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1. INTRODUCTION

1.1. Computational linear algebra and time-varying modeling

In the intersectionof linear algebraand systemtheory is the field of computational linear algebra.

Its purposeis to find efficient algorithmsfor linear algebraproblems(matrix multiplication, inversion,

approximation).A usefulmodelfor matrix computationsis providedby dynamicalsystemtheory. Such

a model is often quite natural: in any algorithmwhich computesa matrix multiplication or inversion,

theglobaloperationis decomposedinto a sequenceof local operationsthateachact on a limited number

of matrix entries(ultimately two), assistedby intermediatequantitiesthat connectthe local operations.

Thesequantities can be called the statesof the algorithm, and translateto the stateof the dynamical

systemthat is thecomputationalmodelof thematrix operation.Althoughmanymatrix operationscanbe

capturedthis way by somelineardynamicalsystem,our interestis in matricesthatpossesssomekind of

structurewhich allows for efficient (“fast”) algorithms:algorithmsthat exploit this structure.Structure

in a matrix is inheritedfrom the origin of the linear algebraproblem,and is for our purposestypically

dueto the modelingof some(physical)dynamicalsystem.Many signalprocessingapplications,inverse

scatteringproblemsandleastsquaresestimationproblemsgive rise to structuredmatricesthatcanindeed

be modeledby a low complexitycomputationalsystem.

Besidessparsematrices(manyzeroentries),traditionalstructuredmatricesareToeplitzandHankelma-

trices(constantalongdiagonalsor anti-diagonals),which translateto linear time-invariant(LTI) systems.

Associatedcomputationalalgorithmsare well-known, e.g., for Toeplitz systemswe haveSchur recur-

sionsfor LU- and Choleskyfactorization[1], Levinsonrecursionsfor factorizationof the inverse[2],

Gohberg/Semenculrecursionsfor computingtheinverse[3], andSchur-basedrecursionsfor QR factoriza-

tion [4]. The resultingalgorithmshavecomputingcomplexityof order
�

(n2) for matricesof size(n× n),

ascomparedto
�

(n3) for algorithmsthatdo not takethe Toeplitzstructureinto account.Generalizations

of theToeplitzstructureareobtainedby consideringmatriceswhich havea so-calleddisplacementstruc-

ture [5, 6]: matricesG for which thereare(simple)matricesF1, F2 suchthatG − F∗
1GF2 is of low rank.

Overviewsof inversionandfactorizationalgorithmsfor suchmatricescanbe found in [7, 8].

The Toeplitz,Hankelanddisplacementstructuresgive rise to computationalmodelswith a low number

of inputsandoutputs.In this paper, we pursuea complementarynotionof structurewhich we will call

the statestructure.The statestructureappliesto uppertriangularmatricesandis seeminglyunrelatedto

the Toeplitz or displacementstructurementionedabove. A first purposeof the computationalschemes

consideredin thispaperis to performa desiredlineartransformationT on somevector(‘input sequence’)

u,

u = [u1 u2 ����� un] ,

with an output vector or sequencey = uT as the result. The key idea is that we can associatewith

this matrix-vectormultiplicationa computationalnetworkthat takesu andcomputesy, andthatmatrices

with a ‘small’ statestructurehavea computationalnetworkof low complexityso that usingthe network

to computey is more efficient thancomputinguT directly. To introduce this notion, consideran upper

triangularmatrix T alongwith its inverse,

T =

����� 1 1/2 1/6 1/24

1 1/3 1/12

1 1/4

1

�����	 T−1 =

����� 1 −1/2

1 −1/3

1 −1/4

1

�����	 .

Theinverseof T is sparse,which is anindicationof a ‘small’ statestructure.Computationalnetworksfor

the computationy = uT aredepictedin figure 1. The computationsin the networkaresplit into sections,

which we will call stages, wherethe k-th stageconsumesuk andproducesyk. The dependenceof yk on
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Figure 1. Computationalnetworkscorrespondingto T. (a) Direct (trivial) realization,(b) minimal real-

ization.

ui , (i < k) introducesintermediatequantitiesxk calledstates. At eachpoint k the processorin the stage

at that point takesits input datauk from the input sequenceu andcomputesa new outputdatayk which

is part of the output sequencey generatedby the system. To executethe computation,the processor

will usesomeremainderof its pasthistory, i.e., the statexk, which hasbeencomputedby the previous

stagesandwhich was temporarilystoredin registersindicatedby the symbolz. The complexityof the

computationalnetworkis equalto thenumberof statesat eachpoint. Thetotal numberof multiplications

requiredin the minimal realization(figure 1(b)) that are different from 1 is 5, as comparedto 6 in a

direct computationusingT (figure 1(a)). Although we havegainedonly one multiplicationhere, for a

lessmoderateexample,sayan (n × n) uppertriangularmatrix with n = 10000andd 
 n statesat each

point, the numberof multiplicationsin the network is in the order of
�

(d 2n) and can evenbe further

reducedto
�

(4dn), insteadof
�

(1/2n2) for a directcomputationusingT. Notehoweverthat thenumber

of statescanvary from onepoint to the other, dependingon the natureof T. In the exampleabove,the

numberof statesenteringthe networkat point 1 is zero,and the numberof statesleaving the network

at point 4 is alsozero. If we would changethe valueof oneof the entriesof the 2 × 2 submatrixin the

upper-right cornerof T to a differentvalue, then, in the minimal network, two stateswould havebeen

requiredto connectstage2 to stage3.

The computationsin the networkcanbe summarizedby the following recursion,for k = 1 to n:

y = uT ⇔ xk+1 = xkAk + ukBk

yk = xkCk + ukDk
(1.1)

or �
xk+1 yk � = [xk uk] Tk , Tk =  Ak Ck

Bk Dk �
in which xk is the statevectorat time k (takento havedk entries)Ak is a dk × dk+1 (possiblynon-square)

matrix, Bk is a 1 × dk+1 vector, Ck is a dk × 1 vector, and Dk is a scalar. More generalcomputational
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networkswill havethenumberof inputsandoutputsat eachstageto be differentfrom one,andpossibly

alsovaryingfrom stageto stage.In theexample(figure1(b)), we haveassequenceof realizationmatrices

T1 =  ⋅ ⋅
1/2 1 � T2 =  1/3 1

1/3 1 � T3 =  1/4 1

1/4 1 � T4 =  ⋅ 1

⋅ 1 �
where the ‘ ⋅’ indicatesentriesthat actually havedimension0 becausethe correspondingstatesdo not

exist. The recursionin equation(1.1) showsthat it is a recursionfor increasingvaluesof k: theorderof

computationsin the networkis strictly from left to right, andwe cannotcomputey k unlesswe know xk,

i.e., unlesswe haveprocessedu1, ����� , uk−1. On the otherhand,yk doesnot dependon uk+1, ����� , un. This

is a direct consequenceof the fact that T hasbeenchosenuppertriangular, so that suchan orderingof

computationsis indeedpossible.

A link with systemtheoryis obtainedwhenT is regardedasthetransfermatrixof a non-stationarycausal

linearsystemwith inputu andoutputy = uT. Thek-th row of T thencorrespondsto theimpulseresponse

of the systemwhenexcitedby an impulseat time instanti, that is, the outputy due to an input vector

u with entriesui = δ i
k, whereδ i

k is the Kroneckerdelta. The casewhereT hasa Toeplitz structurethen

correspondswith a time-invariantsystemfor which the impulseresponsedueto an impulseat time i + 1

is just thesameastheresponsedueto an impulseat time i, shiftedoveroneposition.The computational

networkis calleda statespacerealizationof T, andthenumberof statesateachpointof thecomputational

network is called the systemorder of the realizationat that point in time. For time-invariantsystems,

the staterealizationcanbe chosenconstantin time. Sincefor time-varyingsystemsthe numberof state

variablesneednot be constantin time, but can increaseor shrink, it is seenthat in this respectthe

time-varyingrealizationtheoryis muchricher, andthat the accuracyof an approximatingcomputational

networkof T canbe variedin time at will.

If thenumberof statevariablesis relativelysmall, thenthecomputationof theoutputsequenceis efficient

in comparisonwith a straightcomputationof y = uT. Oneexampleof a matrix with a small statespace

is the casewhere T is an upper triangularband-matrix: Tij = 0 for j − i > p. In this case,the state

dimensionis equalto or smallerthanp. However, thestatespacemodelcanbe muchmoregeneral,e.g.,

if a bandeduppermatrix hasan inverse,thenthis inverseis known to havea sparsestatespace(of the

samecomplexity) too, as we had in the exampleabove. Moreover, this inversioncan be easily carried

out by local computationson the realizationof T (we assumeDk square;for the generalcase,see[9]):

let y = uT ⇔ u = yT−1 =: yS, then�
xk+1 = xkAk + ukBk

yk = xkCk + ukDk
⇔

�
xk+1 = xk(Ak − CkD−1

k Bk) + ykD−1
k Bk

uk = −xkCkD−1
k + ykD−1

k

so that a modelof S is given by

Sk =  Ak − CkD−1
k Bk −CkD−1

k

D−1
k Bk D−1

k � (1.2)

Observethat the model for S= T−1 is obtainedin a local way from the modelof T: Sk dependsonly on

Tk. The sumandproductof matriceswith sparsestatestructurehaveagaina sparsestatestructurewith

numberof statesat eachpoint not larger thanthesumof the numberof statesof its componentsystems,

and computationalnetworksof thesecompositions(but not necessarilyminimal ones) can be easily

derivedfrom thoseof its components.Finally, we mentionthat a matrix T1 that is not uppertriangular

canbe split into an uppertriangularanda lower triangularpart,eachof which canbeseparatelymodeled

by a computationalnetwork. Thecomputationalmodelof the lower triangularparthasa recursionwhich

runsbackwards:
x �k = x �k+1A �k + ukB �k
yk = x �k+1C �k + ukD �k .
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Figure 2. Hankelmatricesare (mirrored)submatricesof T.

The model of the lower triangularpart can be usedto determinea model of a unitary uppermatrix U

which is suchthat U∗T is upperandhasa sparsestatestructure. In this way, resultsderivedfor upper

matrices,suchasthe aboveinversionformula, canbe generalizedto matricesof mixed type [9].

1.2. Realization algorithm

One might wonderfor which classof matricesT thereexistsa sparsecomputationalnetwork (or state

spacerealization)that realizesthesamemultiplicationoperator. For an uppertriangular(n× n) matrix T,

let the matricesHi (1 ≤ i ≤ n), which aresubmatricesof T, be

Hi =

�������
Ti−1,i Ti−1,i+1 ����� Ti−1,n

Ti−2,i Ti−2,i+1
...

...
. . . T2,n

T1,i ����� T1,n−1 T1,n

� �����	
(seefigure 2). We call the Hi (time-varying)Hankel matrices,as they will have a Hankel structure

(constantalong anti-diagonals)if T has a Toeplitz structure.∗ In terms of the Hankel matrices, the

criterion by which matriceswith a sparsestate structurecan be detectedis given by the following

theorem.

Theorem 1.1. Thenumberof statesthat are neededat stagek in a minimal computational network

of an upper triangular matrix T is equalto the rank of its k-th Hankelmatrix H k.

PROOF Supposethat � Ak, Bk, Ck, Dk � is a realizationfor T as in equation(1.1). Thena typical Hankel

matrix hasthe following structure:

H2 =

�������
B1C2 B1A2C3 B1A2A3C4 �����
B0A1C2 B0A1A2C3

B−1A0A1C2
. . .

...

� �����	
=

������ B1

B0A1

B−1A0A1

...

������	 ⋅ [C2 A2C3 A2A3C4 ����� ] = � 2
�

2

∗Warning: in the currentcontext(arbitraryuppertriangularmatrices)the H i do not havea Hankelstructureandthe predicate

‘Hankel matrix’ could leadto misinterpretations.Our terminologyfinds its motivation in systemtheory, wherethe H i arerelated

to an abstractoperatorHT which is commonlycalledthe Hankeloperator. For time-invariantsystems,H T reducesto an operator

with a matrix representationthat hasindeeda Hankelstructure.
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FromthedecompositionHk = � k
�

k it is directly inferredthat if Ak is of size(dk×dk+1), thenrank(Hk) is at

mostequalto dk. We haveto showthatthereexistsa realization � Ak, Bk, Ck, Dk � for which dk = rank(Hk):

if it does,thenclearly this mustbe a minimal realization. To find sucha minimal realization,takeany

minimal factorizationHk = � k
�

k into full rank factors � k and
�

k. We mustshowthat therearematrices� Ak, Bk, Ck, Dk � suchthat

� k =

���� Bk−1

Bk−2Ak−1

...

