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Abstract—Instrumental intelligibility metrics are commonly
used as an alternative to listening tests. This paper evaluates
12 monaural intrusive intelligibility metrics: SII, HEGP, CSII,
HASPI, NCM, QSTI, STOI, ESTOI, MIKNN, SIMI, SIIB, and
sEPSMcorr. In addition, this paper investigates the ability of in-
telligibility metrics to generalize to new types of distortions and
analyzes why the top performing metrics have high performance.
The intelligibility data were obtained from 11 listening tests de-
scribed in the literature. The stimuli included Dutch, Danish, and
English speech that was distorted by additive noise, reverberation,
competing talkers, preprocessing enhancement, and postprocess-
ing enhancement. SIIB and HASPI had the highest performance
achieving a correlation with listening test scores on average of
ρ = 0.92 and ρ = 0.89, respectively. The high performance of
SIIB may, in part, be the result of SIIBs developers having access
to all the intelligibility data considered in the evaluation. The re-
sults show that intelligibility metrics tend to perform poorly on
datasets that were not used during their development. By modi-
fying the original implementations of SIIB and STOI, the advan-
tage of reducing statistical dependencies between input features is
demonstrated. Additionally, this paper presents a new version of
SIIB called SIIBGauss, which has similar performance to SIIB and
HASPI, but takes less time to compute by two orders of magnitude.

Index Terms—Intelligibility prediction, instrumental measures,
speech enhancement.

I. INTRODUCTION

WHEN designing a speech-based communication system
it is important to understand how the system will affect

the intelligibility and quality of speech. Intelligibility is often
defined as the proportion of words correctly identified by a
listener [1], whereas speech quality refers to the pleasantness
of the speech signal [2]. Many algorithms for predicting the
intelligibility of a communication system have been proposed.
This paper summarizes existing algorithms and evaluates their
accuracy using data from formal listening tests.

Manuscript received January 25, 2018; revised May 7, 2018; accepted June 17,
2018. Date of publication July 16, 2018; date of current version August 8, 2018.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Andy W. H. Khong. (Corresponding author: Steven
Van Kuyk.)

S. Van Kuyk is with the Victoria University of Wellington, Wellington 6012,
New Zealand (e-mail:,steven.van.kuyk@ecs.vuw.ac.nz).

W. B. Kleijn is with the Victoria University of Wellington, Wellington 6012,
New Zealand, and also with the Delft University of Technology, Delft 2628 CD,
The Netherlands (e-mail:,bastiaan.kleijn@ecs.vuw.ac.nz).

R. C. Hendriks is with the Delft University of Technology, Delft 2628 CD,
The Netherlands (e-mail:,r.c.hendriks@tudelft.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2018.2856374

In [3], Shannon proposed that any communication system can
be modelled by three components: a transmitter, a receiver, and a
channel. In the context of speech communication, the transmitter
is the vocal apparatus of the talker, the receiver is the auditory
system of the listener, and the channel is the physical medium
traversed by the speech signal. The channel may distort the
speech signal and decrease the speech signal’s intelligibility or
quality. As an example, for telephone systems, the speech signal
is sampled, quantized, and compressed prior to transmission.
Additionally, environmental degradation such as additive noise
and reverberation may be introduced at the far-end (i.e., at the
talker) or the near-end (i.e., at the listener).

To combat environmental degradation, a variety of speech
enhancement algorithms have been proposed (see [2] for an
overview). There are two main approaches to speech enhance-
ment: 1) the speech signal can be modified prior to degrada-
tion (e.g., optimal energy redistribution [4] and dynamic range
compression [5]), or 2) the speech signal can be modified af-
ter degradation has been introduced (e.g., Wiener filters [6]).
The former type of algorithm is referred to as a pre-processing
algorithm and the latter as a post-processing algorithm.

A key component to the design of speech-based communi-
cation systems is an understanding of how they affect intelli-
gibility. Although formal listening tests can provide valid data,
such tests are time-consuming, laborious, and expensive. For
this reason, quantities that are fast to compute and correlated
with intelligibility are of interest. Such quantities are referred to
as instrumental intelligibility metrics.

Rather than using human subjects, instrumental intelligibil-
ity metrics may rely on knowledge of the clean speech, dis-
torted speech, and the communication channel. There are two
types of intelligibility metrics: intrusive and non-intrusive. In-
trusive intelligibility metrics require knowledge of the clean
speech and either the channel or the distorted speech, whereas
non-intrusive intelligibility metrics require only the distorted
speech. Although non-intrusive metrics are more widely appli-
cable, they tend to be less correlated with intelligibility than
intrusive metrics [7], [8]. From here on, this paper focuses on
intrusive intelligibility metrics.

