this mustbe a minimal realization. To find sucha minimal realization,take any
minimal factorizationHy = CxO into full rank factorsCyx andOx. We mustshowthatthereare matrices
{Ax, Bk, Cx, Dk} suchthat

By-1
Ck= | Br2Ak1 Ok=[C AC1 AAw1Ci2 -] . (1.3)

To this end, we usethe fact that Hy satisfiesa shift-invarianceproperty: with H5 denotingH, without
its first column,we have

By
BoAy

H2 = | BLAA

A, [[Cg A3C4 A3A4C5 ] .

In general,H; = CkAOk+1, andin muchthe sameway, H| = Ck-1A-10k, where H| is Hy without its
first row. The shift-invariancepropertiescarry over to Cx and Oy, e.g., O = AOk:1, and we obtain
that Ax = Og 0L, (O O,q) ™%, where‘™ denotescomplexconjugatetransposition. The inverseexists
becausa. is of full rank. Cy follows asthefirst columnof the chosen?y, while By is the first row of
Ck+1- It remainsto verify that Cx and Oy areindeedgeneratedy this realization. This is straightforward
by a recursiveuse of the shift-invarianceproperties. n

Let’s verify theorem1.1 with the example.The Hankel matricesare

H, = [00] , Ho = [U2 16 124] ,
1/4
1/3 1/12
Hs = l ] , Ha=| 1/12
24
ve u 1/24

Since rankH;) = 0, no statesx; are needed. One stateis neededfor % and one for x4, because
rankH,) = rankH4) = 1. Finally, also only one stateis neededfor x3, becauseaankHs) = 1. In fact,
thisis (for this example)the only non-trivial rank condition: if oneof the entriesin H 3 would havebeen
different,thentwo stateswould havebeenneeded.In generalrankH;) < min(i—1,n-i-1), andfor a
generaluppertriangularmatrix T without statestructure,a computationaimodelwill indeedrequire at
mostmin(i — 1,n—i — 1) statesfor x;.

The constructionin the proof of theorem1.1 leadsto a realizationalgorithm (algorithm 1). In this
algorithm,A(;, 1 : p) denoteghe first p columnsof A, andA(1 : p,:) thefirst p rows. The key part of the
algorithmis to obtaina basis@y for the rowspaceof eachHankel matrix Hy of T. The singularvalue
decomposition(SVD) [10] is a robusttool for doing this. It is a decompositiorof H y into factors U,
>, Vk, WhereUy andVy are unitary matriceswhosecolumnscontainthe left andright singularvectors
of Hy, andZ is a diagonalmatrix with positiveentries(the singularvaluesof H ) on the diagonal. The
integer dy is set equalto the numberof nonzerosingularvaluesof Hy, and Vi(1 : d,:) containsthe
correspondingsingularvectors. The rows of VH(1 : dy,:) spanthe row spaceof Hx. The restof the
realizationalgorithmis straightforwardn view of the shift-invarianceproperty Note that, basedon the
singularvaluesof Hy, a reducedordermodelcanbe obtainedby taking a smallerbasisfor Ok, muchas
in the Principal Componentdentificationmethodin systemtheory[11], whichis alsoknownasbalanced
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In: T (an uppertriangularn x n matrix)
Out:  {T«}!] (a minimal realization,in outputnormalform)

Oni1 = [ EJ
fork=n,...,1
[(He = U
d« = rankXy)
Gk = (UkZ)(:, Lid)
Ok = V(Ld,:)
Ac = Ok[0 O]”
Ck = Ok(;,1)
B« = Cwi(l)
Dk = Tkk
end

Algorithm 1. Realizationalgorithm.

model reduction. Although widely usedfor time-invariantsystems,this would resultin a “heuristic”
model reductiontheory asthe modelingerror norm is not known. The goal of the presentpaperis to
obtaina precisetheory A final remarkis thatthe abovealgorithmyields a realizationin outputnormal
form:

AkAE+ CkCE =
which is a consequencef the fact thatan orthonormalbasisfor the row spaceof Hy hasbeenused.

1.3. Hankel norm approximation

In the previoussection,we haveassumedhat the given matrix T hasindeeda computationamodel of
anorderthatis low enoughto favor the useof a minimal computationahetworkover an ordinarymatrix
multiplication. However if the rank of the Hankelmatricesof T (i.e., the systemorder)is not low, then
it could makesenseto approximatel by a new uppertriangularmatrix T, thathasa lower complexity
i.e., whoseHankel matriceshave low rank. It is of coursedependenbn the origin of T whetherthis
indeedyieldsa usefulapproximatiorof the underlying(physical)problemthatis describedy theoriginal
matrix. Forexample,it could happerthatthe givenmatrix T is not of low complexitybecausenumerical
inaccuracief the entriesof T haveincreasedhe rank of the Hankelmatricesof T, sincethe rank of
a matrix is a very sensitive(ill-conditioned)parameter But evenif the given matrix T is known to be
exact,anapproximatiorby a reduced-ordemodelcould be appropriatefor examplefor designpurposes
in engineeringto capturethe essentiabehaviorof the model. With sucha reduced-complexitynodel,
the designercan more easily detectthat certain featuresare not desiredand can possibly predict the
effectsof certainchangesn the design;an overly detailedmodelwould rathermaskthesefeatures.

Becausehe systemorderat eachpointis given by the rank of the Hankelmatrix at thatpoint, a possible
approximationrschemes to replaceeachHankelmatrix by onethatis of lower rank (this could be done
using the SVD). The approximationerror could then very well be definedin terms of the individual
Hankel matrix approximationsas the supremumover the individual approximationerrors. The error
criterion for which we will obtaina solutionis calledthe Hankelnorm. It is definedasthe supremum
over the operatomorm (the spectralnorm, or the matrix 2-norm) of eachindividual Hankel matrix:

[ Tllw = supl| Hk | = sup sup || uH |2 (1.4)

k llull<1
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This is a generalizatiorof the Hankel norm for time-invariantsystems.It is a reasonablystrongnorm:
if T is a strictly uppertriangularmatrix and|| T||n < 1, theneachrow and columnof T hasvectornorm
smallerthanl. In termsof the Hankelnorm, we will provethe following theoremin section3.

Theorem 1.2. LetT bea strictly uppertriangular matrixandlet I' = diag(y) be a diagonalHermitian
matrix which parametrizeghe acceptableapproximationtolerance(y; > 0). Let Hx be the Hankelmatrix
of IIT at stagek, and supposehat, for eachk, noneof the singular valuesof Hy are equalto 1. Then
there existsa strictly uppertriangular matrix T, with systermorder at stagek at mostequalto the number
of singularvaluesof Hy that are larger than 1, suchthat

ITHT-Ta)|ln < 1.

In fact, thereis a collection of suchT,. We will show the theoremby constructionand obtain a
computationalmodel of a particular T, as well. Becausethe Hankel matriceshave many entriesin
common,it is not clearat oncethatthis approximatiorschemeis feasible: replacingone Hankel matrix
by a matrix of lower rank in a certainnorm might make it impossiblefor the next Hankel matrix to
be replacedby an optimal approximant(in that norm) suchthat the part that it hasin commonwith
the previousHankel matrix is approximatedoy the samematrix. In otherwords: eachindividual local
optimizationmight preventa global optimum. The severity of this dilemmais mitigatedby a proper
choice of the error criterion: the fact that the above defined Hankel norm usesthe operatornorm of
eachHankelmatrix, ratherthanthe strongerrobeniusnorm, givesjust enoughfreedomto obtaina nice
solutionto this dilemma. The solutioncan evenbe obtainedin a non-iterative form.

' can be usedto influencethe local approximationerror. For a uniform approximation, = yl, and
hence||T - Ty||n < y : the approximants y-closeto T in Hankelnorm, which impliesin particularthat
the approximationerrorin eachrow or columnof T is lessthany. If oneof the y; is madelargerthan
¥, thenthe error at the i-th row of T canbecomelarger also, which might resultin an approximantT 5 to
take on lessstates.Hencel' canbe chosento yield an approximanthatis accurateat certainpointsbut
lesstight at others,andwhosecomplexityis minimal.

Hankel norm approximationtheory originatesas a special case of the solution to the SchurTakagi
interpolatian problemin the contextof complexfunctiontheory Thesolutionwasformulatecby Adamjan,
Arov and Krein (AAK) [12], who studiedpropertiesof the SVD of infinite Hankel matrices(havinga
Hankelstructure)andassociate@pproximatiorproblemsof boundedanalyticalfunctionsf(z) by rational
functions. In linear systemtheory it is a well known resultof Kroneckerthat the degreeof a rational
functionis equalto the rank of the Hankelmatrix constructedn the coeficientsof its Taylor expansion
[13]. The main problemwith approximatinga Hankelmatrix using SVD, in the time-invariantcontext,
is to ensurethat the approximationhasagaina Hankel structure. When the function is regardedas the
transferfunction of a linear time-invariantsystemthis numberis the model order It was remarkedin

Bultheel-Dewilde[14] and subsequentlyvorked out by a numberof authors(Glover [15], Kung-Lin
[16], Genin-Kung[17]) thatthe procedureof AAK could be utilized to solve the problemof optimal

model-ordemreductionof a dynamicaltime-invariantsystem,andthat, althoughthe Hankelmatrix is of

infinite size, computationcan be madefinite if a finite-orderstatemodelis alreadyknown [14]. It is
possibleto give a global expressiorof the approximantbasedon a global statespacebasedsolutionof

a relatedSchurTakagiinterpolationproblem;the necessarytheorywas extensivelystudiedin the book
[18]. The computationscan also be donein a recursivefashion[19]. Statespacetheory provideda
bridge betweenanalyticaltheory and matrix computations.