� ��	 �
k = [Ck AkCk+1 AkAk+1Ck+2 ����� ] . (1.3)

To this end,we usethe fact that Hk satisfiesa shift-invarianceproperty: with H←
2 denotingH2 without

its first column,we have

H←
2 =

������ B1

B0A1

B−1A0A1

...

������	 ⋅ A2 ⋅ [C3 A3C4 A3A4C5 ����� ] .

In general,H←
k = � kAk

�
k+1, and in much the sameway, H �k = � k−1Ak−1

�
k, whereH �k is Hk without its

first row. The shift-invariancepropertiescarry over to � k and
�

k, e.g.,
� ←

k = Ak
�

k+1, and we obtain

that Ak =
� ←

k

� ∗
k+1(

�
k+1
� ∗

k+1)
−1, where‘∗’ denotescomplexconjugatetransposition.The inverseexists

because
�

k+1 is of full rank. Ck follows asthefirst columnof the chosen
�

k, while Bk is thefirst row of� k+1. It remainsto verify that � k and
�

k are indeedgeneratedby this realization.This is straightforward

by a recursiveuseof the shift-invarianceproperties.

Let’s verify theorem1.1 with the example.The Hankelmatricesare

H1 = [ ⋅ ⋅ ⋅ ⋅ ] , H2 = [1/2 1/6 1/24] ,

H3 =  1/3 1/12

1/6 1/24 � , H4 =

��� 1/4

1/12

1/24

���	 .

Since rank(H1) = 0, no statesx1 are needed. One state is neededfor x2 and one for x4, because

rank(H2) = rank(H4) = 1. Finally, also only one stateis neededfor x3, becauserank(H3) = 1. In fact,

this is (for this example)the only non-trivial rankcondition: if oneof the entriesin H 3 would havebeen

different,thentwo stateswould havebeenneeded.In general,rank(Hi) ≤ min(i − 1, n − i − 1), and for a

generaluppertriangularmatrix T without statestructure,a computationalmodel will indeedrequireat

mostmin(i − 1, n − i − 1) statesfor xi .

The constructionin the proof of theorem1.1 leads to a realizationalgorithm (algorithm 1). In this

algorithm,A(:, 1 : p) denotesthe first p columnsof A, andA(1 : p, :) thefirst p rows. The key part of the

algorithmis to obtaina basis
�

k for the rowspaceof eachHankel matrix Hk of T. The singularvalue

decomposition(SVD) [10] is a robusttool for doing this. It is a decompositionof H k into factorsUk,

Σk, Vk, whereUk andVk areunitary matriceswhosecolumnscontainthe left andright singularvectors

of Hk, andΣk is a diagonalmatrix with positiveentries(the singularvaluesof H k) on the diagonal.The

integerdk is set equal to the numberof nonzerosingularvaluesof Hk, and V∗
k(1 : dk, :) containsthe

correspondingsingularvectors. The rows of V∗(1 : dk, :) spanthe row spaceof Hk. The rest of the

realizationalgorithmis straightforwardin view of the shift-invarianceproperty. Note that,basedon the

singularvaluesof Hk, a reducedordermodelcanbe obtainedby taking a smallerbasisfor
�

k, muchas

in thePrincipalComponentidentificationmethodin systemtheory[11], which is alsoknownasbalanced
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In: T (an uppertriangularn × n matrix)

Out: � Tk � n
1 (a minimal realization,in outputnormalform)�

n+1 = [ ⋅ ]

for k = n, ����� , 1����������������
Hk =: UkΣkV∗

k

dk = rank(Σk)� k = (UkΣk)(:, 1:dk)�
k = V∗

k(1:dk, :)

Ak =
�

k [ 0
�

k+1 ]∗

Ck =
�

k(:, 1)

Bk = � k+1(1, :)

Dk = Tk,k

end

Algorithm 1. Realizationalgorithm.

model reduction. Although widely usedfor time-invariantsystems,this would result in a “heuristic”

model reductiontheory, as the modelingerror norm is not known. The goal of the presentpaperis to

obtaina precisetheory. A final remarkis that the abovealgorithmyields a realizationin outputnormal

form:

AkA∗
k + CkC∗

k = I

which is a consequenceof the fact that an orthonormalbasisfor the row spaceof Hk hasbeenused.

1.3. Hankel norm approximation

In the previoussection,we haveassumedthat the given matrix T hasindeeda computationalmodelof

anorderthat is low enoughto favor theuseof a minimal computationalnetworkoveran ordinarymatrix

multiplication. However, if the rank of the Hankelmatricesof T (i.e., the systemorder)is not low, then

it could makesenseto approximateT by a new uppertriangularmatrix Ta that hasa lower complexity,

i.e., whoseHankel matriceshave low rank. It is of coursedependenton the origin of T whetherthis

indeedyieldsa usefulapproximationof theunderlying(physical)problemthatis describedby theoriginal

matrix. For example,it couldhappenthatthegivenmatrix T is not of low complexitybecausenumerical

inaccuraciesof the entriesof T haveincreasedthe rank of the Hankelmatricesof T, sincethe rank of

a matrix is a very sensitive(ill-conditioned)parameter. But evenif the given matrix T is known to be

exact,anapproximationby a reduced-ordermodelcouldbeappropriate,for examplefor designpurposes

in engineering,to capturethe essentialbehaviorof the model. With sucha reduced-complexitymodel,

the designercan more easily detect that certain featuresare not desiredand can possiblypredict the

effectsof certainchangesin the design;an overly detailedmodelwould rathermaskthesefeatures.

Becausethesystemorderat eachpoint is givenby therankof theHankelmatrix at thatpoint, a possible

approximationschemeis to replaceeachHankelmatrix by onethat is of lower rank (this couldbe done

using the SVD). The approximationerror could then very well be definedin terms of the individual

Hankel matrix approximationsas the supremumover the individual approximationerrors. The error

criterion for which we will obtaina solutionis called the Hankelnorm. It is definedas the supremum

over the operatornorm (the spectralnorm, or the matrix 2-norm)of eachindividual Hankelmatrix:�
T
�

H = sup
k

�
Hk

�
= sup

k
sup�
u
�

2≤1

�
uHk

�
2 (1.4)
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This is a generalizationof the Hankelnorm for time-invariantsystems.It is a reasonablystrongnorm:

if T is a strictly uppertriangularmatrix and
�

T
�

H ≤ 1, theneachrow andcolumnof T hasvectornorm

smallerthan1. In termsof the Hankelnorm, we will provethe following theoremin section3.

Theorem 1.2. Let T bea strictly uppertriangular matrix andlet Γ = diag(γi ) bea diagonalHermitian

matrix whichparametrizesthe acceptableapproximationtolerance(γ i > 0). Let Hk be the Hankelmatrix

of Γ−1T at stagek, and supposethat, for eachk, noneof the singular valuesof H k are equal to 1. Then

there existsa strictly uppertriangular matrix Ta with systemorder at stagek at mostequalto thenumber

of singularvaluesof Hk that are larger than 1, suchthat�
Γ−1(T − Ta)

�
H ≤ 1 .

In fact, there is a collection of such Ta. We will show the theoremby constructionand obtain a

computationalmodel of a particular Ta as well. Becausethe Hankel matriceshave many entriesin

common,it is not clearat oncethat this approximationschemeis feasible:replacingoneHankelmatrix

by a matrix of lower rank in a certainnorm might make it impossiblefor the next Hankel matrix to

be replacedby an optimal approximant(in that norm) such that the part that it has in commonwith

the previousHankelmatrix is approximatedby the samematrix. In otherwords: eachindividual local

optimizationmight preventa global optimum. The severityof this dilemma is mitigatedby a proper

choice of the error criterion: the fact that the abovedefinedHankel norm usesthe operatornorm of

eachHankelmatrix, ratherthanthe strongerFrobeniusnorm,givesjust enoughfreedomto obtaina nice

solutionto this dilemma. The solutioncanevenbe obtainedin a non-iterative form.

Γ can be usedto influencethe local approximationerror. For a uniform approximation,Γ = γ I, and

hence
�
T − Ta

�
H ≤ γ : the approximantis γ-closeto T in Hankelnorm, which implies in particularthat

the approximationerror in eachrow or columnof T is lessthan γ. If oneof the γ i is madelarger than

γ, thenthe error at the i-th row of T canbecomelargeralso,which might result in an approximantTa to

takeon lessstates.HenceΓ canbe chosento yield an approximantthat is accurateat certainpointsbut

lesstight at others,andwhosecomplexityis minimal.

Hankel norm approximationtheory originatesas a special caseof the solution to the Schur-Takagi

interpolationproblemin thecontextof complexfunctiontheory. Thesolutionwasformulatedby Adamjan,

Arov and Krein (AAK) [12], who studiedpropertiesof the SVD of infinite Hankelmatrices(havinga

Hankelstructure)andassociatedapproximationproblemsof boundedanalyticalfunctionsf(z) by rational

functions. In linear systemtheory, it is a well known result of Kroneckerthat the degreeof a rational

functionis equalto the rank of the Hankelmatrix constructedon the coefficientsof its Taylor expansion

[13]. The main problemwith approximatinga Hankelmatrix usingSVD, in the time-invariantcontext,

is to ensurethat the approximationhasagaina Hankel structure.When the function is regardedas the

transferfunction of a linear time-invariantsystemthis numberis the model order. It was remarkedin

Bultheel-Dewilde[14] and subsequentlyworked out by a numberof authors(Glover [15], Kung-Lin

[16], Genin-Kung[17]) that the procedureof AAK could be utilized to solve the problemof optimal

model-orderreductionof a dynamicaltime-invariantsystem,andthat, althoughthe Hankelmatrix is of

infinite size, computationscan be madefinite if a finite-orderstatemodel is alreadyknown [14]. It is

possibleto give a global expressionof the approximant,basedon a global statespacebasedsolutionof

a relatedSchur-Takagiinterpolationproblem;the necessarytheorywas extensivelystudiedin the book

[18]. The computationscan also be done in a recursivefashion [19]. Statespacetheory provideda

bridgebetweenanalyticaltheoryandmatrix computations.

In a recent seriesof papers[20, 21, 22, 23, 24, 25] a theory was developedto derive models for

uppertriangularmatricesas, now time-varying,linear systems.The classicalinterpolation problemsof
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Schuror Nevanlinna-Pickcan be formulatedandsolvedin a contextwherediagonalstake the placeof

scalars.A comprehensivetreatmentcan be found in [24], andwe will adoptthe notationof that paper.

A supplementaryrealizationtheory of upper operatorsin a statespacecontextappearedin [25] and

providedthe tools to solve the generalizedHankel-normmodel reductionproblemin combinationwith

the interpolation theory. The generalsolutionis publishedin [26], the presentpaperis a specialization

to finite uppertriangularmatrices,andcontainsindependent,finite dimensionalproofs.

1.4. Numerical example

As an exampleof theuseof theorem1.2, we considera matrix T anddeterminean approximantTa. Let

the matrix to be approximatedbe

T =

����������
0 .800 .200 .050 .013 .003

0 0 .600 .240 .096 .038

0 0 0 .500 .250 .125

0 0 0 0 .400 .240

0 0 0 0 0 .300

0 0 0 0 0 0

� ��������	
The positionof the Hankelmatrix H4 is indicated.Taking Γ = 0.1 I, the non-zerosingularvaluesof the

Hankeloperatorsof Γ−1T are

H1 H2 H3 H4 H5 H6

8.26 6.85 6.31 5.53 4.06

0.33 0.29 0.23

0.01

HenceT hasa statespacerealizationwhich grows from zero states(i = 1) to a maximumof 3 states

(i = 4), andthenshrinksbackto 0 states(i > 6). The numberof Hankelsingularvaluesof Γ −1T that are

larger thanoneis 1 (i = 2, ����� , 6). At eachpoint in the sequence,this is to correspondto the numberof

statesof the approximantat that point. Using the techniquesof this paper, we obtain

Ta =

����������
0 .790 .183 .066 .030 .016

0 0 .594 .215 .098 .052

0 0 0 .499 .227 .121

0 0 0 0 .402 .214

0 0 0 0 0 .287

0 0 0 0 0 0

� ��������	
with non-zeroHankelsingularvalues(scaledby Γ)

H1 H2 H3 H4 H5 H6

8.15 6.71 6.16 5.36 3.82

whosenumberindeedcorrespondto the numberof Hankelsingularvaluesof Γ−1T thatarelarger than1.