One of the first intelligibility metrics was developed during
the 1920’s and is called the articulation index (AI) [9]. The AI
is calculated by computing a weighted average of the signal-to-
noise ratio (SNR) of several frequency bands. More recently, the
AI has been refined to incorporate the results of new experiments
and is now known as the speech intelligibility index (SII) [10].
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Another intelligibility metric that was developed early on is
the speech transmission index (STI) [11]. For this intelligibil-
ity metric, probe signals consisting of sinusoidally modulated
Gaussian noise are transmitted through the communication sys-
tem. The change in the modulation depth of the probe signals at
the receiver is then measured and converted to an apparent SNR
for each frequency band. Subsequently, the apparent SNRs are
averaged similarly to the AI and SII.

Both the SII and STI have found widespread use by engineers
and audiologists. However, the SII and STI have a number of
limitations. First, both metrics are based on long-term statistics.
This means that they do not accurately account for degradations
caused by noise sources that fluctuate over time such as compet-
ing talkers and wind [12]. Second, neither metric can account
for distortion introduced by enhancement algorithms [13], [14].

To overcome the limitations of the SII and STI, a number
of intelligibility metrics have been proposed. Examples include
the coherence SII (CSII) [15], the extended SII (ESII) [12], the
quasi-stationary STI (QSTI) [16], the normalized covariance
measure (NCM) [17], [18], the temporal fine-structure spectrum
based index (TFSS) [19], the hearing-aid speech perception in-
dex (HASPI) [20], the Christiansen-Pedersen-Dau metric (CPD)
[21], those based on the short-time objective intelligibility mea-
sure (STOI) (e.g., [22], [23]), those based on the speech-based
envelope power spectrum model (sEPSM) (e.g., [24]–[26]), and
those based on the glimpse proportion metric (GP) (e.g., [27]–
[29]). Many of these metrics have not been extensively tested
on data sets other than those used during their development. Ad-
ditionally, the above metrics are often heuristically motivated,
which suggests that they may not generalize well to new envi-
ronments and enhancement strategies.

Recently, information theory has been proposed as a theo-
retically grounded approach to model speech communication.
This is a natural direction to take given that the fundamental
goal of speech communication is to transfer information from
a talker to a listener. Information theory has been used to de-
sign state-of-the-art speech enhancement algorithms [30], [31]
and intelligibility metrics [32]–[34]. Moreover, [35] used the
information bottleneck principle [36] to argue that the struc-
ture of speech might be adapted to the coding capability of the
mammalian auditory system (see also [37]).

Motivated by the fact that many intrusive intelligibility met-
rics have been recently proposed but have not been widely eval-
uated, this paper presents a study on the accuracy of 12 existing
monaural intrusive intelligibility metrics. To assess the accu-
racy of each metric, the strength of the relationship between
intelligibility and the metric is measured. The intelligibility
data were obtained from 11 experiments described in the lit-
erature. The data include Dutch, Danish, and English speech
that was degraded by additive noise, reverberation, and compet-
ing talkers, and subjected to pre-processing enhancement and
post-processing enhancement.

The majority of the intelligibility metrics in this paper were
developed with Germanic languages in mind, however, the stud-
ies in [38]–[41] have suggested that many intelligibility metrics
can obtain good performance for Mandarin, Cantonese, and
Korean.

In addition to evaluating the accuracy of pre-existing intel-
ligibility metrics, this paper analyzes why the top performing
metrics have high performance. Specifically, the effect of decor-
relating input features, the effect of the auditory model, and the
effect of using different distortion measures is investigated.

Previous evaluations of intrusive intelligibility metrics exist.
For example [42], [43] evaluated the accuracy of intelligibility
metrics for noise-reduced speech, and [44] evaluated the ac-
curacy of intelligibility metrics for speech processed by ideal
time-frequency segregation (ITFS). Those evaluations each con-
sidered a single type of degradation, whereas the evaluation in
this paper considers data from many real-word scenarios.

Evaluations can also be found in publications that propose
new intelligibility metrics, but in terms of the number of intel-
ligibility metrics and the number of data sets, the scope of such
evaluations is smaller than the present study. Two advantages of
considering a broader scope are 1) it is easier to determine why
some intelligibility metrics perform better than others, and 2) it
is possible to investigate the ability of intelligibility metrics to
generalize to new types of distortion.

The remainder of this paper is organized as followed.
Section II describes the listening test data and Section III de-
scribes intelligibility metrics from the literature. Modified in-
telligibility metrics are proposed in Section IV. Performance
criteria are described in Section V and results are presented in
Section VI. Finally, Section VII concludes the paper.

II. LISTENING TEST DATA

This paper considers the results of 11 intelligibility studies.
From these studies, 13 data sets were created. In this section,
each data set is described. Table I summarizes the data sets,
while the accompanying references provide additional details.
The naming convention for the data sets includes the first author
of the publication that describes the data set in full, and an
abbreviation that indicates the type of degradation or processing.
The order that the data sets are presented in is such that similar
data sets are grouped together.