In a recentseriesof papers[20, 21, 22, 23 24, 25 a theory was developedto derive models for
uppertriangularmatricesas, now time-varying, linear systems. The classicalinterpolation problemsof
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Schuror Nevanlinna-Pickcan be formulatedand solvedin a contextwherediagonalstake the place of
scalars.A comprehensivéreatmentcan be found in [24], and we will adoptthe notationof that paper
A supplementaryealizationtheory of upperoperatorsin a state spacecontextappearedn [25] and
providedthe toolsto solve the generalizedHankel-normmodel reductionproblemin combinationwith
the interpolation theory The generalsolutionis publishedin [26], the presentpaperis a specialization
to finite uppertriangularmatrices,and containsindependentfinite dimensionalproofs.

1.4. Numerical example

As an exampleof the useof theoreml.2, we considera matrix T and determinean approximan(T,. Let
the matrix to be approximatece

0 .800 .200|.050 .013 .003
0O 0 .600| .240 .096 .038
0O 0 0]500 .250 .125
0
0
0

0O 0 0 .400 .240
O 0 0 0 .300
o 0 0 0 O]

The positionof the Hankelmatrix H, is indicated. Taking " = 0.11, the non-zerosingularvaluesof the
Hankel operatorsof 1T are

Hi Hy Hs Hs Hs Hg
826 685 631 553 4.06
033 029 023
0.01

HenceT hasa statespacerealizationwhich grows from zero states(i = 1) to a maximum of 3 states
(i = 4), andthenshrinksbackto O states(i > 6). The numberof Hankelsingularvaluesof I T thatare
largerthanoneis 1 (i = 2,- - -,6). At eachpointin the sequencethis is to correspondo the numberof

statesof the approximantat that point. Using the techniquesof this paper we obtain

0 .790 .183 .066 .030 .016 |
0 0 594 215 .098 .052
T, = 0 0 0 499 227 121
0 0 0 0 402 .214
0 0 0 0 0 .287
0 0 0 0 0 0

with non-zeroHankel singularvalues(scaledby I')

Hi Hy Hs Hs Hs Hg
815 671 6.16 536 3.82

whosenumberindeedcorrespondo the numberof Hankelsingularvaluesof I 1T thatarelargerthan 1.
Also, the modelingerroris

0 .010 .017 -.016 -.017 -.013]
0 0 .006 .025 -.002 -.014
0 0 0 .001 .023 .004
0 0 0 0 -.002 .026
0 0 0 0 0 .013
0 0 0 0 0 0
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with Hankelnorm of I (T -T,) lessthan1:
|IF (T = Ta)||n = sup{0.334, 0.328 0.338 0.351, 0.347} = 0.351

The realizationalgorithm (algorithm 1) yields as realizationfor T

o o 246 -.041 —.968]

Ty =
| —826|0 -.654 -.00 0

487 .037| -.873
397 -.044 .ooo\ -.917

853 -.237 .465
Ta=| . 140 . : Ta=

3 910 .140 .040| .388 4 189 971 .147
| -573 00 .00 O

| -466 .00 0

[ -515| -.858 g1
Ts=| .858| -515 Te= ]
300 0 [ J0

A realizationof the approximants determinedvia algorithm3 in section3.5as

= [ 0o S [ 293 —.795]
17| —993] 0 27| —es6] o
e [ 410] -.620 - [ 525 —.554]
27901 O 47| -837] o
e [ -651| -.480 ooe = .393]
S I 7T *Tlo o

The correspondingomputationaschemesare depictedin figure 3. It is seenthat a small changein T
canleadto a significantreductionin the complexity of the computations.

2. NOTATION AND PRELIMINARIES
2.1. Spaces

An essentialngredientof our theoryis the conceptof non-uniformsequencesvectorswhoseentriesare
againvectorsin someEuclideanspaceandwhich can havedifferentdimensiongor eachentry. Thuslet

B = By xByx---xB,

whereB, = C%, andd; is the dimensionof B;. Somedimensionsmight be zero, e.g., B =C! x 0 xC?
is a valid spacesequenceand[0.5, ,[2, 1]] is an elementof 3, the 2-norm (vector norm) of which is
(0.25+ 4+ 1)Y2, A generalizedmatrix (a block matrix, which we will call a tableauto distinguish is a
linearmapM — N, where M, A arespacesequencess 3 above. For exampleto M =C?x [0 xC?,
N =C xC xC correspondableausof the form

C Cc C
0 o o

2
C{HDD
0 0 0 O
c 0 o O

wherethe (1, 1) entry is identified by a square,the main diagonalis distingushedby an underscore,

‘0 standsfor any scalar and ‘[1 standsfor an entry with an empty dimension. The abovetableauis

isomorphicto a 3 x 3 ordinary matrix. We denoteby X' (M, N) the spaceof linear mapsM - A, by

U (M, N) the spaceof uppertableausin X' (M, .N), thatisf = {F O X : Fj; = 0,i >j}, by L(M,N)
10



Uy —— ——=V1 Uy —— ——= V1

Up ——= ———= V2 Up —— ——= V2

Uz — > Y3 Us Y3

Ug—— ——=Va Us—— ——=Va

Us — > Y5 Us Y5

Usg— ——= VY6 Usg— ——= V6

(@) (b)

Figure 3. Computationakcheme(a) of T and(b) of T,.

the spaceof lower tableausin X' (M, N), andby D(M, N) the spaceof diagonals.Note thatif F O &/
is invertible, its inverseis not necessarilyin & (unlike with ordinary matrices),as is demonstratedor
exampleby

C c?
0

C 1 0
0 Fl=C 1/2 1
1 = .
In

C
1
2
e |l
0
0 C 1/4 -1/2

oo O

0
0
0

in

Whenviewed as matrices,F! is of coursejust the matrix inverseof F.

A rightwardshifted spacesequences denotedby B®, asin

BYO=0OxByxByx---xB,. (2.1)

The shift operatorZ shifts a sequenceo the right andis a mapB - B®, with tableau

O By By --- By
B @ |
B> o o |
Z=
Bn 0 0 |

It is unitary: ZZ" = |5, Z"Z = Igw. We denoteby ZI¥ the productof k shifts. It isamapB - B®. Let
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TOU(M,N) beannxn tableau.We can decompose into a sumof shifteddiagonals:

n-1
7= ZMTy,
k=0

whereTyq O D(M®, N) is the k-th diagonalabovethe main (0-th) diagonal. Given a diagonalA O D,
we canwrite A = diagA), wherethe A are the diagonalentriesof A. Its k-th shift into the South-East
directionis definedby A® = (zIM)JAZIM, sothat AW = A

We define P asthe projectionof X onto/, Pz, the projectiononto strictly uppermatrices,and Py as

the projectionof A ontoD. With regardto matrix norms, || T|| is the operatororm (matrix 2-norm),
|| T||r is the Frobeniusnorm, and|| T||u is the Hankelnorm, definedrespectivelyby

ITI = sugp< [IUTl2

1Tl = {3 1T 17}

ITlH = SURyocze, jujest [[PUT [[E-
Note thatthe abovedefinition of the Hankelnormis equivalento the definitionin (1.4). We remarkthat
this normis only a norm on the spacezi{, while on X it is a semi-norm. We will alsoemploya new
norm, which we call the diagonal2-norm. Let T; be the i-th row of a tableauT O X', then

DOD: |[Dllpz=sug| Dyl
TOX: [Tl = Po(TT) o2 = sup | TT7.-

For diagonalsit is equalto the operatornorm, but for more generalmatrices,it is the supremumover
the vector2-normsof eachrow of T.

Proposition 2.1.  The Hankelnorm satisfiesthe following ordering:

TOX: [ TIw < || T (2.2)
TOZU : [ Tllo2 < || T|n- (2.3)

PrROOF The first norminequalityis provenby

ITlH = suRoezajupess IPUT) |l
SURuoczufest (IUTIIE
SURw ot IIUTIE = I

For the secondnorminequality we first prove|| T||%, < SUgp, | pe<z || DTTDY||F. Indeed,

I 7132 [ Po(TT) [152
SURtD, ||D|post DPo(TT)D"||p2
= SURup,pjest DPo(TT)D||
< SURyap,pfest |[DTTDYe.

IN

IN

Then (2.3) is proven,with useof thefactthatT 00 ZU/:
ITl%2 < SURap,|bjjest | DTTD|
= SUbop, |ofest | DZTT"ZD ||
= SURop, | Djjest | P(DZT) [P(DZ"T)] ; 13
S SURoezyupess | P(UT) [P(UT]" ||
= I T
|
We seethat the Hankel normis not as strongas the operatornorm, but is strongerthan the row-wise
uniform leastsquarenorm.
12



2.2. Realizations

ForagivenT O U (M, N'), acomputationamodelis definedby the sequencef matrices{ A, Bk, Ck, Dk}
in the form given by equation(1.1). Let the statexx O Bx. We can assemblehe matrices{A}, {Bx}
etc. into diagonalspy defining

A O D(B,B)=diagAy), C O D(B,N)=diadgCy), (2.4)
B O D(M,B™)=diagBy), D O DM,N)=diagDy), '
which togetherconstitutea realizationT of T,
xZ1 = XxA+uB A C
=uT - T = 25
y=d { y = xC+uD B D (25)

This descriptionis equivalentto (1.1), but often more convenientto handlebecausehe time-indexhas
beensuppressedSubstituton leadsto

T=D+BZI-A2™C,
where(l - A2)™ satisfiesthe expansion

(1-A2Y = |+AZ+AZAZ+---
| +AZ+AADZ2 + ANDACDZS + ...