Also, the modelingerror is

T − Ta =

����������
0 .010 .017 −.016 −.017 −.013

0 0 .006 .025 −.002 −.014

0 0 0 .001 .023 .004

0 0 0 0 −.002 .026

0 0 0 0 0 .013

0 0 0 0 0 0

� ��������	
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with Hankelnorm of Γ−1(T − Ta) lessthan1:�
Γ−1(T − Ta)

�
H = sup� 0.334, 0.328, 0.338, 0.351, 0.347� = 0.351

The realizationalgorithm(algorithm1) yields as realizationfor T

T1 =  ⋅ ⋅
−.826 0 � T2 =  .246 −.041 −.968

−.654 −.00 0 �
T3 =

��� .397 −.044 .000 −.917

.910 .140 .040 .388

−.573 .00 .00 0

� �	 T4 =

����� .487 .037 −.873

.853 −.237 .465

.189 .971 .147

−.466 .00 0

� ���	
T5 =

��� −.515 −.858

.858 −.515

.300 0

� �	 T6 =  ⋅ 1

⋅ 0 �
A realizationof the approximantis determinedvia algorithm3 in section3.5 as

Ta,1 =  ⋅ ⋅
−.993 0 � Ta,2 =  .293 −.795

−.946 0 �
Ta,3 =  .410 −.629

−.901 0 � Ta,4 =  .525 −.554

−.837 0 �
Ta,5 =  −.651 −.480

.729 0 � Ta,6 =  ⋅ .393

⋅ 0 �
The correspondingcomputationalschemesare depictedin figure 3. It is seenthat a small changein T

canleadto a significantreductionin the complexityof the computations.

2. NOTATION AND PRELIMINARIES

2.1. Spaces

An essentialingredientof our theoryis theconceptof non-uniformsequences:vectorswhoseentriesare

againvectorsin someEuclideanspaceandwhich canhavedifferentdimensionsfor eachentry. Thuslet�
=
�

1 ×
�

2 × ����� × � n

where
�

i = |Cdi , anddi is the dimensionof
�

i . Somedimensionsmight be zero,e.g.,
�

= |C1 × ∅ × |C2

is a valid spacesequence,and [0.5, , [2, 1]] is an elementof
�

, the 2-norm(vectornorm) of which is

(0.25+ 4 + 1)1/2. A generalizedmatrix (a block matrix, which we will call a tableauto distinguish) is a

linear map � → � , where � , � arespacesequencesas
�

above.For example,to � = |C2 × ∅ × |C1,� = |C × |C × |C correspondtableausof the form����
|C |C |C

|C2
∗
∗

∗
∗

∗
∗

∅ ⋅ ⋅ ⋅
|C ∗ ∗ ∗

� ��	
where the (1, 1) entry is identified by a square,the main diagonalis distinguishedby an underscore,

‘∗’ standsfor any scalar, and ‘ ⋅’ standsfor an entry with an empty dimension. The abovetableauis

isomorphicto a 3 × 3 ordinarymatrix. We denoteby � ( � , � ) the spaceof linear maps � → � , by�
( � , � ) the spaceof uppertableausin � ( � , � ), that is

�
= � F ∈ � : Fi,j = 0, i > j � , by � ( � , � )

10
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Figure 3. Computationalscheme(a) of T and(b) of Ta.

the spaceof lower tableausin � ( � , � ), andby � ( � , � ) the spaceof diagonals.Note that if F ∈
�

is invertible, its inverseis not necessarilyin
�

(unlike with ordinarymatrices),as is demonstratedfor

exampleby

F =

����
|C |C |C

|C2
1

1/2

0

1

0

0
|C 0 1/2 1

∅ ⋅ ⋅ ⋅

� ��	 F−1 =

��� |C2 |C ∅
|C 1 0 0 ⋅
|C -1/2 1 0 ⋅
|C 1/4 -1/2 1 ⋅

� �	
Whenviewedasmatrices,F−1 is of coursejust the matrix inverseof F.

A rightwardshiftedspacesequenceis denotedby
� (k), as in� (1) = ∅ ×

�
1 ×

�
2 × ����� × � n . (2.1)

The shift operatorZ shifts a sequenceto the right andis a map
�

→
� (1), with tableau

Z =

������
∅

�
1

�
2 ����� �

n�
1 ⋅ I�
2 ⋅ 0 I

...
. . .

. . .�
n ⋅ 0 I

� ����	
It is unitary: ZZ∗ = I � , Z∗Z = I � (1). We denoteby Z[k] the productof k shifts. It is a map

�
→

� (k). Let

11



T ∈
�

( � , � ) be an n × n tableau.We candecomposeT into a sumof shifteddiagonals:

T =
n−1

k=0

Z[k]T[k] ,

whereT[k] ∈ � ( � (k), � ) is the k-th diagonalabovethe main (0-th) diagonal.Given a diagonalA ∈ � ,

we canwrite A = diag(Ai ), wherethe Ai are the diagonalentriesof A. Its k-th shift into the South-East

directionis definedby A(k) = (Z[k] )∗AZ[k] , so that A(k)
i = Ai−k.

We defineP as the projectionof � onto
�

, PZ the projectiononto strictly uppermatrices,and P0 as

the projectionof � onto � . With regardto matrix norms,
�

T
�

is the operatornorm (matrix 2-norm),�
T
�

F is the Frobeniusnorm, and
�

T
�

H is the Hankelnorm, definedrespectivelyby�
T
�

= sup� u � 2≤1

�
uT

�
2�

T
�

F = ! �
Ti,j

�
2 " 1/2�

T
�

H = supU∈ # Z−1 ,
�
U
�

F≤1

�
P(UT)

�
F .

Note that theabovedefinitionof theHankelnormis equivalentto thedefinitionin (1.4). We remarkthat

this norm is only a norm on the spaceZ
�

, while on � it is a semi-norm.We will alsoemploya new

norm, which we call the diagonal2-norm. Let Ti be the i-th row of a tableauT ∈ � , then

D ∈ � :
�

D
��$

2 = supi

�
Di
�
,

T ∈ � :
�

T
�

2$
2 =

�
P0(TT∗)

� $
2 = supi

�
TiT∗

i

�
.

For diagonals,it is equalto the operatornorm, but for more generalmatrices,it is the supremumover

the vector2-normsof eachrow of T.

Proposition 2.1. TheHankelnorm satisfiesthe following ordering:

T ∈ � :
�

T
�

H ≤
�

T
�

(2.2)

T ∈ Z
�

:
�

T
�%$

2 ≤
�

T
�

H . (2.3)

PROOF The first norm inequalityis provenby�
T
�

H = supU∈ # Z−1,
�

U
�

F≤1

�
P(UT)

�
F

≤ supU∈ # Z−1,
�

U
�

F≤1

�
UT

�
F

≤ supU∈ & ,
�

U
�

F≤1

�
UT

�
F =

�
T
�

.

For the secondnorm inequality, we first prove
�

T
�

2$
2 ≤ supD∈

$
,
�

D
�

F≤1

�
DTT∗D∗ �

F . Indeed,�
T
�

2$
2 =

�
P0(TT∗)

�
2$

2

= supD∈
$

,
�

D
�('

2≤1

�
DP0(TT∗)D∗ � $

2

= supD∈
$

,
�

D
�

F≤1

�
DP0(TT∗)D∗ �

F

≤ supD∈
$

,
�

D
�

F≤1

�
DTT∗D∗ �

F .

Then(2.3) is proven,with useof the fact that T ∈ Z
�

:�
T
�

2$
2 ≤ supD∈

$
,
�

D
�

F≤1

�
DTT∗D∗ �

F

= supD∈
$

,
�

D
�

F≤1

�
DZ∗TT∗ZD∗ �

F

= supD∈
$

,
�

D
�

F≤1

�
P(DZ∗T)

�
P(DZ∗T) � ∗ �

F

≤ supU∈ # Z−1,
�

U
�

F≤1

�
P(UT) [P(UT)]∗ �

F

=
�

T
�

2
H .

We seethat the Hankel norm is not as strongas the operatornorm, but is strongerthan the row-wise

uniform leastsquarenorm.
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2.2. Realizations

For a givenT ∈
�

( � , � ), a computationalmodelis definedby thesequenceof matrices� Ak, Bk, Ck, Dk �
in the form given by equation(1.1). Let the statexk ∈

�
k. We can assemblethe matrices � Ak � , � Bk �

etc. into diagonals,by defining

A ∈ � (
�

,
� (−1)) = diag(Ak) , C ∈ � (

�
, � ) = diag(Ck) ,

B ∈ � ( � ,
� (−1)) = diag(Bk) , D ∈ � ( � , � ) = diag(Dk) ,

(2.4)

which togetherconstitutea realizationT of T,

y = uT ⇔

�
xZ−1 = xA+ uB

y = xC+ uD
T =  A C

B D � (2.5)

This descriptionis equivalentto (1.1), but often more convenientto handlebecausethe time-indexhas

beensuppressed.Substitution leadsto

T = D + BZ(I − AZ)−1C,

where(I − AZ)−1 satisfiesthe expansion

(I − AZ)−1 = I + AZ+ AZAZ+ �����
= I + AZ+ AA(−1)Z[2] + AA(−1)A(−2)Z[3] + ����� .

As we will assumethroughoutthe paperthat therealizationstartsandendswith emptystatespaces,this

summationis in fact finite: AA(−1) ����� A(−n) = [ ⋅ ], wheren is thesizeof T. Hence(I − AZ)−1 alwaysexists

andthe expressionfor T is meaningful.

Connectedto a staterealization,we can distinguish global controllability and observabilityoperators

definedas � :=

������ B(+1)

B(+2)A(+1)

B(+3)A(+2)A(+1)

...

� ����	 �
:=

�
C AC(−1) AA(−1)C(−2) ����� � . (2.6)

� k and
�

k as in equation(1.3) are obtainedas the k-th (block) column and row of � and
�

, respec-

tively. Recall that � k and
�

k are closely relatedto the Hankeloperator: its k-th “snapshot”Hk hasthe

decomposition

Hk = � k
�

k .

We say that the realizationis controllablewhen the controllability operator� is suchthat the diagonal

matrix M := � ∗ � , is invertible, i.e., eachMk = � ∗
k � k is invertible. Likewise, the realizationis observable

if Q :=
�)� ∗ is invertible. In the presentcontext, it is alwayspossibleto choosethe realizationto be

both controllableand observable,in which casethe realizationis also minimal, in the sensethat the

dimensionsof the statespaceat eachpoint k in thesequenceis minimal. For suchrealizations,the rows

of
�

k form a (minimal) basisfor therow spaceof Hk, andthecolumnsof � k form a basisfor its column

space. � and
�

canbe thoughtof asa collectionof thesebasesinto a singleobject.

Anothernotion that we will needis that of “state transformations”.If � A,B,C,D � is a realizationof a

systemwith transfermatrix T, thenan equivalentrealizationis foundby applyinga statetransformation

x̂ = xR on the statesequencex of the system,whereR is an invertible diagonalmatrix. The realization

matrix T is thentransformedto

T � =  R

I �  A C

B D �  (R(−1))−1

I � .
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(Note the diagonalshift in (R(−1))−1). Statetransformationsare often usedto bring a realizationinto

somedesirableform. This thenleadsto equationsof the famousLyapunovor Lyapunov-Steintype. For

example,the Lyapunovequation

M(−1) = A∗MA + B∗B, M ∈ � (
�

,
�

) (2.7)

arisesin thetransformationof acontrollablerealizationto inputnormalform: onefor whichA ∗A+B∗B = I.

If the original realizationis controllable,thenan invertible statetransformatorR canbe found suchthat

A1 = RA(R(−1))−1, B1 = B(R(−1))−1 and

A∗
1A1 + B∗

1B1 = I .

Substitution leadsto equation(2.7), with M = R∗R, andhenceit sufficesto solvethis equationfor M and

to verify thatM is invertible,in which casea factorR is invertibletoo. Sinceequation(2.7)only involves

diagonals,it canbesolvedrecursively:Mk+1 = A∗
kMkAk+B∗

kBk, wheretheinitial valueis M1 = [ ⋅ ]. Finally,

if � is the controllability operatorof the given realization,thenM = � ∗ � is the solutionof (2.7), which

showsthat M is invertible if the realizationis controllable. Likewise, if the realizationis observable(
�

is suchthat Q =
�)� ∗ is invertible), thenQ is the uniquesolutionof the Lyapunovequation

Q = AQ(−1)A∗ + CC∗

andwith thefactoringof Q = RR∗ thisyieldsaninvertiblestatetransformationR suchthatA1 = R−1AR(−1),

B1 = BR(−1), C1 = R−1C, and

A1A∗
1 + C1C∗

1 = I .

The resulting � A1, B1, C1, D � then form an outputnormal realizationfor the matrix. In section3.3 we

will assumethatthematrix to beapproximatedis indeedspecifiedby a realizationin outputnormalform,

which is automaticallythe caseif the realizationalgorithm(1) hasbeenused.