As we will assumehroughouthe paperthat the realizationstartsand endswith empty statespacesthis
summationis in factfinite: AACD ... AM =[], wheren is the sizeof T. Hence(l -A2)™! alwaysexists
andthe expressiorfor T is meaningful.

Connectedto a staterealization, we can distingtsh global controllabiity and observabilityoperators

definedas
B(+D

B2 ACD)
C = | geaAFDACD 0 = [C ACTY AATICED . ] (2.6)

Ck and Ok asin equation(1.3) are obtainedas the k-th (block) column and row of ¢ and O, respec-
tively. RecallthatCyx and Oy are closely relatedto the Hankel operator:its k-th “snapshot’Hy hasthe
decomposition

Hy = CkOk.

We say that the realizationis controllablewhen the controllabiity operatorC is suchthat the diagonal

matrix M := CC, is invertible,i.e., eachMy = CCx is invertible. Likewise, the realizationis observable
if Q := OO is invertible. In the presentcontext, it is always possibleto choosethe realizationto be

both controllableand observablejn which casethe realizationis also minimal, in the sensethat the

dimensionf the statespaceat eachpointk in the sequencés minimal. For suchrealizationsthe rows

of Oy form a (minimal) basisfor the row spaceof Hy, andthe columnsof Cy form a basisfor its column

space.C and O canbe thoughtof asa collectionof thesebasesinto a single object.

Another notion that we will needis that of “state transformations”.If {A,B,C,D} is a realizationof a
systemwith transfermatrix T, thenan equivalentrealizationis found by applyinga statetransformation
% = XR on the statesequence of the system,whereR is an invertible diagonalmatrix. The realization
matrix T is thentransformedo

R A C

B D
13
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(Note the diagonalshift in (RCD)1). Statetransformationsare often usedto bring a realizationinto
somedesirableform. This thenleadsto equationsof the famousLyapunovor Lyapunov-Steirtype. For
example the Lyapunovequation

MY = ABMA + BB, M O D(B, B) (2.7)

arisesin thetransformatiorof a controllablerealizationto inputnormalform: onefor whichAPA+B™B = 1.
If the original realizationis controllable thenan invertible statetransformatoR canbe found suchthat
A; = RAR)™, B, = B(R™)™ and

ATA; +BB; = 1.

Substituton leadsto equation(2.7), with M = RFR, andhenceit sufficesto solvethis equationfor M and
to verify thatM is invertible,in which caseafactorR is invertibletoo. Sinceequation(2.7) only involves
diagonalsijt canbe solvedrecursively:My.1 = AMA+BBy, wheretheinitial valueis My = [ []. Finally,
if C is the controllabilty operatorof the given realization,thenM = C 7€ is the solutionof (2.7), which
showsthatM is invertibleif the realizationis controllabk. Likewise, if the realizationis observablgO

is suchthat Q = @OV is invertible), thenQ is the uniquesolutionof the Lyapunovequation

Q=AQ™MA”+cC
andwith thefactoringof Q = RR™ thisyieldsaninvertible statetransformatiorR suchthatA; = RTARD,
B, = BR_:L), C. = R_]'C, and
AAT+CiCT=1,
The resulting{Aq, B1, C1, D} thenform an outputnormal realizationfor the matrix. In section3.3 we

will assumehatthe matrix to be approximateds indeedspecifiedby a realizationin outputnormalform,
which is automaticallythe caseif the realizationalgorithm (1) hasbeenused.

2.3. J-unitary matrices

If amatrixis atthe sametime unitaryandupper(with respecto its block structure) we will call it inner.
In this paperwe will makeextensiveuse of matrices® thatare block upperand J-unitary. To introduce
thesematricesproperly we mustdefinea splitting of the sequenceof input spacesinto two sequences
M and V3, a splitting of the sequencef outputspacesnto two sequencesvi ; and A,, andsignature

sequences; andJ;:
|
, Ji = [ M ] , J, = [ L, ] . (2.8)
_INl _INZ

© decomposedn four blocks, mapping M1 x N1 to M, x N>. If eachof thesemapsare upper we say
that © is block-upper @ will be called J-unitary relativeto this splitting in blocks,when

O O
O Ox

O=

0",0=J, and 0J0"=J;. (2.9)

A J-unitarymatrix © canbe constructedisinga computationamodel © thatis J-unitaryin the following
sense.Let B be the statesequencepaceof a realization®, andlet 5 = B, x B- be a decompositiorof
B. Define the signaturematrix
|
=I5

(we call Js the statesignaturesequence)A realization® is called J-unitary (with respecto {Jg, J1, J2})
if it satisfies

(-1) (-1)
ov| 5 o= . ol o= | ¥ . (2.10)
% % % %

14



(B (B-) (B (B-)

|| ||

Mk ——~ e M2k Maok—— L (M2
Ok Zk
(NM)k - o= (M2 Nk =—] < (Vo)
(B)ker (B-)k+1 (B)krr (B-)k+1

@) (b)

Figure 4. (a) Thespacesonnectedvith arealizationfor a J-unitaryblock-uppematrix © whichtransfers
MixN7to MoxN>. Therealizationmatrixis markedas®. (b) Thecorrespondingcattering—
or unitary—sitiation

Figure4(a) givesa sketchof the situationfor the model © associatedvith ©.
Proposition 2.2.  If © is a J-unitaryrealizationin the senseof equation(2.10),thenthe corresponding

transfermatrix © will be J-unitaryin the senseof equation(2.9).

ProOOF This is readily verified by taking as realizationfor ® an {a, 8, y, 8} which satisfies(2.10), and
evaluatingJ, - ©9,0:

J, -0",0

J— 30 + V]ZDU - aDZ[b‘laDJBy + })]JB a(l - Za)‘12y+
-y ZH1 - a2 G - oI a} (1 - Za)tzy
YIsy + (I = ZPa) ™ Z% s + IgazZ - Is — ZMa g aZ} (1 - a2) 1y,

since f0.8= —a gy, =Y - azaandd, - 53.6= sy, andhence
B

5L -00 = HI-Z%) (1 -2%"s( - az) +
+ ZDGDJB +JsaZ—-Jg — ZDGDJB CVZ} (| - aZ)‘ly
= 0.
The secondequality of (2.9) follows by an analogougprocedureasabove. n

A J-unitary uppermatrix hasthe following specialproperty

Proposition 2.3.  If {a,,y,d} is an observableealizationfor a J-unitary block-uppematrix ©, then
Y -d"ZH)ne 0w Ul (2.11)
thatis, ZX(I — a"Zz5)14-3;, which s a strictly lower matrix, is mappedby © to a block uppermatrix.

PrOOF Evaluationof the first part of equation(2.9) revealsthat

7 - a2 150, ©
=ZH1 - o269, (3+ BZ(1 — a2) 1))
= 7{1 - aZ9)1 {—aDJB + (359 - a s a)z(l - aZ)‘l} y (2.12)
= (Z- a9t {—aDJB(I —az)+ I;Vz7 - aDJBZ} (I -a2)ly
=3(-a2ty O u.
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Figure 5. Relationbetweena J-unitary matrix © andthe correspondinginitary matrix 2.

Proposition2.3 canbe interpretedas a general‘interpolation principle” which will be treatedin detailin
sections3.1-3.3.

Another propertythat follows from the J-unitarity of © is that © ,; is invertible. Associatedto © is a

matrix 2,
2 2
s = 11 212
221 22

which is suchthat
[a1 bp]Z=[ax by] e [aa bi]O=[az by],

I 0| _
©n ||
It is straightforwardo provethatfrom the J-unitarity of © it follows thatX is unitary. Z is knownasa
scatteringmatrix, while © is calleda chainscatteringmatrix. ~ and® constitutethesamelinearrelations
betweenthe quantitiesay, ap, by, b,. However the signalflows of the “incident” and“reflected” waves
of 2 coincidewith thedirectionof the enegy goinginto andout of the system:a ;a7’+b,b3 = axa5+b; bf,

whereasfor © the relationa;a - byb{ = aya5 - b,b5 reflectsconservatiorof enegy betweenport 1 and
port 2.

(seefigure5), thatis,

z:["@“ Ou O

0 03

O11 — 012053021 —01,053

2.13
035021 033 (213)

0 I

Let © be a J-unitary realization. Sinceeachof the © is a J-unitary matrix, thereis a unitary matrix Xy
associatedo each®y in the sameway as X followed from ©, but now accordingto the rule

[ x a b]© [Xg:l) XD a, b]

2.14
o I XD oa blZ o= Y x oa by (214)

(thatis, inputsof X havepositivesignature).Again, thedirectionsof thearrowscorrespondingo negative
signaturesn © is reversed(seefigure 4(b)). An explicit formulafor X in termsof © is given below
Although X constituteghe samelinear relationsbetweenthe statevariablesas ©, and henceelimination
of x, and x- will lead to the scatteringmatrix = associatedo ©, it shouldbe notedthat X is not a
realizationof Z, sincethe stateflow is not uni-directioral: the next stateof X is specifiedin termsof its
currentstateonly in animplicit way. X will be calleda staterepresentationf 2, ratherthana realization.

Y is computedfrom @ in the following way. Partitionthe statex of © accordingto the signaturels into
X = [X+ X.], and partition © likewise:

XX a by

X+ ain 012 N1 W2
X- az1 Q22 o1 Vo2
o= , (2.15)
a | Bu b2 1 A2
bi | B1 B2 &1 &
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thenthe corresponding, definedby the relation(2.14) hasa partitioning

X,(:l) X- ap b1
X Fu Fo2 Hi1 Hi
XD | Far Fa Ho1 Hax
5= (2.16)
a Gun G2 Ku K2
b, G G2 Ko1Kz

First, we provethe existenceof X by remarkingthat, becauseof the J-unitarity of ©, the submatrix

aze Vo2
B2 2

is at eachpointk squareandinvertible. The entriesin X canbe determinedrom thoseof © as

-1

Fuiu Hu | _fou v |_| 012 M2 || 022 p2 ax Y1
Gu Ku Bu ou Bz A2 || Pz 22 B1
- E -1
Fioo Hiz | _ _ [ a1z W2 ax Y2
G K
| Gz Kaz | B> o2 il B> 2 (217)
For Hoai | _ | 022 2 a1 Y1
G Ko B2 2 Bo1 &
- 3 -1
Fao o Ha | _ | 022 y2
| G2z Koz | B2 2

(cf. equation(2.13)). Note that eachmatrix X only dependson the entriesof ©y so that it can be
computedindependentlyfrom the otherstages.

3. CONSTRUCTION OF A HANKEL-NORM APPROXIMANT

3.1. Summary of the procedure

In this section,we solve the Hankelnorm modelreductionproblemfor a strictly uppermatrix described
by a “higher order model” with an observablerealization{A,B,C,0}. Let input and outputspacesM
and A beasin equation(2.4),andlet I' be a diagonalandhermitianmatrix belongingto D(M, M). We
usel asa measurdor the local accuracyof the reducedordermodel;it will parametrizethe solutions.
We look for a matrix T/ O X' (M, N) suchthat (i) the scaleddifferencewith T is smallerthan 1 in

operatomorm:
IFHT-T) =1, (3.1)

andsuchthat (ii) the approximant
Ta = Pz(T'), (3.2)

i.e., the strictly upperpartof T’, hasa statedimensionsequencef low order— aslow as possiblefor
agivenl. Usingthe norminequality(2.2), we immediatelyobtainthat T, satisfies

ITHT-Ta)lln < IFHT-T)|| < 1,

i.e., Ty is a Hankel-normapproximanof T when T’ is an operatorfnormapproximant.The secondnorm
inequality (2.3) givesin addition

ITHT=Ta)llp2 < [IT7H(T = Ta) [lu-
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The interpretatim of this secondinequalityis thatthe changein eachrow of I 1T is (in 2-norm)smaller
thanthe errorin Hankelnorm, andat leastsmallerthan1. A comparableesultholdsfor the columnsof
1T. Consequentlythe matrix entriesof a Hankelnorm approximanfT , are closeto thoseof T.

The constructionof a matrix T’ satisfying (3.1) consistsof the following three steps. We start by
computinga factorizationof T in the form

T =AU (3.3)

whereA and U are uppermatriceswhich have statespacedimensionsof the samesize asthatof T, and
U is inner. We will call sucha factorizationan externalfactorization. We showin section3.2 thatthis
factorizationis easyto determineif therealization(2.4) for T is chosento bein outputnormalform, i.e.,
suchthat AA”+ CC” = |. The constructionof a properT’ continuesby the determinatiorof a matrix ©
thatis J-unitaryasin (2.8) andblock-upper suchthat

U7 -TTrYe=[A -B] (3.4)

consistsof two uppermatricesA’ andB’. As an aside,we remarkthatthis expressiorcanequivalently
be written as
u“lll -artje=[A" -B']. (3.5)

which is the ‘standard’ formulation of an interpolaton problem(see[24]): for time-invariantsystems,
the equationexpresseshat [I —Ar‘l] O haszerosat polesof U, which ensureghatthe approximant
is equalto the original systemat certainpointsin the z-plane.

We will show that a solutionto this interpolationproblemexistsif certain conditionson a Lyapunov
equationassociatedo I' 1T are satisfied(this canalwaysbe the casefor judiciouslychosen™). The state
dimensionof © will againbe the sameasthatof T. Because® is J-unitary, we havethat ©5,0,, =
1+05,012. Hence®s3 will exist(butwill notnecessarilypeupper)ands 1, = —0,,053 will be contractive.
From (3.4) we haveB’ = -U™@1, + TT10,,. In termsof the definitionof @ andB’, the approximating
matrix T’ is subsequentlygefinedas

T =re;B'". (3.6)

Thenthe resultingapproximatiorerroris F (T-T’) = =Z,U . BecauseZ;; is contractiveand U unitary;

we infer that || FH(T-T’)|| < 1, sothat T’ is indeedan operatofarm approximantwith an admissible
modelingerror. Taking T, equalto the uppertriangularpart of T’, the definitions(3.4), (3.6) and (3.2)
resultin a HankelnormapproximanfT,. We will alsoshowthat, from (3.6) andthe factthatB’ is upper
triangular it canbeinferredthatthe statedimensionof T, will, ateachpointin time, be at mostequalto
thatof the upperpartof ©55. (With more effort, one showsthatthe statedimensionsare preciselyequal
to eachother[26].) In view of the targettheorem1.2, it remains(1) to constructU, (2) to construct®

satisfying(3.4), taking carethatthe upperpart of ©55 hasstatedimensionsaslow aspossibleand(3) to
verify the complexityof the Hankelnorm approximanin connectiorwith the Hankelsingularvaluesof

I1T. Theseare the subjectsof the following sections. Subsequentlyformulas describinga realization
of T, arederived(theorem3.7).

3.2. External factorization of T

The aim of this sectionis to provethe following propositian.

Proposition 3.1.  If a matrix T is upper T O U/ (M, N), thenthere existsa spacesequenceMy and
aninner matrix U O % (M y, N) suchthatA = UTM is upper and T hasa factorization

T=AW.
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PrROOF To obtainU, we startfrom a model {A, B, C, D} of T which is in outputnormalform, AA +
CC = | for all k. It is obtained,for example,by the realizationalgorithm (1). For each point k,
determinematricesBy x and Dy x via the orthogonalkcomplemenbf the rows of [Ax Ci], so that Uy,

Bk+1 Nk

Uo = By Ac G
K =

Muk | Bux Duk

is a squareand unitary matrix. TakeU to be a computationamodelfor U. ThenU is inner, becauseéts
realizationis unitary (propositon 2.2). It remainsto verify thatA = UT " is upper This follows by direct
computatiorof A, in which we makeuseof the relationsAA”+ CCP= |, ByAP+ DyC = 0:

A=UTY

[Dy +BuZ(l -A2)71C] [DP+ CHI - Z"AD)1ZBY

[Dy + BuZ(l -A2)71C] D" + DyCH(I - Z"AD)1ZB7 +
+ ByZ(l - AZ*CCHl - z"A) 1z B

[Du + BuZ(I - A2)™1C] DY - ByAH{(I - Z"AD)1Z"B" +
+ByZ(1-AZ)™ (1 - AAD) (1 - Z°AD)1Z(BP.

Now, we makeuseof the relation
Z(1-A2)H1 - AAD(I - Z°AD) 179 = (1 - zA) ™ + AHI - ZFAD) 120,

which is easily verified by pre- and postmultigying with (I —ZA) and (Z - AD), respectively Plugging
this relationinto the expressiorfor 4, it is seenthat the lower triangularpartsof the expressiorcancel,
andwe obtain

A [Dy +ByZ(l - A2)~*C] D"+ By(l - ZA)'B"
DyD"+ ByB"+ ByZ(l - A21(AB”+ CDY.

which is, indeed,upper L]

Becausethe A¢ are not necessarilysquarematrices,the dimensionof the statespacemay vary in time.
A consequencef this will be that the numberof inputsof U will vary in time for aninner U having
minimal statedimension. The varying numberof inputsof U will of coursebe matchedby a varying
numberof outputsof A" Figure 6 illustratesthis point.

3.3. Determination of ©

In this sectionwe will showhow, undersatisfactionof a conditionof Lyapunowtype, equation(3.4) can
be satisfiedwith a J-unitarytransfermatrix ©. Let T be a strictly uppermatrix with model{A,B,C,0} in
outputnormalform, andlet {A,By, C,Dy} bethe unitaryrealizationfor the innerfactorU O U (M y, N)
of T. Denoteby B the statesequencespaceof T. We submitthat © satisfying(3.4) hasa realization®
of the form

- A|C C
-1)y-1
0 = l’T Bu | D D <) I]
'— r'e Ds1 Do (37)
aln »
I B4 . a y
= Bi| o A2 :l ]
B 0
| B2 | &1 o2

which is a squarematrix at eachpoint k, andwherethe X andC;, D; are yet to be determined. Note
thatthe statesequencespaceB is the samefor ©@ andT. X is aninvertible diagonalstatetransformation
matrix which is suchthat © is J-unitary asin (2.10), wherethe statesignaturematrix Js is alsoto be
determined.The following theoremsummarizesvhat we will provein this section.
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(@) T (b) u (© A

Figure 6. (a) The computationaschemefor an exampleT, (b) the computationaktructureof the corre-
spondinginner factor U and (c) of A.