2.3. J-unitary matrices

If a matrix is at thesametime unitaryandupper(with respectto its block structure),we will call it inner.

In this paperwe will makeextensiveuseof matricesΘ thatareblock upperandJ-unitary. To introduce

thesematricesproperly, we must definea splitting of the sequenceof input spacesinto two sequences� 1 and � 1, a splitting of the sequenceof outputspacesinto two sequences� 2 and � 2, andsignature

sequencesJ1 andJ2:

Θ =  Θ11 Θ12

Θ21 Θ22 � , J1 =  I * 1

−I + 1 � , J2 =  I * 2

−I + 2 � . (2.8)

Θ decomposesin four blocks,mapping� 1 × � 1 to � 2 × � 2. If eachof thesemapsareupper, we say

that Θ is block-upper. Θ will be calledJ-unitary relativeto this splitting in blocks,when

Θ∗J1Θ = J2 and ΘJ2Θ∗ = J1 . (2.9)

A J-unitarymatrix Θ canbeconstructedusinga computationalmodel ΘΘΘ that is J-unitaryin thefollowing

sense.Let
�

be the statesequencespaceof a realizationΘΘΘ, and let
�

=
�

+ ×
�

− be a decompositionof�
. Define the signaturematrix

J� =  I � +

−I � − �
(we call J� thestatesignaturesequence).A realizationΘΘΘ is calledJ-unitary(with respectto � J � , J1, J2 � )
if it satisfies

ΘΘΘ∗  J�
J1 � ΘΘΘ =  J(−1)�

J2 � , ΘΘΘ  J(−1)�
J2 � ΘΘΘ∗ =  J�

J1 � . (2.10)
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Figure 4. (a) Thespacesconnectedwith a realizationfor aJ-unitaryblock-uppermatrixΘ whichtransfers� 1×� 1 to � 2×� 2. Therealizationmatrix is markedasΘΘΘ. (b) Thecorrespondingscattering—

or unitary—situation.

Figure4(a) givesa sketchof the situationfor the model ΘΘΘ associatedwith Θ.

Proposition 2.2. If ΘΘΘ is a J-unitaryrealizationin thesenseof equation(2.10),thenthecorresponding

transfermatrix Θ will be J-unitary in the senseof equation(2.9).

PROOF This is readily verified by taking as realizationfor Θ an � α, β, γ, δ � which satisfies(2.10), and

evaluatingJ2 − Θ∗J1Θ:

J2 − Θ∗J1Θ = J2 − δ∗J1δ + γ∗Z∗(I − α∗Z∗)−1α∗J� γ + γ∗J� α(I − Zα)−1Zγ +

− γ∗Z∗(I − α∗Z∗)−1 ! J(−1)� − α∗J� α " (I − Zα)−1Zγ
= γ∗J� γ + γ∗(I − Z∗α∗)−1 ! Z∗α∗J� + J� αZ − J� − Z∗α∗J� αZ " (I − αZ)−1γ ,

sinceβ∗J1δ = −α∗J� γ, β∗J1β = J(−1)� − α∗J� α andJ2 − δ∗J1δ = γ∗J� γ, andhence

J2 − Θ∗J1Θ = γ∗(I − Z∗α∗)−1 ! (I − Z∗α∗)J� (I − αZ) +

+ Z∗α∗J� + J� αZ − J� − Z∗α∗J� αZ " (I − αZ)−1γ
= 0 .

The secondequalityof (2.9) follows by an analogousprocedureasabove.

A J-unitaryuppermatrix hasthe following specialproperty.

Proposition 2.3. If � α, β, γ, δ � is an observablerealizationfor a J-unitaryblock-uppermatrix Θ, then

Z∗(I − α∗Z∗)−1β∗J1 Θ ∈ [
� �

] (2.11)

that is, Z∗(I − α∗Z∗)−1β∗J1, which is a strictly lower matrix, is mappedby Θ to a block uppermatrix.

PROOF Evaluationof the first part of equation(2.9) revealsthat

Z∗(I − α∗Z∗)−1β∗J1 Θ
= Z∗(I − α∗Z∗)−1β∗J1 (δ + βZ(I − αZ)−1 γ)

= Z∗(I − α∗Z∗)−1 −α∗J� + (J(−1)� − α∗J� α)Z(I − αZ)−1 γ

= (Z − α∗)−1 −α∗J� (I − αZ) + J(−1)� Z − α∗J� Z (I − αZ)−1γ

= J� (I − αZ)−1γ ∈ [
� �

] .

(2.12)
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Figure 5. Relationbetweena J-unitary matrix Θ andthe correspondingunitarymatrix Σ.

Proposition2.3 canbe interpretedasa general“interpolation principle” which will be treatedin detail in

sections3.1–3.3.

Anotherpropertythat follows from the J-unitarity of Θ is that Θ 22 is invertible. Associatedto Θ is a

matrix Σ,

Σ =  Σ11 Σ12

Σ21 Σ22 �
which is suchthat

[a1 b2]Σ = [a2 b1] ⇔ [a1 b1]Θ = [a2 b2],

(seefigure 5), that is,

Σ =  I −Θ12

0 I �  Θ11 0

0 Θ−1
22 �  I 0

Θ21 I � =  Θ11 − Θ12Θ−1
22Θ21 −Θ12Θ−1

22

Θ−1
22Θ21 Θ−1

22 � (2.13)

It is straightforwardto provethat from the J-unitarity of Θ it follows that Σ is unitary. Σ is knownasa

scatteringmatrix, while Θ is calleda chainscatteringmatrix. Σ andΘ constitutethesamelinearrelations

betweenthe quantitiesa1, a2, b1, b2. However, the signalflows of the “incident” and“reflected” waves

of Σ coincidewith thedirectionof theenergy goinginto andout of thesystem:a 1a∗
1+b2b∗

2 = a2a∗
2 +b1b∗

1,

whereasfor Θ the relationa1a∗
1 − b1b∗

1 = a2a∗
2 − b2b∗

2 reflectsconservationof energy betweenport 1 and

port 2.

Let ΘΘΘ be a J-unitary realization.Sinceeachof the ΘΘΘk is a J-unitary matrix, thereis a unitarymatrix ΣΣΣk

associatedto eachΘΘΘk in the sameway asΣ followed from Θ, but now accordingto the rule

[x+ x− a1 b1] ΘΘΘ = [x(−1)
+ x(−1)

− a2 b2]

⇔ [x+ x(−1)
− a1 b2] ΣΣΣ = [x(−1)

+ x− a2 b1]
(2.14)

(thatis, inputsof ΣΣΣ havepositivesignature).Again, thedirectionsof thearrowscorrespondingto negative

signaturesin ΘΘΘ is reversed(seefigure 4(b)). An explicit formula for ΣΣΣ in termsof ΘΘΘ is given below.

Although ΣΣΣ constitutesthe samelinear relationsbetweenthe statevariablesas ΘΘΘ, andhenceelimination

of x+ and x− will lead to the scatteringmatrix Σ associatedto Θ, it shouldbe noted that ΣΣΣ is not a

realizationof Σ, sincethe stateflow is not uni-directional: the next stateof ΣΣΣ is specifiedin termsof its

currentstateonly in animplicit way. ΣΣΣ will becalleda staterepresentationof Σ, ratherthana realization.

ΣΣΣ is computedfrom Θ in the following way. Partitionthe statex of ΘΘΘ accordingto the signatureJ � into

x = [x+ x−], andpartition ΘΘΘ likewise:

ΘΘΘ =

������
x(−1)

+ x(−1)
− a2 b2

x+ α11 α12 γ11 γ12

x− α21 α22 γ21 γ22

a1 β11 β12 δ11 δ12

b1 β21 β22 δ21 δ22

� ����	 , (2.15)
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thenthe correspondingΣΣΣ, definedby the relation(2.14) hasa partitioning

ΣΣΣ =

������
x(−1)

+ x− a2 b1

x+ F11 F12 H11 H12

x(−1)
− F21 F22 H21 H22

a1 G11 G12 K11 K12

b2 G21 G22 K21 K22

� ����	 . (2.16)

First, we provethe existenceof ΣΣΣ by remarkingthat, becauseof the J-unitarity of ΘΘΘ, the submatrix α22 γ22

β22 δ22 �
is at eachpoint k squareandinvertible. The entriesin ΣΣΣ canbe determinedfrom thoseof ΘΘΘ as F11 H11

G11 K11 � =  α11 γ11

β11 δ11 � −  α12 γ12

β12 δ12 �  α22 γ22

β22 δ22 � −1  α21 γ21

β21 δ21 � F12 H12

G12 K12 � = −  α12 γ12

β12 δ12 �  α22 γ22

β22 δ22 � −1

 F21 H21

G21 K21 � =  α22 γ22

β22 δ22 � −1  α21 γ21

β21 δ21 � F22 H22

G22 K22 � =  α22 γ22

β22 δ22 � −1

(2.17)

(cf. equation(2.13)). Note that eachmatrix ΣΣΣk only dependson the entriesof ΘΘΘk so that it can be

computedindependentlyfrom the otherstages.

3. CONSTRUCTION OF A HANKEL-NORM APPROXIMANT

3.1. Summary of the procedure

In this section,we solvethe Hankelnorm modelreductionproblemfor a strictly uppermatrix described

by a “higher ordermodel” with an observablerealization � A,B,C,0 � . Let input andoutputspaces�
and � be asin equation(2.4), andlet Γ bea diagonalandhermitianmatrix belongingto � ( � , � ). We

useΓ asa measurefor the local accuracyof the reducedordermodel; it will parametrizethe solutions.

We look for a matrix T � ∈ � ( � , � ) such that (i) the scaleddifferencewith T is smaller than 1 in

operatornorm: �
Γ−1(T − T � ) � ≤ 1 , (3.1)

andsuchthat (ii ) the approximant

Ta := PZ (T � ) , (3.2)

i.e., the strictly upperpart of T � , hasa statedimensionsequenceof low order— as low aspossiblefor

a given Γ. Using the norm inequality(2.2), we immediatelyobtainthat Ta satisfies�
Γ−1(T − Ta)

�
H ≤

�
Γ−1(T − T � ) � ≤ 1 ,

i.e., Ta is a Hankel-normapproximantof T whenT � is an operator-normapproximant.The secondnorm

inequality(2.3) gives in addition �
Γ−1(T − Ta)

� $
2 ≤

�
Γ−1(T − Ta)

�
H .
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The interpretation of this secondinequalityis that the changein eachrow of Γ −1T is (in 2-norm)smaller

thanthe error in Hankelnorm,andat leastsmallerthan1. A comparableresultholdsfor the columnsof

Γ−1T. Consequently, the matrix entriesof a Hankelnorm approximantTa arecloseto thoseof T.

The constructionof a matrix T � satisfying (3.1) consistsof the following three steps. We start by

computinga factorizationof T in the form

T = ∆∗U (3.3)

where∆ andU areuppermatriceswhich havestatespacedimensionsof the samesizeas thatof T, and

U is inner. We will call sucha factorizationan externalfactorization.We showin section3.2 that this

factorizationis easyto determineif therealization(2.4) for T is chosento be in outputnormalform, i.e.,

suchthat AA∗ + CC∗ = I. The constructionof a properT � continuesby the determinationof a matrix Θ
that is J-unitaryas in (2.8) andblock-upper, suchthat�

U∗ − T∗Γ−1 � Θ =

�
A � − B � � (3.4)

consistsof two uppermatricesA � andB � . As an aside,we remarkthat this expressioncanequivalently

be written as

U∗

�
I − ∆Γ−1 � Θ =

�
A � − B � � . (3.5)

which is the ‘standard’ formulationof an interpolation problem(see[24]): for time-invariantsystems,

the equationexpressesthat

�
I − ∆Γ−1 � Θ haszerosat polesof U∗, which ensuresthat the approximant

is equalto the original systemat certainpointsin the z-plane.

We will show that a solution to this interpolationproblemexists if certainconditionson a Lyapunov

equationassociatedto Γ−1T aresatisfied(this canalwaysbethe casefor judiciouslychosenΓ). The state

dimensionof Θ will againbe the sameas that of T. BecauseΘ is J-unitary, we have that Θ∗
22Θ22 =

I+Θ∗
12Θ12 . HenceΘ−1

22 will exist(butwill notnecessarilybeupper)andΣ 12 = −Θ12Θ−1
22 will becontractive.

From (3.4) we haveB � = −U∗Θ12 + T∗Γ−1Θ22 . In termsof the definitionof Θ andB � , the approximating

matrix T � is subsequentlydefinedas

T � = ΓΘ−∗
22B � ∗ . (3.6)

Thenthe resultingapproximationerror is Γ−1(T− T � ) = −Σ∗
12U . BecauseΣ12 is contractiveandU unitary,

we infer that
�

Γ−1(T − T � ) � ≤ 1, so that T � is indeedan operator-norm approximantwith an admissible

modelingerror. Taking Ta equalto the uppertriangularpart of T � , the definitions(3.4), (3.6) and (3.2)

resultin a HankelnormapproximantTa. We will alsoshowthat, from (3.6) andthe fact thatB � is upper

triangular, it canbe inferredthat thestatedimensionof Ta will, at eachpoint in time, be at mostequalto

thatof the upperpartof Θ−∗
22. (With moreeffort, oneshowsthat the statedimensionsarepreciselyequal

to eachother [26].) In view of the target theorem1.2, it remains(1) to constructU, (2) to constructΘ
satisfying(3.4), takingcarethatthe upperpartof Θ−∗

22 hasstatedimensionsaslow aspossible,and(3) to

verify the complexityof the Hankelnorm approximantin connectionwith the Hankelsingularvaluesof

Γ−1T. Theseare the subjectsof the following sections.Subsequently, formulasdescribinga realization

of Ta arederived(theorem3.7).

3.2. External factorization of T

The aim of this sectionis to provethe following proposition.

Proposition 3.1. If a matrix T is upper, T ∈
�

( � , � ), thenthere existsa spacesequence� U and

an inner matrix U ∈
�

( � U, � ) suchthat ∆ = UT∗ is upper, and T hasa factorization

T = ∆∗U .
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PROOF To obtainU, we start from a model � A, B, C, D � of T which is in outputnormal form, AkA∗
k +

CkC∗
k = I for all k. It is obtained,for example,by the realizationalgorithm (1). For each point k,

determinematricesBU,k andDU,k via the orthogonalcomplementof the rows of [Ak Ck], so that Uk,

Uk =  � k+1 � k�
k Ak Ck� U,k BU,k DU,k � ,

is a squareandunitarymatrix. TakeU to be a computationalmodel for U. ThenU is inner, becauseits

realizationis unitary(proposition 2.2). It remainsto verify that∆ = UT ∗ is upper. This follows by direct

computationof ∆, in which we makeuseof the relationsAA∗ + CC∗ = I, BUA∗ + DUC∗ = 0:

∆ = UT∗ =

�
DU + BUZ(I − AZ)−1C� � D∗ + C∗(I − Z∗A∗)−1Z∗B∗ �

=

�
DU + BUZ(I − AZ)−1C� D∗ + DUC∗(I − Z∗A∗)−1Z∗B∗ +

+ BUZ(I − AZ)−1CC∗(I − Z∗A∗)−1Z∗B∗

=

�
DU + BUZ(I − AZ)−1C� D∗ − BUA∗(I − Z∗A∗)−1Z∗B∗ +

+ BUZ(I − AZ)−1 (I − AA∗) (I − Z∗A∗)−1Z∗B∗ .

Now, we makeuseof the relation

Z(I − AZ)−1(I − AA∗)(I − Z∗A∗)−1Z∗ = (I − ZA)−1 + A∗(I − Z∗A∗)−1Z∗ ,

which is easily verified by pre- and postmultiplying with (I − ZA) and (Z − A ∗), respectively. Plugging

this relationinto the expressionfor ∆, it is seenthat the lower triangularpartsof the expressioncancel,

andwe obtain
∆ =

�
DU + BUZ(I − AZ)−1C� D∗ + BU(I − ZA)−1B∗

= DUD∗ + BUB∗ + BUZ(I − AZ)−1(AB∗ + CD∗) .

which is, indeed,upper.

Becausethe Ak are not necessarilysquarematrices,the dimensionof the statespacemay vary in time.

A consequenceof this will be that the numberof inputsof U will vary in time for an inner U having

minimal statedimension. The varying numberof inputsof U will of coursebe matchedby a varying

numberof outputsof ∆∗. Figure6 illustratesthis point.

3.3. Determination of Θ

In this sectionwe will showhow, undersatisfactionof a conditionof Lyapunovtype,equation(3.4) can

besatisfiedwith a J-unitarytransfermatrix Θ. Let T bea strictly uppermatrix with model � A,B,C,0 � in

outputnormalform, andlet � A,BU, C,DU � be theunitaryrealizationfor the inner factorU ∈
�

( � U, � )

of T. Denoteby
�

the statesequencespaceof T. We submitthat Θ satisfying(3.4) hasa realizationΘΘΘ
of the form

ΘΘΘ =  X

I � ��� A C1 C2

BU D11 D12

Γ−1B D21 D22

���	  (X(−1))−1

I �
=:

��� α γ1 γ2

β1 δ11 δ12

β2 δ21 δ22

� �	 =  α γ
β δ � (3.7)

which is a squarematrix at eachpoint k, andwhere the X andCi , Dij are yet to be determined.Note

that thestatesequencespace
�

is the samefor ΘΘΘ andT. X is an invertiblediagonalstatetransformation

matrix which is suchthat ΘΘΘ is J-unitary as in (2.10),wherethe statesignaturematrix J � is also to be

determined.The following theoremsummarizeswhat we will prove in this section.
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Figure 6. (a) The computationalschemefor an exampleT, (b) the computationalstructureof the corre-

spondinginner factor U and(c) of ∆.

Theorem 3.2. Let T ∈
�

( � , � ) be a strictly uppermatrix, with � A,B,C,0 � a modelof T in output

normal form, and let Γ ∈ � ( � , � ) be an invertible Hermitian diagonalmatrix. Let U be the inner

factor of an external factorization of T, with unitary model � A,BU, C,DU � . If the solution M of the

Lyapunovequation

A∗MA + B∗Γ−2B = M(−1) (3.8)

is suchthat Λ = I − M is invertible, thenthere existsa J-unitary block uppermatrix Θ suchthat

[U∗ − T∗Γ−1] Θ (3.9)

is block upper. ThecorrespondingJ-unitary realizationΘΘΘ is of the form (3.7), with statetransformation

X and statesignature matrix J � givenby the factorizationΛ = X∗J� X.

PROOF We first constructΘ by determininga realizationΘΘΘ that hasthe structureof equation(3.7), and

then show that it satisfies(3.9). The first step in solving for the unknownsin (3.7) is to determineX

suchthat ��� α
β1

β2

� �	 =

��� XA(X(−1))−1

BU(X(−1))−1

Γ−1B(X(−1))−1

� �	 (3.10)

is J-isometricin the senseof equation(2.10), i.e., suchthat for somesignaturematrix J � ,

(X(−1))−∗A∗X∗ J� XA(X(−1))−1 + (X(−1))−∗B∗
UBU(X(−1))−1 +

− (X(−1))−∗B∗Γ−2B(X(−1))−1 = J(−1)� .

Writing Λ = X∗J� X, this produces

A∗ΛA + B∗
UBU − B∗Γ−2B = Λ(−1) , (3.11)

which determinesΛ recursively, andhencealsoboth the factor X andthe statesignatureJ � . For X to be

invertible, it is sufficient to requireΛ to be invertible. Equation(3.11) may be rewrittenin termsof the

original databy usingB∗
UBU = I − A∗A, which yields

A∗MA + B∗Γ−2B = M(−1) , M = I − Λ .
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M is the solutionof oneof the Lyapunovequationsassociatedto Γ −1T (viz. equation(2.7)). We proceed

with the constructionof a realizationΘΘΘ of the form (3.7) which satisfies(2.10) for

J1 =  I * U

−I * � , J2 :=  I * 2

−I + 2 �
whereJ2 is still to be determined(andwith it the outputspacesequences� 2 and � 2). Sincesignature

of matricesis conservedundercongruencerelationsas (2.10), we must havethat the signaturesof the

matrices  J�
J1 � and  J(−1)�

J2 �
areequal.Let s-dim denotethesequenceof dimensionsof a non-uniformspace(a sequenceof integers),

andlet #+(J) denotethesequencewhosek-th entryis thenumberof positiveentriesin thesignaturematrix

J at point k (andlikewise for the numberof negativeentries#−(J)), then

s-dim � 2 = #+(J� ) − #+(J(−1)� ) + s-dim � U

s-dim � 2 = #−(J� ) − #−(J(−1)� ) + s-dim � .

The positivity of thesedimensionsis readily derivedfrom equation(3.11) by Sylvester’s inequality.

To obtain ΘΘΘ, it remainsto completethe matrix (3.10) to form the matrix ΘΘΘ in (3.7) so that the whole

matrix is now J-unitary accordingto (2.10). This matrix completioncanbe achievedat the local level:

it is for eachstagek an independentproblemof matrix algebra(seealgorithm2). It is not hard to see

that the completionis alwayspossible.

To concludethe proof, we haveto showthat [U∗ − T∗Γ−1] Θ is block upper. We have

[U∗ − T∗Γ−1] = [D∗
U 0] + C∗Z∗(I − A∗Z∗)−1[B∗

U − B∗Γ−1] (3.12)

andit will be enoughto showthat

Z∗(I − A∗Z∗)−1[B∗
U − B∗Γ−1] Θ (3.13)

is block upper. With entriesas in equation(3.7), andusingthe stateequivalencetransformationdefined

by X, this is equivalentto showingthat

X∗Z∗(I − α∗Z∗)−1[β∗
1 β∗

2] J1 Θ

is block-upper. That this is indeedthe casefollows directly from proposition 2.3—seeequation(2.11).

For later use,we evaluate[U∗ − T∗Γ−1] Θ. Equation(2.12) gives

C∗Z∗(I − A∗Z∗)−1[B∗
U − B∗Γ−1]Θ = C∗X∗Z∗(I − α∗Z∗)−1β∗J1Θ

= C∗X∗J� (I − αZ)−1γ
= C∗Λ(I − AZ)−1[C1 C2] .

Consequently,

[U∗ − T∗Γ−1]Θ = [D∗
U 0] ! δ + [B∗

U B∗Γ−1]∗Z(I − AZ)−1[C1 C2] " + C∗Λ(I − AZ)−1[C1 C2]

= � [D∗
U 0]δ + C∗Λ[C1 C2] � + C∗(Λ − I)AZ(I − AZ)−1[C1 C2]

(in which we used C∗A + D∗
UBU = 0). Since this expressionis equal to [A � − B � ], we obtain a

computationalmodel for B � as

B � = ! −D∗
UD12 + C∗(I − M)C2

" + ! C∗MA " Z(I − AZ)−1C2 . (3.14)
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In: T (model in outputnormalform for a strictly uppermatrix T)

Γ (approximationparameters)

Out: ΘΘΘ (realizationfor Θ satisfying(3.4))

M1 = [ ⋅ ]

X1 = [ ⋅ ]

J� 1 = [ ⋅ ]

for k = 1, ����� , n��������������������������������

Mk+1 = A∗
kMkAk + B∗

kΓ−2
k Bk

X∗
k+1J� k+1Xk+1 := I − Mk+1

[BU,k DU,k] = [Ak Ck]⊥

 α
β � =

��� XkAk

BU,k

Γ−1
k Bk

���	 X−1
k+1 c

d � =  J� kα
J1β � ⊥

r∗J2r := [c∗ d∗]  J� k

J1 �  c

d � γ
δ � =  c

d � r−1

ΘΘΘk =  α γ
β δ �

end

Algorithm 2. The interpolation algorithm.
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Figure 7. (a) Statespacerealizationschemefor T and(b) for U. (c) Statespacerealizationschemefor

a possibleΘ, where it is assumedthat one singularvalue of the Hankel operatorof Γ−1T at

time 1 is larger than1, and(d) for the correspondingscatteringoperatorΣ.

Algorithm2 summarizestheconstructionin theorem3.2andcanbeusedto computeΘ satisfyingequation

(3.4). The inner factor U of T is computeden passant.

The key to constructthe interpolating Θ in (3.4) is hencethesolutionof theLyapunovequation(3.8). It

canbe computedrecursivelyby taking the k-th entry of eachdiagonalin the equation,yielding

Mk+1 = A∗
kMkAk + B∗

kΓ−2
k Bk

The initial pointof this recursionis M 1 = [ ⋅ ], if thestatedimensionsequenceof therealizationof T starts

with zerostates.We concludethis sectionby establishingthe link betweenthis Lyapunovequationand

the Hankelmatrix connectedwith Γ−1T. This will providethe connectionof the Hankelsingularvalues

of Γ−1T andthe statecomplexityof the Hankelnorm approximant,discussedin the next subsection.

Theorem 3.3. Let T ∈
�

( � , � ) havea model � A,B,C,0 � in outputnormal form, and let Γ be an

invertiblediagonalHermitianmatrix. Let H k be the Hankelmatrix of Γ−1T at stagek, and supposethat,

for eachk, noneof the singularvaluesof Hk are equalto 1. Let Nk be the numberof singularvaluesof

Hk that are larger than 1.