Theorem 3.2.  LetT OU(M,N) bea strictly upper matrix, with {A,B,C,0} a modelof T in output
normal form, and let ' O D(M, M) be an invertible Hermitian diagonalmatrix. Let U be the inner
factor of an externalfactorization of T, with unitary model {A,By, C,Dy}. If the solutionM of the
Lyapunovequation

A"MA + BT72B = M(D (3.8)
is suchthat A = | — M is invertible, thenthere existsa J-unitary block upper matrix @ suchthat
[U® -Trioe (3.9)

is block upper The correspondingl-unitary realization® is of the form (3.7), with statetransformaton
X and statesignatue matrix Js given by the factorizationA = XFJzX.

PrOOF We first construct® by determininga realization® that hasthe structureof equation(3.7), and
then showthat it satisfies(3.9). The first stepin solving for the unknownsin (3.7) is to determineX
suchthat

a XAXD)L
B = By (X(_l))_l (3 10)
B F‘lB(X(‘l))‘l

is J-isometricin the senseof equation(2.10),i.e., suchthatfor somesignaturematrix Jz,

(XD)TATXTIs XAXD) T + (XD) BBy (XD) T +
- (XCD)"BH2p(xDy L = G

Writing A = XPJs X, this produces
APAA +BIBy —BT2B = A(D, (3.11)

which determines\ recursively andhencealsoboththe factor X andthe statesignaturel;s. For X to be
invertible, it is sufficient to require A to be invertible. Equation(3.11) may be rewrittenin termsof the
original databy usingB{By = | — A”A, which yields

AMA + BT 2B = M | M=1-A.
20



M is the solutionof oneof the Lyapunovequationsassociatedo I 1T (viz. equation(2.7)). We proceed
with the constructionof a realization® of the form (3.7) which satisfies(2.10) for

e

whereJ; is still to be determinedandwith it the outputspacesequences\t , and A>). Sincesignature
of matricesis conservedundercongruenceelationsas (2.10), we must have that the signaturesof the

matrices =
-1
Js and Js
Jl JZ

areequal. Let s-dim denotethe sequencef dimensionof a non-unibrm space(a sequencef integers),
andlet #.(J) denotethe sequencevhosek-th entryis the numberof positiveentriesin the signaturematrix
J at pointk (andlikewise for the numberof negativeentries#_(J)), then

s-dim M, = #.(Is) - #:(I5Y) + s-dim My
s-dim A% #(Jp) — #-(3GY) + s-dim M .

The positivity of thesedimensionss readily derivedfrom equation(3.11) by Sylvestets inequality

To obtain ©, it remainsto completethe matrix (3.10) to form the matrix © in (3.7) so that the whole
matrix is now J-unitary accordingto (2.10). This matrix completioncan be achievedat the local level:
it is for eachstagek an independenproblemof matrix algebra(seealgorithm2). It is not hardto see
that the completionis alwayspossible.

To concludethe proof, we haveto showthat[UY - T 1] @ is block upper We have
[UP -T97] = [Df 0]+CZ{I-AZ)7 By -BTT (3.12)
andit will be enoughto showthat
ZH1-A"Z9B; -BT Yo (3.13)

is block upper With entriesasin equation(3.7), and usingthe stateequivalencdransformatiordefined
by X, this is equivalentto showingthat

X291 - 2B Bl 0
is block-upper That this is indeedthe casefollows directly from propositon 2.3—seeequation(2.11).
"
For later use,we evaluategfU” - T 1] ©. Equation(2.12) gives
CIZHI -AZHYB] -BTY@ = CXZHI-a"Z) 10,0

CXs(1 - a2) Ly
CA( -AZL[C: Cl.

Consequently
[U -TH?e = [Dg 0]{s+[Bf BTHZ(I-A[C: Cj]} + C°A(I-ADC: Cj
= {[D§ 0]6+ C'A[C1 Co]} + CHA-NAZ(I-AZ™[C: Cj
(in which we used C"A + DBy = 0). Since this expressionis equalto [A’ - B’], we obtain a

computationamodelfor B’ as

B’ = {-DD12 + C{I ~M)Co} + {CMA} Z(1 - A C,. (314
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In: T (modelin outputnormalform for a strictly uppermatrix T)
r (approximatiorparameters)
Out: © (realizationfor © satisfying(3.4))

[(a
[(a
[(a

M1
X1

Js,

fork=1,---,n

[ Mier = AMAC+ BT 2By
X1 B Xt 1= 1= Mg
[Buk Duxl = [A G“

a XicAx
[ ]= Buk | Xh

F;l By

5] -[%)

Algorithm 2. The interpolation algorithm.
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Figure 7. (a) Statespacerealizationschemefor T and(b) for U. (c) Statespacerealizationschemefor
a possible®, whereit is assumedhat one singularvalue of the Hankel operatorof I 1T at
time 1 is largerthan 1, and(d) for the correspondingcatteringoperatorz.

Algorithm 2 summarizeshe constructiorin theoren3.2 andcanbe usedto compute® satisfyingequation
(3.4). Theinnerfactor U of T is computeden passant

The key to constructthe interpolating © in (3.4) is hencethe solutionof the Lyapunovequation(3.8). It
canbe computedrecursivelyby takingthe k-th entry of eachdiagonalin the equation yielding

M1 = AIMiA, + BT 2By

Theinitial pointof thisrecursionis M ; = [ [, if the statedimensiornsequencef therealizationof T starts
with zero states.We concludethis sectionby establishinghe link betweenthis Lyapunovequationand
the Hankelmatrix connectedwith T T. This will providethe connectionof the Hankelsingularvalues
of T andthe statecomplexityof the Hankelnorm approximantdiscussedn the next subsection.

Theorem 3.3. LetT OU(M,N) havea model{A,B,C,0} in outputnormal form, and let I be an
invertible diagonalHermitian matrix. Let Hy be the Hankelmatrix of I 1T at stagek, and supposehat,
for eachk, noneof the singularvaluesof Hy are equalto 1. Let Nk be the numberof singular valuesof
Hy thatare larger than 1.

Thenthe solutionMy of the Lyapunowrecursion
M1 = AMA + Bl 2B, M:=[0, (3.15)
is suchthat Ay = | — M is invertible and has sighatue Jg, having preciselyNy negativeentries.

PrOOF Accordingto section2.2, the Hankel matrix Hy of IIT at stagek satisfiesthe decomposition
Hi = CkOx, whereCyx and O are givenasin (1.3), savefor a scalingof By by I',t. Hence

HkHE = CkOkOI(DCkD.

In the presentcontextwe have startedfrom an output normal form: Q = @O = I. The non-zero
eigenvaluef HyHL' = Gl will be the sameas thoseof C Cx, andin section2.2 it was shownthat
My = CLCy is preciselythe solutionof the Lyapunowecursion(3.15). In particular the numberof singular
valuesof Hi that are larger than 1 is equalto the numberof eigenvalueof My that are larger than 1.
Writing Ax = | = My, thisis in turn equalto the numberof negativeeigenvalueof Ay. L]
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Figure 8. Dataflowschemefor Z, which showsthatx is a statein the transferbyx — bip .

Figure 7 showsa simple instanceof the applicationof the theory developedn this section,especially
with regardto the dimensionf theinput, outputandstatesequencepacegelatedto the ®-matrix. The

signalflow of the staterealizationmatrices© runs strictly from top to bottom and from left to right.

Correspondingo O is the scatteringoperatorZ, whosestaterepresentatiory is for eachk computed
from ©y using equation(2.16). The arrowsin the scatteringsituation(wherethe signal flow coincides
with ‘positive enegy flow’) runin thereversedirectionfor inputsandoutputsof ©y thathavea negative
signature.In the figure, we assumedhat one singularvalue of the Hankel operatorof I 1T attime 1 is

largerthan 1, which resultsin one statevariablewith negativesignature and hencethereis one upward
arrow in the diagramfor 2. Becauseof the upwardarrow; 2 is not an uppermatrix (it is not a causal
transferoperator),and £ only specifiesZ implicitly: figure 7(d) containsa loop betweenstagel and

2 which rendersthe network uncomputable.As is shownin the next section,upwardarrows generate
the statesof the Hankel-normapproximantand the numberof upwardarrowsis equalto the numberof

statesof the approximant.

3.4. State dimension of T,

At this pointwe havecoveredthe first part of theorem1.2: we haveconstructedh J-unitary © andfrom

it @ matrix T, which is a Hankel-normapproximantof T. It remainsto verify the complexity assertion,
which statedthat the dimensionof the statespaceof T, is at mostequalto N at pointk: the numberof

singularvaluesof thek-th Hankelmatrix of [ 1T thatarelargerthanone,or (by theorem3.3) the number
of negativeentriesin the statesignaturel of © at pointk. Not surprisinglyfrom the definitionof T 5, an
importantrole will be playedby ©33, which is the 22-entryof the scatteringmatrix = associatedo © by

equation(2.13). The representatioilX specifiesbeit in animplicit form, the relationsbetweenthe input
andoutputquantitiesof the non-causabperatorZ. The existenceof ~ implies, e.g.,thatall intermediate
statequantitiesx. , x-x arewell-defined,giveninputsa; andb,. In particulay =, = ©53 is obtainedby

imposinga; = 0 andlooking at the transferb, i—» a,. Finding a realizationfor the strictly upperpart of

O35 will consistin “unwinding” the loopsin the representatior® of £ and deducingthe realizationfor

it. The factthatZ canbe resolvedandthata realizationfor ©5 canbe deducedwill be the topic of the
nextsection.
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In this section,we prove the following propositon, which provideswith theorem3.2 andtheorem3.3 a
proof of the Hankelnorm approximatiortheorem(theorem1.2).