Thenthe solutionMk of the Lyapunovrecursion

Mk+1 = A∗
kMkAk + B∗

kΓ−2
k Bk , M1 = [ ⋅ ] , (3.15)

is suchthat Λk = I − Mk is invertible and hassignature J � k havingpreciselyNk negativeentries.

PROOF According to section2.2, the Hankel matrix Hk of Γ−1T at stagek satisfiesthe decomposition

Hk = � k
�

k, where � k and
�

k aregiven as in (1.3), savefor a scalingof Bk by Γ−1
k . Hence

HkH∗
k = � k

�
k
� ∗

k � ∗
k .

In the presentcontext we have startedfrom an output normal form: Q =
�,� ∗ = I. The non-zero

eigenvaluesof HkH∗
k = � k � ∗

k will be the sameas thoseof � ∗
k � k, and in section2.2 it was shownthat

Mk = � ∗
k � k is preciselythesolutionof theLyapunovrecursion(3.15). In particular, thenumberof singular

valuesof Hk that are larger than1 is equal to the numberof eigenvaluesof Mk that are larger than1.

Writing Λk = I − Mk, this is in turn equalto the numberof negativeeigenvaluesof Λ k.
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Figure 8. Dataflowschemefor Σ, which showsthat x−,k is a statein the transferb2f,k → b1p,k.

Figure7 showsa simple instanceof the applicationof the theorydevelopedin this section,especially

with regardto thedimensionsof the input,outputandstatesequencespacesrelatedto theΘ-matrix. The

signal flow of the staterealizationmatricesΘΘΘk runs strictly from top to bottomand from left to right.

Correspondingto Θ is the scatteringoperatorΣ, whosestaterepresentationΣΣΣk is for eachk computed

from ΘΘΘk usingequation(2.16). The arrowsin the scatteringsituation(wherethe signal flow coincides

with ‘positiveenergy flow’) run in thereversedirectionfor inputsandoutputsof ΘΘΘk thathavea negative

signature.In the figure, we assumedthat onesingularvalueof the Hankeloperatorof Γ−1T at time 1 is

larger than1, which resultsin onestatevariablewith negativesignature,andhencethereis oneupward

arrow in the diagramfor Σ. Becauseof the upwardarrow, Σ is not an uppermatrix (it is not a causal

transferoperator),and ΣΣΣ only specifiesΣ implicitly: figure 7(d) containsa loop betweenstage1 and

2 which rendersthe networkuncomputable.As is shownin the next section,upwardarrowsgenerate

the statesof the Hankel-normapproximant,andthe numberof upwardarrowsis equalto the numberof

statesof the approximant.

3.4. State dimension of Ta

At this point we havecoveredthe first partof theorem1.2: we haveconstructeda J-unitaryΘ andfrom

it a matrix Ta which is a Hankel-normapproximantof T. It remainsto verify the complexityassertion,

which statedthat the dimensionof the statespaceof Ta is at mostequalto Nk at point k: the numberof

singularvaluesof thek-th Hankelmatrix of Γ−1T thatarelargerthanone,or (by theorem3.3) thenumber

of negativeentriesin thestatesignatureJ � of Θ at pointk. Not surprisinglyfrom thedefinitionof T a, an

importantrole will beplayedby Θ−1
22, which is the22-entryof thescatteringmatrix Σ associatedto Θ by

equation(2.13). The representationΣΣΣ specifies,be it in an implicit form, the relationsbetweenthe input

andoutputquantitiesof the non-causaloperatorΣ. The existenceof Σ implies,e.g.,that all intermediate

statequantitiesx+,k, x−,k arewell-defined,given inputsa1 andb2. In particular, Σ22 = Θ−1
22 is obtainedby

imposinga1 = 0 and looking at the transferb2 -→ a2. Finding a realizationfor the strictly upperpart of

Θ−∗
22 will consistin “unwinding” the loopsin the representationΣΣΣ of Σ anddeducingthe realizationfor

it. The fact thatΣ canbe resolvedandthata realizationfor Θ−∗
22 canbe deducedwill be the topic of the

next section.
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In this section,we provethe following proposition, which provideswith theorem3.2 andtheorem3.3 a

proof of the Hankelnorm approximationtheorem(theorem1.2).

Proposition 3.4. If theconditionsof theorem3.2 are satisfied,thenthestatedimensionof theapprox-

imant Ta is (at most)equal to the statedimensionof the strictly upperpart of Θ −∗
22 at eachpoint. This

dimensionis in turn (at most)equal to the numberof negativeentriesin the statesignature J � of Θ at

point k, or the numberof singularvaluesof the Hankelmatrix of Γ −1T at point k that are larger than1.

PROOF Ta is determinedby the definitions(3.2), (3.6):

T � = ΓΘ−∗
22B � ∗

Ta = ΓPZ ( T � ) = ΓPZ ( Θ−∗
22B � ∗ )

= ΓPZ ( PZ (Θ−∗
22)B � ∗ ) .

(3.16)

Since B � is upper, and we are only interestedin the strictly upperpart of T � , only the strictly upper

part of Θ−∗
22 will play a role, or equivalently, the strictly lower part of Θ −1

22. Moreover, againbecauseB �
is upper, multiplication of Θ−∗

22 by B � ∗ doesnot increasethe rank of the Hankel matricesof PZ (Θ−∗
22)

becausethe productinvolvesonly linear combinationsof the columnsof eachseparateHankelmatrix of

PZ (Θ−∗
22). Hencethe statedimensionof Ta is (at most)equalto thestatedimensionof the strictly upper

part of Θ−∗
22.

To determinethe latter dimension,considerfigure 8. We positionourselvesat point k and split inputs

a1, b2 and outputsa2, b1 of Θ into a strict pastanda future segment,with respectto point k. This is

written, e.g.,asb1 = [b1p,k b1f,k], whereb1p,k containsthefirst k− 1 entriesof thesequenceb1. Θ−1
22 = Σ22

is the transferfrom port b2 to port b1 with the boundaryconditiona1 ≡ 0, and the strictly lower part

of Θ−1
22 is determinedby the collectionof transfersb2f,k → b1p,k with a1 = 0 and b2p,k = 0, for all k in

turn. Note that eachof thesemapsdefinesa local Hankeloperator(moreprecisely, a conjugateHankel

operator, as it describesthe effect of an input in the future to the pastpart of the correspondingoutput).

In addition,a responseb1p,k to an input for which a1p,k = 0 andb2p,k = 0 satisfiesanenergy relationwhich

is inheritedfrom the unitarity of ΣΣΣ:

x−,kx∗
−,k = b1p,kb∗

1p,k + a2p,ka∗
2p,k + x+,kx∗

+,k . (3.17)

Hencethe map x−,k -→ [b1p,k , a2p,k , x+,k ] is well-defined(univocal)since if therewould exist another

image[b �1p,k , a �2p,k , x �+,k ] for x−,k, the quadraticnorm of the differencewould yield, with (3.17),�
b1p,k − b �1p,k

� 2 +
�
a2p,k − a �2p,k

� 2 +
�
x+,k − x �+,k

� 2 = 0 ,

which leadsto b1p,k = b �1p,k, etc. Consequently, themapx−,k -→ b1p,k is univocalaswell. The Hankelmap

H �k : b2f,k → b1p,k canbe factoredinto a controllability timesan observabilitymap, i.e., (i) the transferof

b2f,k to x−,k, followed by (ii ) the transferof x−,k to b1p,k. Hencethe statedimensionof the strictly upper

partof Θ−∗
22 is equalto (at most)thedimensionof x−,k. Theorems3.2 and3.3 claimedthatthis dimension

is in turn equalto thenumberof negativeentriesin thesignatureJ � at pointk, or thenumberof singular

valuesof the Hankelmatrix of Γ−1T at point k that are larger than1. Combiningthis with the previous

result,it follows that the statedimensionof Ta is (at most)equalto this number.

The following corollary follows from equation(3.17)andis neededin the next section.

Corollary 3.5. Under theconditionsof theorem3.2,andif a1p,k = 0 andb2p,k = 0, themapSk : x−,k -→
x+,k is well-definedand a contraction.

At this point, we have proventhe basic form of the Hankel-normmodel reductiontheoremfor time-

varyingsystems(theorem1.2). With moreeffort, it is possibleto provethat, in proposition 3.4, equality
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holdsthroughout, implying thattheapproximantT a haspreciselythenumberof statesasspecifiedby the

numberof Hankelsingularvaluesthatarelargerthan1 [26, 27]. It is alsopossibleto deriveanexpression

(a chain fraction descriptionin termsof Θ) which describesall possibleHankel norm approximantsof

minimal complexity, given the error toleranceparameterΓ [26, 27].

3.5. Computational model for Ta

A computationalmodel of Ta can be computeddirectly from the modelsof T and Θ, via modelsof

B � and Θ−1
22. A model for B � hasalreadybeenobtainedin equation(3.14). The model for the strictly

upperpart of Θ−∗
22 is howevermoredifficult to obtain,and follows from the scatteringrepresentationΣΣΣ

associatedto ΘΘΘ.

Lemma 3.6. In the contextand under the conditionsof theorem 3.2, let ΣΣΣ = � F, G,H, K � be the

modelrepresentationof the unitary scatteringmatrix associatedwith ΘΘΘ = � α, β, γ, δ � , relatingthe signal

sequences[x+ x− a1 b1] and [x(−1)
+ x(−1)

− a2 b2] as in (2.14). Partition ΣΣΣ and ΘΘΘ as in equations

(2.16)and (2.15),and let

S= diag[Sk] ∈ � : x+,k = x−,kSk (a1p,k = 0, b2p,k = 0)

R = diag[Rk] ∈ � : x−,k = x+,kRk (a1f,k = 0, b2f,k = 0)

ThenS and R are well defined,contractiveand determinedby the recursions

S(−1) = F21 + F22(I − SF12)−1SF11

R = F12 + F11(I − R(−1)F21)−1R(−1)F22
(3.18)

A computationalmodel � Aa, Ba, Cr � of the strictly upperpart of Θ−∗
22, i.e., PZ (Θ−∗

22) = BaZ(I − AaZ)−1Cr,

is givenin termsof S, R by

A∗
a = F22(I − SF12)−1

B∗
a = H22 + F22(I − SF12)−1SH12

C∗
r =

�
G22 + G21(I − R(−1)F21)−1R(−1)F22� (I − SR)−1

(3.19)

PROOF The existenceandcontractivityof S hasbeenderivedin corollary 3.5, the comparableresulton

R is provenin the sameway. For clarity, we will not suppressthe index k in this proof, so that we are

in the contextof figure 8. Writing out the relevantpart of the relations(2.16),with a 1 = 0, we have.//0 x+,k+1 = x+,kF11,k + x−,k+1F21,k + b2,kG21,k

x−,k = x+,kF12,k + x−,k+1F22,k + b2,kG22,k

b1,k = x+,kH12,k + x−,k+1H22,k

(3.20)

With the additionalconstraintb2p,k+1 = 0, Sk+1 satisfies�
x+,k+1 = x−,k+1Sk+1 = x−,kSkF11,k + x−,k+1F21,k

x−,k = x−,kSkF12,k + x−,k+1F22,k

Next, F12,k is strictly contractive,becauseΣΣΣ12,k :=

�
F12,k H12,k
G12,k K12,k

� satisfies

I − ΣΣΣ∗
12,kΣΣΣ12,k = ΣΣΣ∗

22,kΣΣΣ22,k =  α22,k γ22,k

β22,k δ22,k � −∗  α22,k γ22,k

β22,k δ22,k � −1

which is strictly positivedefiniteby the J-unitarity of ΘΘΘk, so that ΣΣΣ12,k itself is strictly contractive.F12,k,

asan entry of it, inheritsthe property, andhencewe cansolvefor x−,k:�
x−,k = x−,k+1F22,k(I − SkF12,k)−1

x−,k+1Sk+1 = x−,k+1 ! F22,k(I − SkF12,k)−1SkF11,k + F21,k
" (3.21)
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a1p,k = 0
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b2p,k = 0
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x+,k+1 x−,k+1
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Σf,k+1

Σp,k

F12,k

F21,k

F11,kF22,k

Sk+1

Figure 9. Recursionfor S.

Consequently, S satisfiesthe indicatedrecursiverelations(seealso figure 9). The recursionfor R is

determinedlikewise.

Let � Aa, Ba, Cr � be a staterealizationfor PZ (Θ−∗
22), i.e., PZ∗ # ( Θ−1

22 ) = C∗
r (I − Z∗A∗

a)
−1Z∗Ba , which corre-

spondsto the anti-causalcomputationalmodel�
x−,k = x−,k+1A∗

a,k + b2,kC∗
r,k

b1,k = x−,k+1B∗
a,k

.

The unknownsAa, Ba andCr can be expressedin termsof F, G, H by substitution in equations(3.20),

usingS and R as intermediatequantities. Doing so with b2 = 0, the first equationin (3.21) yields the

expressionfor Aa in (3.19)andBa canbe determinedin termsof S from the last equationin (3.20).

Finally, C∗
r,k is obtainedpointwiseas the transferb2,k → x−,k for a1 = 0 and b2,i = 0 (i /=k). Using (3.6),

(3.18)and(3.20),this yields Cr as in (3.19).

We arenow in a positionto determinea computationalmodelfor Ta.

Theorem 3.7. Let T, Γ, U and Θ be as in theorem3.2, so that [U∗ − T∗Γ−1]Θ = [A � − B � ]. Let� A,B,C,0 � be an outputnormal strictly stablestaterealizationfor T, let M be definedby the recursion

in (3.8), and let � A,BU, C,DU � be a realization for U. Supposethat ΘΘΘ is partitionedas in (3.7), and ΣΣΣ
correspondingto ΘΘΘ as in (2.16). DefineS, R, Cr ∈ � by the relations

S(−1) = F21 + F22(I − SF12)−1SF11

R = F12 + F11(I − R(−1)F21)−1R(−1)F22

C∗
r =

�
G22 + G21(I − R(−1)F21)−1R(−1)F22 � (I − SR)−1 .

ThenTa hasa computationalmodel � Aa, ΓBa, Ca, 0 � givenby

A∗
a = F22(I − SF12)−1

B∗
a = H22 + F22(I − SF12)−1SH12

Ca = Cr

�
−D∗

12DU + C∗
2(I − M)C � + AaY(−1)A∗MC

where Y ∈ � is givenby the solutionof the recursionY = AaY(−1)A∗ + CrC∗
2 .
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PROOF Thecomputationalmodelfor Ta will beobtained,usingdefinition(3.16),by multiplying a model

for B � by the model � Aa, Ba, Cr � for PZ (Θ−∗
22) as obtainedin lemma3.6. A model for B � hasalready

beenobtainedin equation(3.14). With D � := −D∗
UD12 + C∗(I − M)C2, Ta is given by the strictly upper

part of

ΓPZ (Θ−∗
22)B � ∗ = Γ ! BaZ(I − AaZ)−1Cr

" ⋅ ! C∗
2(I − Z∗A∗)−1Z∗A∗MC + D � ∗ "

= ΓBaZ(I − AaZ)−1CrD � ∗ + ΓBa ! Z(I − AaZ)−1CrC∗
2(I − Z∗A∗)−1 " Z∗A∗MC.

The computationof the strictly upperpart of this expressionrequiresa partial fractiondecompositionof

the expressionZ(I − AaZ)−1CrC∗
2(I − Z∗A∗)−1. We seekdiagonalmatricesX andY suchthat

Z(I − AaZ)−1CrC∗
2(I − Z∗A∗)−1 = Z(I − AaZ)−1Y+ X(I − Z∗A∗)−1 .

Pre-andpostmultiplying with (Z∗ − Aa) and(I − Z∗A∗), respectively, we obtainthe equations�
CrC∗

2 = Y− AaX

0 = −Y(−1)A∗ + X
⇔

�
X = Y(−1)A

Y = AaY(−1)A∗ + CrC∗
2

The recursiveequationfor Y thatwe havethusobtainedalwayshasa solution,sincefor n× n matricesT

with a zeronumberof statesat point n + 1, we canstartwith Yn+1 = [ ⋅ ] andwork backwardsto Y1. Via

Z(I − AaZ)−1YZ∗ = Y(−1) + Z(I − AaZ)−1AaY(−1) we obtain

Ta = ΓBaZ(I − AaZ)−1 ! CrD � ∗ + AaY(−1)A∗MC " ,

that is, Ca = Cr � −D∗
12DU + C∗

2(I − M)C � + AaY(−1)A∗MC.

A checkonthedimensionsof Aa revealsthatthestaterealizationfor Ta hasindeedastatespacedimension

given by N = #−(J� ): at eachpoint it is equalto the numberof local Hankelsingularvaluesof T which

are larger than1. The realizationis given in termsof four recursions:two for M andS that run forward

in time, the other two for R andY that run backwardin time anddependon S. Algorithm 3 showsthe

computationsderivedfrom theorem3.7. It computesa model � Aa, Ba, Ca, 0 � for Ta in termsof a model� A,B,C,0 � for T.

4. COMPUTATION OF Θ BY A GENERALIZED SCHUR ALGORITHM

4.1. Introduction

The global statespaceprocedureof section3 yields, for a given T ∈
�

, an inner factor U and an

interpolating Θ. It canbe specializedto thecasewhereT is a generaluppertriangularmatrix withoutan

a priori knownstatestructure.Theresultingprocedureto obtainΘ leadsto a generalizedSchurrecursion,

which we derivefor an exampleT.

Considera 4 × 4 strictly uppertriangularmatrix T,

T =

����� 0 t12 t13 t14

0 t23 t24

0 t34

0

� ���	 ,

wherethe (1, 1)-entry is indicatedby a squareand the main diagonalby underscores.For convenience

of notation,and without loss of generality, we may take Γ = I, and thus seekfor Ta (a 4 × 4 matrix)

such that
�

T − Ta
�

≤ 1. A trivial (but non-minimal)staterealizationfor T that has AA∗ + CC∗ = I

is obtainedby selecting � [0, 0, 1], [0, 1, 0], [1, 0, 0] � as a basisfor the row spaceof the secondHankel
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In: T = � A,B,C,D � (modelin outputnormalform for a strictly uppermatrix

T)
Γ (approximationparameters)

Out: Ta = � Aa, ΓBa, Ca, 0 � (modelfor Hankelnorm approximantTa)

do algorithm2: gives Mk, ΘΘΘk, J� k, C2,k, D12,k, DU,k (k = 1, ����� , n)

S1 = [ ⋅ ]

for k = 1, ����� , n ComputeΣΣΣk from ΘΘΘk using(2.17)

Sk+1 = F21,k + F22,k(I − SkF12,k)−1SkF11,k

end

Rn+1 = [ ⋅ ]

Yn+1 = [ ⋅ ]

for k = n, ����� , 1����������
Rk = F12,k + F11,k(I − Rk+1F21,k)−1Rk+1F22,k

C∗
r,k = ! G22,k + G21,k(I − Rk+1F21,k)−1Rk+1F22,k

" (I − SkRk)−1

Aa,k = ! F22,k(I − SkF12,k)−1 " ∗

Ba,k = ! H22,k + F22,k(I − SkF12,k)−1SkH12,k
" ∗

Yk = Aa,kYk+1A∗
k + Cr,kC∗

2,k

Ca,k = Cr,k ! −D∗
12,kDU,k + C∗

2,k(I − Mk)Ck
" + Aa,kYk+1A∗

kMkCk

end

Algorithm 3. The approximationalgorithm.
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Figure 10. Trivial externalfactorizationof T.

matrix H2 = [t12, t13, t14], and likewise we selecttrivial basesfor H3 andH4. Omitting the details,the

realizationsfor T andan inner factor U that resultfrom this choiceturn out to be

T1 =  ⋅ ⋅ ⋅ ⋅
t14 t13 t12 0 � U1 =

��������
⋅ ⋅ ⋅ ⋅
1

1

1

1

� ������	
T2 =

����� 1

1

1

t24 t23 0

� ���	 U2 =

����� 1

1

1

⋅ ⋅ ⋅

� ���	
T3 =

��� 1

1

t34 0

� �	 U3 =

��� 1

1

⋅ ⋅

� �	
T4 =  ⋅ 1

⋅ 0 � U4 =  ⋅ 1

⋅ ⋅ �
(‘ ⋅’ standsfor an entry with zerodimensions).The correspondingmatricesU and∆ = UT∗ are

U =

����� 1

1

1

1

�����	 ∆ =

����� 0

t∗
12 0

t∗
13 t∗

23 0

t∗
14 t∗

24 t∗
34 0

�����	
with input spacesequences|C4 × ∅ × ∅ × ∅, andoutputspacesequence|C1 × |C1 × |C1 × |C1. All inputsof

U and∆ areconcentratedat point 1, andhencethe causalityrequirementis alwayssatisfied:U ∈
�

and

∆ ∈
�

. The structureof ∆ andU is clarified by figure 10.

The global realizationprocedurewould continueby computinga sequenceM

Mk+1 = A∗
kMkA + B∗

kBk , M1 = [ ⋅ ]
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and use this to derive Θ as in section3.3. Note that it is not necessaryto havea minimal realization

for T (or U). The extra stateswill correspondto eigenvaluesof M that are zero, and henceare of no

influenceon thenegativesignatureof Λ = I − M (independentlyof Γ). Henceour non-minimalchoiceof

the realizationfor T will not influencethe complexityof the resultingapproximantT a. For a recursive

derivationof an interpolatingmatrix Θ, however, we proceedasfollows. The(trivial) staterealizationsT
andU arenot needed,but the resultingU is used.The interpolation problemis to determinea J-unitary

andcausalΘ (whosesignaturewill be determinedby the construction)suchthat

[U∗ − T∗] Θ ∈ [
� �

] .

AssumethatΘ ∈
�

( � Θ, � Θ). Thesignaturematrix J1 = J* Θ is knownfrom theoutsetandis according

to the decomposition[U∗ − T∗]. Althoughthe signatureJ2 is not yet known at this point, the number

of outputsof Θ (i.e., the spacesequence� Θ) is alreadydeterminedby the condition that each ΘΘΘk is

a squarematrix. With the above(trivial) realizationsof T and U, it turns out that Θ has a constant

numberof two outputsat eachpoint in time. The signatureof eachoutput (+1 or −1) is determined

in the processof constructingΘ, which will be done in two steps: Θ = Θ � Π. Here, Θ � is such that

[U∗ − T∗] Θ � ∈ [
�1�

], wherethe dimensionsequencesof each
�

areconstantandequalto 1 at each

point:

+ + – – + + – –

∗
∗∗

∗ ∗ ∗
∗∗∗∗

∗
∗∗

∗ ∗ ∗
∗∗∗∗

1

−t∗
12

−t∗
12

−t∗
11

−t∗
14

−t∗
22

−t∗
23 −t∗

33

−t∗
34 −t∗

44−t∗
24

1

1

1

+ + + + – – – –

Θ � =

The first uppertriangularmatrix correspondsto the first outputof eachsectionof Θ � , and the second

to the secondoutput. At this point, the signatureof eachcolumnat the right handsidecanbe positive

of negative: the output signaturematrix of Θ � is J �2, which is an unsortedsignaturematrix such that

Θ � J �2Θ � ∗ = J1 (the signatureof the right handside in the equationaboveis just an example). Seealso

figure11. Thesecondstepis to sortthecolumnsaccordingto theirsignature,by introducingapermutation

matrix Π ∈ � , suchthat J2 = Π∗J �2Π is a conventional(sorted)signaturematrix. The permutationdoes

not changethe fact that [U∗ − T∗]Θ ∈ [
�1�

], but theoutputdimensionsequencesof each
�

will now

be different,and in generalnot be constantany more. For the aboveexamplesignature,[A � − B � ] will

havethe form

Θ =

1

−t∗
12

−t∗
12

−t∗
11

−t∗
14

−t∗
22

−t∗
23 −t∗

33

−t∗
34 −t∗

44−t∗
24

1

1

1

+ + + + – – – –

= [A � − B � ]
⋅

⋅
⋅⋅

⋅
⋅

⋅
⋅
⋅
⋅

+

∗

+

∗

+

∗
∗

+

∗
∗

–

∗

∗
∗

–

∗

∗
∗

–

∗
∗

∗
∗

–

∗
∗

∗
∗

whereA � hasasoutputspacesequence|C2× |C2×∅×∅, andB � hasasoutputspacesequence∅×∅× |C2× |C2.

We will now considertheseoperationsin moredetail.

4.2. Computational structure

Θ � can be determinedrecursivelyin n − 1 steps: Θ � = Θ(1)Θ(2) ����� Θ(n−1), in the following way. The

columnsof Θ � act on the columnsof U∗ and −T∗. Its operationson U∗ are alwayscausalbecauseall

columnsof U∗ correspondto the first point of the recursion(k = 1). However, for Θ to be causal,
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Figure 11. Computationalstructureof Θ � , with examplesignatureat the outputs.

the k-th column of Θ can act only on the first k columnsof T∗. Taking this into consideration,we

are led to a recursivealgorithmof the form [A(k) B(k)]Θ(k) = [A(k+1) B(k+1)], initialized by A(1) = U∗,

B(1) = −T∗, and whereΘ(k) makesthe last (n − k) entriesof the k-th column of B(k) equal to 0, using

columnsn,n− 1, ����� , k+ 1 of A(k). (The columnsareusedin reverseorderingto keepA(k) in therequired

shape.)