Proposition 3.4.  If the conditionsof theolem 3.2 are satisfied thenthe statedimensiorof the approx-
imant T, is (at most)equalto the state dimensionof the strictly upper part of © ;5 at eachpoint. This
dimensionis in turn (at most)equalto the numberof negativeentriesin the statesignatue J 5 of © at
pointk, or the numberof singularvaluesof the Hankelmatrix of I T at pointk that are larger than 1.

PROOF T, is determinedby the definitions(3.2), (3.6):

T = re;gs"
Ta MPz(T") = Pz (0558Y) (3.16)
MPz (P2 (©55)B™).

Since B’ is upper and we are only interestedin the strictly upperpart of T/, only the strictly upper
partof ©55 will play a role, or equivalently the strictly lower partof ©3. Moreover againbecauseB’
is upper multiplication of ©35 by B’” doesnot increasethe rank of the Hankel matricesof P24(03)
becausehe productinvolvesonly linear combinationof the columnsof eachseparatéHankel matrix of
Pz((©35). Hencethe statedimensionof T, is (at most)equalto the statedimensionof the strictly upper
partof ©5.

To determinethe latter dimension,considerfigure 8. We position ourselvesat point k and split inputs
a1, b, and outputsay, b; of @ into a strict pastand a future segmentwith respectto point k. This is
written, e.g.,asby = [bipx birk], whereby, k containsthe first k—1 entriesof the sequencé;. 053 = 2z,
is the transferfrom port b, to port b; with the boundaryconditiona; = 0, and the strictly lower part
of @3} is determinedby the collection of transfersbyx — bapx With a; = 0 and by = 0, for all k in
turn. Note thateachof thesemapsdefinesa local Hankel operator(more precisely a conjugateHankel
operator asit describeghe effect of aninputin the future to the pastpart of the correspondingutput).
In addition,a responsésy k to aninputfor which aip x = 0 andbyy k = 0 satisfiesan enegy relationwhich
is inheritedfrom the unitarity of X:

X 10C = bip K0, i+ Bop,p k + X X i - (3.17)

Hencethe map x_x - [bipk, axpk, X-k] is well-defined(univocal)sinceif therewould exist another
image[bi, ., a3, Xix] for x- the quadraticnorm of the differencewould yield, with (3.17),

11— big I + Ilazpk = agp > + [Ixei = Xiil[? = 0,

which leadsto by« = by, |, etc. Consequentljthe mapx- - bap is univocalaswell. The Hankelmap
H/ : bk — bipk canbe factoredinto a controllabiity timesan observabilitymap,i.e., (i) the transferof

bork t0 X-, followed by (i) the transferof x- to by, . Hencethe statedimensionof the strictly upper
partof ©55'is equalto (at most)the dimensionof x-x. Theorems3.2 and 3.3 claimedthatthis dimension
is in turn equalto the numberof negativeentriesin the signaturel 5 at pointk, or the numberof singular
valuesof the Hankel matrix of 1T at point k thatare largerthan 1. Combiningthis with the previous
result,it follows thatthe statedimensionof T, is (at most) equalto this number n

The following corollary follows from equation(3.17) andis neededn the next section.

Corollary 3.5.  Undertheconditionsof theoem3.2, andif aip x = 0 andbyy = 0, themapSc: X-k -
X+ k is well-definedand a contraction.

At this point, we have proventhe basicform of the Hankel-normmodel reductiontheoremfor time-
varying systemgtheoreml.2). With more effort, it is possibleto provethat, in propositin 3.4, equality
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holdsthroughoutimplying thatthe approximantl , haspreciselythe numberof statesas specifiedby the
numberof Hankelsingularvaluesthatarelargerthanl [26, 27]. It is alsopossibleto deriveanexpression
(a chainfraction descriptionin termsof ©) which describesall possibleHankel norm approximantof
minimal complexity giventhe error toleranceparametef” [26, 27).

3.5. Computational model for T,

A computationaimodel of T, can be computeddirectly from the modelsof T and ©, via modelsof
B’ and©,3. A modelfor B’ hasalreadybeenobtainedin equation(3.14). The modelfor the strictly
upperpart of @55 is howevermore difficult to obtain,and follows from the scatteringrepresentatior
associatedo ©.

Lemma 3.6. In the contextand under the conditionsof theoem 3.2, let ¥ = {F,G,H,K} be the
modelrepresentatiorof the unitary scatteringmatrix associatedvith © = {a, 8, y, J}, relatingthe signal
sequence$x. x. a; b andX{Y XD a, by asin (2.14). Partition £ and © asin equations
(2.16)and (2.15),andlet

S=diadS] 0D : Xek = Xk (agpk =0, by =0)
R=diadR] 0D : X-k = X+ kR (a1rk = 0, bprk = 0)

ThenSand R are well defined,contractiveand determinedby the recursions

S™ = Fa+Fa(l - SF) 'Sk

3.18
R Fio+ F11(| - R(_l)sz_)_lR(_l)Fzz ( )

A computationamodel {A,, B, C;} of the strictly upperpart of @35, i.e., Pz/(035) = BaZ(l = A.2)1Cy,
is givenin termsof S, R by

A} = Fy(l-SFp)™?
BY = Ha+Fo(l —SF2) 1SH, (3.19)
CP = [Ga2+Ga(l —R™F2)IRDFy| (I -SR™

PROOF The existenceand contractivityof Shasbeenderivedin corollary 3.5, the comparableesulton
R is provenin the sameway. For clarity, we will not suppresghe indexk in this proof, so that we are
in the contextof figure 8. Writing out the relevantpart of the relations(2.16),with a; = 0, we have

Xegrr = XexFrx + XeaFoik + boxGork
Xk = XexFiak + XoiFook  + boxGook (3.20)
bix = XexHizk + X eaHook

With the additionalconstraintop i1 = 0, S+ Satisfies

Xegt1 = Xp1Sa1 = X kSFiik + X-k1Foik
X-k = X kSFi12k + X-kr1F22k

Next, F1, is strictly contractive becauseXy,y := [glfzkk ';Et] satisfies

-0 -1
a2k Yook a2k Yozk
o — <0 — , , , ,
I - le,kzlzk = ZZZ,kZZZ,k = [

Book Dok Book Dok

which is strictly positivedefinite by the J-unitarity of ©y, sothatZ;, itself is strictly contractive.F 5,
asan entry of it, inheritsthe property and hencewe cansolve for x_:

{ Xk = X je1Fook(l = SFr20) 2 (3.21)

Xoi1Ser = Xkt {Faak(l = SF12k) ScF1ak + Fark}
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Figure 9. Recursionfor S

ConsequentlyS satisfiesthe indicatedrecursiverelations (seealso figure 9). The recursionfor R is
determinedikewise.

Let {Aq, Ba, G/} be a staterealizationfor Pz,(035), i.e., Pz (©53) = CHI = ZFAD)1Z5B,, which corre-
spondsto the anti-causatomputationamodel

Xk = Xgw1Agk t bokChi
bik = X k1Bik

The unknownsA,, B, and C; canbe expressedn termsof F, G, H by substitutbn in equationg3.20),
using S and R as intermediatequantities. Doing so with b, = 0, the first equationin (3.21) yields the
expressiorfor A, in (3.19)andB, canbe determinedn termsof S from the last equationin (3.20).

Finally, CEk is obtainedpointwise as the transferb, — X-x for a; = 0 andby; = 0 (i#k). Using (3.6),
(3.18)and(3.20),this yields C, asin (3.19). n

We are now in a positionto determinea computationamodelfor T,.

Theorem 3.7. LetT, T, U and© be asin theoem3.2, sothat[UY -TT 710 =[A’ -B’]. Let
{A,B,C,0} be an outputnormal strictly stablestaterealizationfor T, let M be definedby the recursion
in (3.8), andlet {A,By,C,Dy} bea realization for U. Supposeghat © is partitionedasin (3.7),and £
correspondingo © asin (2.16). DefineS, R, C; O D by therelations

S Fa1 + Fao(l — SFi2) 'SP
R = Fip+Fu(l-ROF) R,
cH [Gzz + Gzl(| - R(_l)F21)_1R(_1)F22] (| - SR_l .

r

ThenT, hasa computationaimodel{A,, 'B,, C,, 0} givenby

A) = Fa(l-SFp)™?
BY = Hax+Fo(l —SF2)1SH:,
Ca = C [-DLDy+C5(1 -M)C] + AYCDAIMC

whee Y O D is given by the solutionof the recursionY = A,YCDAP+ C,C5.
27



PrOOF The computationamodelfor T, will be obtained usingdefinition(3.16), by multiplying a model
for B/ by the model {A,, Ba, C;} for Pz((055) asobtainedin lemma3.6. A modelfor B/ hasalready
beenobtainedin equation(3.14). With D’ := -DjD12 + CH{I = M)C,, Ta is given by the strictly upper
part of

Pz (©55)B" M {BaZ(l - Au2)™IC; } O CY(I - ZFAD)1ZEATMC + DY}

MBaZ(l = Aa2)*C/D "+ B, {Z(1 - Au2)*C,C5(1 - ZFA) 1} Z"APMC.