The operationsto do eachof thesestepsareelementaryunitary(Jacobi)or J-unitary rotationsthatact on

two columnsat a time andmakea selectedentryof the secondcolumnequalto zero. The precisenature

of the rotationsdependson its signatureand is in turn dependenton the data— this will be detailed

later. We first verify that this recursionleadsto a solutionof the interpolationproblem.

k = 1: Using3 elementaryrotations,the entriest∗
14, t∗13, t∗12 aresubsequentlyzeroed.This resultsin

[A(2) B(2)] =

����� 1 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 −t22∗

0 0 ∗ ∗ 0 −t∗
23 −t∗

33

0 0 0 ∗ 0 −t∗
24 −t∗

34 −t∗
44

� ���	
k = 2:

[A(3) B(3)] =

����� 1 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗
0 0 ∗ ∗ 0 0 −t∗

33

0 0 0 ∗ 0 0 −t∗
34 −t∗

44

� ���	
k = 3:

[A(4) B(4)] =

����� 1 ∗ ∗ ∗ ∗ ∗ ∗ 0

0 ∗ ∗ ∗ 0 ∗ ∗ 0

0 0 ∗ ∗ 0 0 ∗ 0

0 0 0 ∗ 0 0 0 −t∗
44

� ���	
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Figure 12. Computationalstructureof a recursivesolution to the interpolating problem. (a) Θ � , with

elementaryrotationsof mixed type (both circular andhyperbolic);(b) the correspondingΣ,

with circular elementaryrotations. The type of sectionsin (a) and the signal flow in (b)

dependon the dataof the interpolation problem.

The resultingmatricesareuppertriangular. The signalflow correspondingto this computationalscheme

is outlinedin figure12(a). Notethatthecomputationshaveintroducedanimplicit notionof state,formed

by the arrowsthat crossa dottedline betweentwo stages,so that a (non-minimal)realizationof Θ can

be inferredfrom the elementaryoperations.

[A � −B � ] will beequalto a columnpermutationof [A(4) B(4)], suchthatA � hasall columnswith positive

signature,whereasB � hasall columnswith a negativesignature.The determinationof the signatureof

[A(4) B(4)] is discussedin the next subsection.

4.3. Elementary rotations: keeping track of signatures

We will now considerthe elementaryoperationsin the aboverecursions.An elementaryrotationθ such

that θ∗j1θ = j2 (j1 and j2 are2 × 2 signaturematrices)is definedby

[ u t ] θ = [ ∗ 0] ,

whereu,t arescalars,andwhere‘∗’ standsfor someresultingscalar. Initially, onewould considerθ of

a traditionalJ-unitary form:

θ1 =  1 −s

−s∗ 1 � 1
c∗ , cc∗ + ss∗ = 1 , c/=0

which satisfies

θ∗
1  1

−1 � θ1 =  1

−1 � .

However, since| s| < 1, a rotationof this form is appropriateonly if | u | > | t |. In therecursivealgorithm,

this will be the caseonly if H∗
THT < I which correspondsto a ‘definite’ interpolation problemandleads

to an approximantTa = 0. Our situationis moregeneral.If | u | < | t |, we requirea rotationalsectionof

the form

θ2 =  −s 1

1 −s∗ � 1
c∗ ,

resultingin [ u t ] θ2 = [ ∗ 0]. θ2 hassignaturepairsdeterminedby

θ∗
2  1

−1 � θ2 =  −1

1 � .
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This showsthat the signatureof the ‘energy’ of the output vector of such a section is reversed: if

[a1 b1]θ2 = [a2 b2], thena1a∗
1 − b1b∗

1 = −a2a∗
2 + b2b∗

2. Becausethis signaturecan be reversedat each

elementarystep,we will haveto keeptrack of it to ensurethat the resultingglobalΘ-matrix is J-unitary

with respectto a certainsignature.Thusassignto eachcolumnin [U∗ −T∗] a signature(+1 or −1), which

is updatedafter eachelementaryoperation,in accordanceto the type of rotation. Initially, the signature

of the columnsof U∗ is chosen+1, and thoseof −T∗ are chosen−1. BecauseΘ � = Θ(1)Θ(2) ����� Θ(n−1),

whereΘ(i) is anembeddingof the i-th elementaryrotationθ (i) into oneof full size,it is seenthatkeeping

track of the signatureat eachintermediatestepensuresthat

Θ∗  I

−I � Θ = J �2 .

Here, J �2 is the unsortedsignaturematrix given by the signaturesof the columnsof the final resulting

uppertriangularmatrices.Thetypesof signaturesthatcanoccur, andtheappropriateelementaryrotations

to use,are listed below. Theseform the processorsin figure 12(a).

1. [

+

u

−
t ]  1 −s

−s∗ 1 � 1
c∗ = [

+

∗
−
0 ] , if | u | > | t |

2. [

+

u

−
t ]  −s 1

1 −s∗ � 1
c∗ = [

−
∗

+

0 ] , if | u | < | t |

3. [

−
u

+

t ]  −s 1

1 −s∗ � 1
c∗ = [

+

∗
−
0 ] , if | u | > | t |

4. [

−
u

+

t ]  1 −s

−s∗ 1 � 1
c∗ = [

−
∗

+

0 ] , if | u | < | t |

5. [

+

u

+

t ]  c s

−s∗ c∗ � = [

+

∗
+

0 ]

6. [

−
u

−
t ]  c s

−s∗ c∗ � = [

−
∗

−
0 ]

It canbe shown(but we omit the detailsfor brevity) that, for the hyperbolicrotations,the case| u | = | t |
can never occur in the algorithm. This is because,at the k-th step, the algorithm essentiallyacts on

[(HU)∗
k+1 (HT)∗

k+1]Θ, whereΘ is someJ-unitary matrix consistingof a subsetof the rotationsperformed

in the previoussteps.The signatureof this intermediateresult is nonsingular, because(H U)∗
k+1(HU)k+1 −

(HT)∗
k+1(HT)k+1 is initially nonsingularby the imposedconditions on the singular values of H T, and

the signatureis invariant underJ-unitary transformations.At the sametime, the first block matrix of

[(HU)∗
k+1 (HT)∗

k+1]Θ is uppertriangular, whereasthesecondblockmatrix hasall but thelastcolumnequal

to zero. At this stage,the algorithmis zeroingthis last columnusingcolumnsof the first block matrix.

Becauseof the form of theseblock matrices,the occurrenceof | u | = | t | in a hyperbolicrotationduring

this zeroingoperationimplies that the correspondingsignature,andhencethe initial signature,contains

a zeroelement,leadingto a contradiction.Hence| u | = | t | cannotoccur for the hyperbolicrotations.

Wecanassociate,asusual,with eachJ-unitaryrotationa correspondingunitaryrotation,which is obtained

by rewriting the correspondingequationssuch that the ‘+’ quantitiesappearon the left handside and

the ‘−’ quantitieson the right handside. The last two sectionsare alreadycircular rotation matrices.

By replacingeachof the sectionsof Θ by the correspondingunitary section,a unitary Σ matrix that

correspondsto Θ is obtained.A signalflow schemeof a possibleΣ in our 4 × 4 exampleis depictedin

figure 12(b). The matchingof signaturesat eachelementaryrotation in the algorithmeffects in figure
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12(b) that the signalflow is well-defined: an arrow leavingsomesectionwill not bounceinto a signal

flow arrow that leavesa neighboringsection.

Finally, a solution to the interpolationproblem[U ∗ − T∗] Θ = [A � − B � ] is obtainedby sorting the

columnsof the resultinguppertriangularmatricesobtainedby the aboveprocedureaccordingto their

signature,such that all positive signscorrespondto A � and all negativesigns to B � . The columnsof

Θ are sortedlikewise. The solutionthat is obtainedthis way is reminiscentof the statespacesolution

of the previoussection,and in fact canbe derivedfrom it by factoringΘ into elementaryoperationsas

above.Again, the networkof Σ is not computablesinceit containsloops.

WhenT is a bandedmatrix, or hasa staircasestructure,thenoperationscorrespondingto entriesoff the

bandcanbe omitted. The recursionand the resultingcomputationalnetwork is a further generalization

(to includeindefiniteinterpolation) of the generalizedSchuralgorithmintroducedin [21 ]. However, the

formalismby which the matricesaresetup to initiate the algorithmis new.

4.4. Computation of the approximant

With Θ andB � available,therearevariousways to obtainthe Hankelnorm approximantTa. The basic

relationsaregiven in termsof T � (the uppertriangularpart of which is equalto Ta) andthe operatorΣ
associatedto Θ:

T � ∗ = T∗ + U∗Σ12

T � ∗ = B � Θ−1
22 , Θ−1

22 = Σ22 .

Ideally, onewouldwantto usethecomputationalnetworkof Σ to deriveeitherU ∗Σ12 or B � Θ−1
22. However,

thenetworkthathasbeenconstructedin thepreviousstepof thealgorithmis not computable: it contains

delay-freeloops, and henceit cannotbe useddirectly. A straightforwardalternativeis to extractΘ 22

from the networkof Θ (by applyingan input of the form [0 I]), andsubsequentlyuseany techniqueto

invert this matrix andapply it to B � . A secondalternativeis to computea (non-causal)staterealization

for Σ from its network. This is a local operation: it can be doneindependentlyfor eachstage. From

this realization,onecanderivea realizationfor the uppertriangularpart of Θ −∗
22, by usingthe recursions

given in section3.5.

The first solutioncanbe mademoreor less‘in style’ with the way Θ hasbeenconstructed,to the level

that only elementary, unitary operationsare used. However, the overall solution is a bit crude: after

extractingthe matrix Θ22, the computationalnetworkof Θ is discarded,althoughit revealsthe structure

of Θ22 and Θ−1
22, and the algorithmcontinueswith a matrix inversiontechniquethat is not very specific

to its currentapplication. The statespacetechnique,on the otherhand,useshalf of the computational

networkstructureof Θ (the ‘vertical’ segmentationinto stages),but doesnot usethe structurewithin a

stage.The algorithmoperateson (statespace)matrices,ratherthanat theelementarylevel, andis in this

respect‘out of style’ with the recursivecomputationof Θ. It is asyet unclearwhetheran algorithmcan

be devisedthat actsdirectly on the computationalnetworkof Θ with elementaryoperations.

5. Envoy

The theorypresentedin this papergivesa closedform solutionto the genericproblemof approximating

a matrix which representsa linear transformationby a matrix of lower computationalcomplexity. The

measureof complexitythat is usedhereis ‘statedimensionof the computation’.The theoryis basedon

a combinationandgeneralizationof threeclassicalparadigms:(1) systemtheoryand realizationtheory

in the vein of Kroneckerand Ho-Kalman, (2) interpolationtheory in the senseof Schur-Takagi and

Adamjan-Arov-Krein,(3) scatteringtheoryas it was introducedin the network theorycontextby Youla

and Belevitch. It is a remarkablefact that suchdiversetheoriescometogetherto producea complete

body of answers.
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On theotherhand,it is conceivablethatalternativeapproximationschemesarepossible.Thegeneralized

AAK schemeis basedon interpolationof theerrorin selected“points” (hereto beinterpretedasdiagonals

of a matrix)— seeequation(3.5). The schemecontrols the error via interpolation. It is possibleto

constructa direct interpolation method,seee.g., [21]. Sucha theorywill alsoyield strongapproximants

but will be dependenton the choiceof interpolationpoints,and hencewill not producea global low-

complexity minimum as the algorithm proposedhere does. However, the methodis easierand gives

goodresultsin practice. Other, heuristicmethodsbasedon settingentriesto zero,e.g., in factorsof an

LU-decomposition,may work well in practice,andare of courseevensimpler. It is, however, doubtful

that they canproducesystematicresults.

The resultspresentedcanbe extendedin severaldirections.The methodworks well only on triangular

matrices.A full matrix canbe decomposedin an upperanda lower part,eachof which canbe approxi-

matedseparately. A schemefor doingmatrix inversionsusingsucha decompositionhasbeenpublished

[9]. In anotherdirection,onemayconsiderthesingularcase,i.e., whensomeof the local singularvalues

of the Hankel operatorare equalto one. Preliminaryresultsare availablebut havenot beenpublished

yet. Thereis alsoa connectionwith the theoryof alpha-stationarysystemsasdevelopedby Kailath and

his coworkers[5, 6, 7, 8], but the questionof introducingstructurein the approximationscheme,or

approximatingunderstructuralconstraintshasnot beenstudiedyet to our knowledge.
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