The computationof the strictly upperpart of this expressionrequiresa partial fraction decompositiorof
the expressiorZ(l — A,2)™1C,C5(I — Z"A9)™1. We seekdiagonalmatricesX andY suchthat

Z(1 - A2 IC.CH(1 - Z°AD) ™ = Z(1 - A LY + X(1 = ZFAT) 2
Pre-and postmultigying with (Z" - A;) and (I — ZFAD), respectivelywe obtainthe equations

CCY = Y-AX X
0 = YDA+ X Y

YDA
AYCDAD + C.CY

Therecursiveequationfor Y thatwe havethusobtainedalwayshasa solution,sincefor nx n matricesT
with a zero numberof statesat pointn+ 1, we canstartwith Y., = [ [J andwork backwardgo Y;. Via
Z(1 = A2)IYZD = YOO + Z(1 - A.Z) LA YD we obtain

Ta = MBaZ(I -A2) ™ {C: DT+ AYCDATMC]

thatis, Ca = C, {~DEDy + C5(1 = M)C} + AYCDATMC . -

A checkonthedimension®of A, revealsthatthe staterealizationfor T, hasindeeda statespacedimension
givenby N = #_(Jg): ateachpointit is equalto the numberof local Hankel singularvaluesof T which
arelargerthanl. The realizationis givenin termsof four recursions:two for M and Sthatrun forward
in time, the othertwo for R andY that run backwardin time anddependon S. Algorithm 3 showsthe
computationglerivedfrom theorem3.7. It computesa model {A,, Ba, Cs, 0} for T, in termsof a model
{A,B,C,0} for T.

4. COMPUTATION OF © BY A GENERALIZED SCHUR ALGORITHM
4.1. Introduction

The global state spaceprocedureof section3 vyields, for a given T O ¥, an inner factor U and an
interpolatirg ©. It canbe specializedo the casewhereT is a generaluppertriangularmatrix withoutan
a priori knownstatestructure.The resultingprocedurdo obtain® leadsto a generalizedschurrecursion,
which we derivefor an exampleT.

Considera 4 x 4 strictly uppertriangularmatrix T,

‘ ‘ tip tiz tig

T= 0 ty3 tos ,
0 ta4
0

wherethe (1, 1)-entryis indicatedby a squareand the main diagonalby underscoresFor convenience
of notation,and without loss of generality we may take ' = |, and thus seekfor T, (a 4 x 4 matrix)
suchthat || T - Ta|| < 1. A trivial (but non-minimal)staterealizationfor T that has AAY+ CC” = |
is obtainedby selecting{[0, 0, 1], [0, 1,0], [1,0,0]} asa basisfor the row spaceof the secondHankel
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In: T={A,B,C,D} (modelin outputnormalform for a strictly uppermatrix

7

r (approximatiorparameters)
Out: Ta={A4TB,,C,,0} (modelfor Hankelnorm approximantT,)

do algorithm2: gives My, ©k, Js,, Caok D12k, Duk (kK=1,---,n)
S =[0
fork=1,---,n

ComputeZy from ©y using(2.17)

Se1 = Faik + Fook(l = SF12k) P SF1ak

end

Rn+1 = [E]

Yni1 = [ EJ

fork=n,---,1

[ Rq = Fuok+ Fiik(l = Re1F21)  Re1Faak

Cl = {Goak+ Gorkl(l — Res1F210) ReraFazk} (I - SR ™
Aak = {Faaul — SFr20) ™} :
Bak = {Hazk+ Fazi(l = ScF12k) *SH12k} .

Yo o = AakYk1tAl+ CrChy
| Cak = Crk{-DL Duk+ C(l =M)Cx} + AqYirs AMCi
end

Algorithm 3. The approximatioralgorithm.
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Figure 10. Trivial externalfactorizationof T.

matrix H, = [tio, t13, t14], andlikewise we selecttrivial basesfor Hz andH4. Omitting the details, the
realizationsfor T andan inner factor U thatresultfrom this choiceturn out to be

[ 0D 0o
[0 0 oo !
Ty = Up = 1
| T4tz fo2 ‘ 0 ] 1
i 1
1 | (1|
Ty = 1 U = 1
1 1
| taa t23] 0 L 00O
1 1
T3 = 1 U3 = 1
| taa| O =
T, Dl] U = Dl]
o 5o
(‘0 standsfor an entry with zero dimensions).The correspondingnatricesU andA = UT" are
U= 1 A= 1t 0
1 tis| g O

with input spacesequence€” x 0 x 0 x [0, andoutputspacesequenc€® xC* xC! xC?. All inputsof
U andA areconcentratedt point 1, and hencethe causalityrequiremenis alwayssatisfied:U 00/ and
A OU. Thestructureof A andU is clarified by figure 10.

The global realizationprocedurewould continueby computinga sequenceM

Mie1 = AMA + BBy, M:=[0
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and usethis to derive © asin section3.3. Note thatit is not necessaryto havea minimal realization
for T (or U). The extrastateswill correspondo eigenvalueof M that are zero, and henceare of no
influenceon the negativesignatureof A =1 =M (independentlyf I'). Henceour non-minimalchoiceof
the realizationfor T will not influencethe complexity of the resultingapproximantT 5. For a recursive
derivationof aninterpolathg matrix ©, however we proceedasfollows. The (trivial) staterealizationsT
andU arenot neededput theresultingU is used. The interpolation problemis to determinea J-unitary
and causal® (whosesignaturewill be determinedby the construction)suchthat

WY -THe O U Uuj.

Assumethat® 0O U (M e, No). Thesignaturematrix J; = Ja, is knownfrom the outsetandis according
to the decompositiofU™ - TH. Althoughthe signatures is not yet known at this point, the number
of outputsof O (i.e., the spacesequenceNp) is alreadydeterminedby the conditionthat each ©y is
a squarematrix. With the above (trivial) realizationsof T and U, it turns out that ® hasa constant
numberof two outputsat eachpointin time. The signatureof eachoutput (+1 or —1) is determined
in the processof constructing®, which will be donein two steps: © = © 'I. Here, ©®’ is suchthat
[UP -TH O’ O [U U], wherethe dimensionsequencesf eachl/ are constaniandequalto 1 at each
point:

+ o+ + + - - - - + 4+ - — + + — —
1 ) [0jooo|[ojooo
1 4, 1 o = Doao  o0oao

1 -t % _ﬁ 0O g o0

I e R A O 0

The first uppertriangularmatrix correspondgo the first outputof eachsectionof © /, andthe second
to the secondoutput. At this point, the signatureof eachcolumn at the right handside can be positive
of negative: the output signaturematrix of @’ is J;, which is an unsortedsignaturematrix suchthat
©'JJ0'" = J; (the signatureof the right handsidein the equationaboveis just an example). Seealso
figure11. Thesecondstepis to sortthe columnsaccordingto their signature py introducinga permutation
matrix M O D, suchthatJ; = MM is a conventiona(sorted)signaturematrix. The permutationdoes
not changethefact that[UY -TH© O [¢/ U], butthe outputdimensionsequencesf eachi/ will now
be different,andin generalnot be constantany more. For the aboveexamplesignature[A’ - B’] will
havethe form

+ + + + - - - - + 4+ + 4+ - ==
1 ) 0oloo DD@]DDDDD
1 Tty o = 00 OO0l ooOoOoo
1t g 00l pooo
10t -ty -ty -t 0 oo

=" -8

whereA’ hasasoutputspacesequenc€?xC>x[x[, andB’ hasasoutputspacesequenceél x[J xC?xC?2.
We will now considertheseoperationsn more detail.

4.2. Computational structure

©’ can be determinedrecursivelyin n -1 steps: ©' = OO - - - On-1), in the following way. The
columnsof @’ act on the columnsof U™ and-T". Its operationson U™ are always causalbecauseall
columnsof UY correspondto the first point of the recursion(k = 1). Howevey for © to be causal,
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Figure 11. Computationabktructureof @', with examplesignatureat the outputs.

the k-th column of © can act only on the first k columnsof T, Taking this into considerationwe

are led to a recursivealgorithmof the form [Aw Bil®r = [Axr1) Buey), initialized by Ay = US,

Buy = —TF and where Oy makesthe last (n—K) entriesof the k-th column of By equalto 0, using
columnsn,n—1,---,k+1 of Ay. (The columnsare usedin reverseorderingto keepAy in therequired
shape.)

The operationgo do eachof thesestepsare elementaryunitary (Jacobi)or J-unitary rotationsthat act on

two columnsat a time andmakea selectedentry of the secondcolumnequalto zero. The precisenature
of the rotationsdependson its signatureand s in turn dependenbn the data— this will be detailed
later. We first verify thatthis recursionleadsto a solutionof the interpolationproblem.

k = 1: Using 3 elementaryrotations the entriest,, t7;, t7, are subsequentlyeroed.This resultsin

1 00 o|g
0 00O 0 -t
B, =
[A(Z) (2)] O O 0 D‘ O _tgs _tgs
0000 0 - -5 -tf
k=2:
1 00 0/Qg o
0000 0 O
B =
[Ag) Bl 00000 0 -t
000000 0 —tf -tf
k=3:
1 000/goo o
00000 0o o
B, =
[A@) B 000D 0 00 0
000000 00 -t
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Figure 12. Computationaktructureof a recursivesolutionto the interpolathg problem. (a) © /, with
elementaryrotationsof mixed type (both circular and hyperbolic);(b) the corresponding:,
with circular elementaryrotations. The type of sectionsin (a) and the signal flow in (b)
dependon the dataof the interpolation problem.

The resultingmatricesare uppertriangular The signalflow correspondindo this computationakcheme
is outlinedin figure 12(@). Notethatthe computation$iaveintroducedanimplicit notionof state,formed

by the arrowsthat crossa dottedline betweentwo stagesso thata (non-minimal)realizationof © can

be inferredfrom the elementaryoperations.

[A” -B’] will beequalto a columnpermutatiorof [A4) B)], suchthatA’ hasall columnswith positive
signature whereasB’ hasall columnswith a negativesignature.The determinatiorof the signatureof
[A4) Ba)] is discussedn the next subsection.

4.3. Elementary rotations. keeping track of signatures

We will now considerthe elementaryoperationsn the aboverecursions.An elementaryrotation & such
that 69,0=j, (j1 andj, are 2 x 2 signaturematrices)is definedby

[u tJe=[0 0],

whereu,t are scalars,andwhere'd standsfor someresultingscalar Initially, onewould consideré of
a traditional J-unitary form:

91=[ 1 _Sll cdl+sd=1, c0

el ]

However since|s| < 1, a rotationof this form is appropriateonly if |u| > |t]. In therecursivealgorithm,
this will be the caseonly if HfHt < | which correspondso a ‘definite’ interpolatio problemandleads
to an approximantT, = 0. Our situationis more general.If |u| <|t|, we requirea rotationalsectionof

the form
|- 1|1
%= l 1 —SD] ct’

resultingin [u t] 8, =[O0 0]. & hassignaturepairsdeterminecdby

A" e[

33

which satisfies



This showsthat the signatureof the ‘enelgy’ of the outputvector of sucha sectionis reversed: if
[ar b1]& = [az by], thenaal - bib} = —axal+ byb5. Becausethis signaturecan be reversedat each
elementarystep,we will haveto keeptrack of it to ensurethatthe resultingglobal ©-matrix is J-unitary
with respecto a certainsignature.Thusassignto eachcolumnin [UY -TH a signature(+1 or —1), which
is updatedafter eachelementaryoperation,in accordanceo the type of rotation. Initially, the signature
of the columnsof U" is chosen+1, andthoseof —T" are chosen-1. Because®’ = ©1)0) - - - O(n-1),
where®g is anembeddingf the i-th elementaryrotation 65y into oneof full size, it is seenthatkeeping
track of the signatureat eachintermediatestepensureghat

o~ 0=1J.

Here, J; is the unsortedsignaturematrix given by the signaturesof the columnsof the final resulting
uppertriangularmatrices. The typesof signatureshatcanoccur andtheappropriateelementaryotations
to use,arelisted below Theseform the processorsn figure 12(@).

+ - L . + -
-s :
L. [u t] & 1 &F =[O0 o], if [ul>|t]
+ - r 1 -+
-s 1 :
2 [ u t] PR [ O 01, if Jul<]t|
— + - 1 - + —
-s :
3 [u t] 1 & & =[O0 o], if Ju|>|t]
-+ L _ -+
-S|, _ :
4. [u t] IR [ O 01, if Jul<]t|
+ o+ . + o+
c s
5. [u t]| o 2| =100 0]
c s _
6. [ u t] R = [ O 0]

It canbe shown(but we omit the detailsfor brevity) that, for the hyperbolicrotations,the case|u| = |t]

can neveroccur in the algorithm. This is becauseat the k-th step, the algorithm essentiallyacts on
[(Hu)k: (HDE11©, where® is someJ-unitary matrix consistingof a subsetof the rotationsperformed
in the previoussteps. The signatureof this intermediateresultis nonsingularbecauseH u)ih 1 (Hu)ke1 =
(Hn)ih1(H1ke1 is initially nonsingularby the imposed conditiors on the singular valuesof H 1, and
the signatureis invariant under J-unitary transformations.At the sametime, the first block matrix of

[(Hu):: (H1)K11© is uppertriangular whereashe secondblock matrix hasall but the lastcolumnequal
to zero. At this stage the algorithmis zeroingthis last column using columnsof the first block matrix.

Becauseof the form of theseblock matrices,the occurrenceof |u| = |t| in a hyperbolicrotationduring
this zeroingoperationimplies that the correspondingignature and hencethe initial signature contains
a zero element,leadingto a contradiction.Hence|u| = |t]| cannotoccurfor the hyperbolicrotations.

We canassociateasusual,with eachJ-unitaryrotationa correspondingnitaryrotation,whichis obtained
by rewriting the correspondingequationssuchthat the ‘+’ quantitiesappearon the left handside and
the ‘=" quantitieson the right hand side. The last two sectionsare alreadycircular rotation matrices.
By replacingeach of the sectionsof ® by the correspondingunitary section,a unitary ~ matrix that
correspondso © is obtained.A signalflow schemeof a possibleZ in our 4 x 4 exampleis depictedin

figure 12(b). The matchingof signaturesat eachelementaryrotationin the algorithm effectsin figure
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12(b) that the signalflow is well-defined: an arrow leaving somesectionwill not bounceinto a signal
flow arrowthatleavesa neighboringsection.

Finally, a solutionto the interpolationproblem[U” -TH© = [A’ -B’] is obtainedby sorting the
columnsof the resultinguppertriangularmatricesobtainedby the above procedureaccordingto their
signature,suchthat all positive signscorrespondo A’ and all negativesignsto B’. The columnsof
O are sortedlikewise. The solutionthatis obtainedthis way is reminiscentof the statespacesolution
of the previoussection,andin fact canbe derivedfrom it by factoring® into elementaryoperationsas
above. Again, the networkof X is not computablesinceit containsloops.

WhenT is a bandedmatrix, or hasa staircasestructure thenoperationscorrespondingo entriesoff the

bandcan be omitted. The recursionand the resultingcomputationahetworkis a further generalization
(to includeindefiniteinterpolaton) of the generalizedSchuralgorithmintroducedin [21]. However the
formalism by which the matricesare setup to initiate the algorithmis new

4.4. Computation of the approximant

With ©® andB’ available,thereare variouswaysto obtainthe Hankel norm approximanftT,. The basic
relationsare givenin termsof T’ (the uppertriangularpart of which is equalto T,) andthe operator>

associatedo O:
T/D
T/D

T+ UDZ]_Z
BIGE% , @5% =25.

Ideally, onewould wantto usethe computationahetworkof X to deriveeitherU "2, or B’@33. However
the networkthathasbeenconstructedn the previousstepof the algorithmis not computable it contains
delay-freeloops, and henceit cannotbe useddirectly. A straightforwardalternativeis to extract® ,;
from the networkof © (by applyingan input of the form [0 1]), and subsequentlyseany techniqueto
invert this matrix andapplyit to B’. A secondalternativeis to computea (non-causalstaterealization
for X from its network. This is a local operation:it can be doneindependentlyfor eachstage. From
this realization,one can derive a realizationfor the uppertriangularpart of ©55, by usingthe recursions
givenin section3.5.

The first solutioncanbe mademoreor less‘in style’ with the way © hasbeenconstructedto the level
that only elementary unitary operationsare used. However the overall solutionis a bit crude: after
extractingthe matrix ©,,, the computationahetworkof © is discardedalthoughit revealsthe structure
of ©,; and ©3, andthe algorithmcontinueswith a matrix inversiontechniquethatis not very specific
to its currentapplication. The statespacetechnique,on the other hand, useshalf of the computational
network structureof © (the ‘vertical’ segmentatiorinto stages)but doesnot usethe structurewithin a
stage.The algorithmoperateson (statespace)matrices ratherthanat the elementarylevel, andis in this
respectout of style’ with the recursivecomputationof ©. It is asyet unclearwhetheran algorithmcan
be devisedthat actsdirectly on the computationahetworkof © with elementaryoperations.

5. Envoy

The theorypresentedn this papergivesa closedform solutionto the genericproblemof approximating
a matrix which represents linear transformatiorby a matrix of lower computationacomplexity The
measureof complexitythatis usedhereis ‘state dimensionof the computation’.The theoryis basedon
a combinationand generalizatiorof threeclassicalparadigms:(1) systemtheory and realizationtheory
in the vein of Kroneckerand Ho-Kalman, (2) interpolationtheory in the senseof SchurTakagiand
Adamjan-Arov-Krein,(3) scatteringtheoryasit was introducedin the networktheory contextby Youla
and Belevitch. It is a remarkablefact that such diversetheoriescome togetherto producea complete
body of answers.
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Ontheotherhandi,it is conceivablehatalternativeapproximatiorschemesre possible. The generalized
AAK schemds basedninterpolationof the errorin selectedpoints” (hereto beinterpretedcasdiagonals
of a matrix)— seeequation(3.5). The schemecontrolsthe error via interpolaton. It is possibleto
constructa directinterpolation method,seee.g.,[21]. Sucha theorywill alsoyield strongapproximants
but will be dependenbn the choice of interpolationpoints, and hencewill not producea global low-
complexity minimum as the algorithm proposedhere does. However the methodis easierand gives
goodresultsin practice. Other heuristicmethodsbasedon settingentriesto zero, e.g., in factorsof an
LU-decompositionmay work well in practice,and are of courseevensimplet It is, however doubtful
thatthey can producesystematiaesults.

The resultspresentedcan be extendedn severaldirections. The methodworks well only on triangular
matrices.A full matrix canbe decomposedh an upperanda lower part, eachof which canbe approxi-
matedseparately A schemefor doing matrix inversionsusingsucha decompositiomasbeenpublished
[9]. In anotherdirection,one may considerthe singularcase,i.e., whensomeof the local singularvalues
of the Hankel operatorare equalto one. Preliminaryresultsare availablebut have not beenpublished
yet. Thereis alsoa connectionwith the theory of alpha-stationargystemsas developedy Kailath and
his coworkers[5, 6, 7, 8], but the questionof introducingstructurein the approximationscheme,or

approximatingunderstructuralconstraintshasnot beenstudiedyet to our knowledge.
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