A. JensenMOD

The first data set consists of speech degraded by noise with
strong temporal modulations. In [23] phrases from the Dantale
II corpus [51] were degraded by ten types of noise. Four of the
noise types included Track 1, 4, 6, and 7 from the ICRA noise
corpus [52]. The ICRA signals are synthetic signals with spec-
tral and temporal properties similar to speech. Four of the noise
types were constructed by multiplying speech-shaped noise
(SSN) (i.e., Gaussian noise with a long-term power-spectrum
that is similar to the power spectrum of clean speech) with
1 + sin(2πft + φ) where φ is uniformly distributed between
±π, t is the sample index, and f = 2, 4, 8, or 16 Hz. The
final two noise sources were machine-gun noise and destroyers-
operation-room noise from the NOISEX corpus [53]. Six SNRs
were chosen for each noise source so that some stimuli were un-
intelligible and others were perfectly intelligible. In total there
are 10 noise sources × 6 SNRs = 60 conditions. Stimuli were
presented to 12 normal-hearing listeners. For each word in a
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TABLE I
SUMMARY OF LISTENING TEST DATA SETS. m IS THE NUMBER OF LISTENERS AND n IS THE NUMBER OF LISTENING CONDITIONS

given sentence, the listeners were shown ten candidate words
from which they were instructed to select from. See [23] for
more details.

B. SantosREV

The second data set consists of speech corrupted by noise
and reverberation. In [45], IEEE sentences [54] were degraded
by three types of distortion: 1) additive noise, 2) reverberation,
and 3) additive noise and reverberation. For the additive noise
distortion, SSN and babble noise at SNRs of −5, 0, 5, and 10 dB
were used. For the reverberant distortion, IEEE sentences were
convolved with a room impulse response with T60 = 0.3, 0.6,
0.8, 1, and 1.4 s. For the additive noise and reverberant distortion
the sentences were convolved with room impulse responses with
T60 = 0.3 and 0.6 s and mixed with SSN at SNRs of 5 dB and
10 dB. In total there are 8 noise + 5 reverberant + 4 noise
and reverberant = 17 conditions. Stimuli were presented to
ten normal-hearing listeners. The listeners were instructed to
transcribe sentences without any additional information and the
proportion of correctly identified words was recorded. See [45]
for more details.

Originally, the distorted stimuli in SantosREV were offset
in time from the clean stimuli. However, time-alignment is a
requirement for many intrusive intelligibility metrics. For this
paper, the signals in SantosREV were aligned by finding the
time-offset that maximised the cross-correlation of the clean
and distorted stimuli. This resulted in significantly higher per-
formance scores than those reported in [45].

C. KjemsAN

The third data set consists of speech degraded by additive
noise. In [46] phrases from the Dantale II corpus [51] were
degraded by four types of noise: SSN, cafeteria noise, noise
from a bottling factory hall, and car interior noise. The stimuli
were presented to 15 normal-hearing listeners. The listeners
were instructed to transcribe sentences without any additional

information and the proportion of correctly identified words was
recorded. Based on the listening test results, Kjems et al. derived
psychometric curves that relate intelligibility to SNR for each
noise type.

For this paper, KjemsAN was created by adding the noise
signals to the clean Dantale II sentences at ten SNRs. The SNRs
were selected by sampling the psychometric curves at intervals
of 10% intelligibility from 10% to 100%. In total there are 4
noise types × 10 SNRs = 40 conditions.

D. KjemsITFS

The fourth data set consists of speech subjected to ideal time-
frequency segregation processing (ITFS) [55]. ITFS processing
aims to eliminate the energy of a speech signal at particular
time-frequency locations by multiplying the short-time Fourier
transform of the speech signal with a binary gain function. Sim-
ilarly to KjemsAN, the listening experiment was conducted by
Kjems et al., used phrases from the Dantale II corpus [51],
involved 15 normal-hearing listeners, and used the same four
types of noise. For each noise type, the noisy phrases were pro-
cessed by two types of ITFS called an ideal binary mask and a
target binary mask. Three SNRs were used (−60 dB, and SNRs
corresponding to 20% and 50% intelligibility) and eight variants
of each ITFS algorithm were considered. In total there are 168
conditions. See [46] for more details.

E. TaalPOST

The fifth data set consists of speech subjected to post-
processing enhancement. In [22] phrases from the Dantale II
corpus were degraded by SSN at SNRs of 8.9, 7.7, 6.5, 5.2, and
3.1 dB. The MMSE-STSA enhancement algorithm [56] and an
improved version [57] were applied to the noisy phrases. In total
there are 5 SNRs × (2 algorithms + 1 unprocessed) = 15 con-
ditions. Stimuli were presented to 15 normal-hearing listeners.
The listeners were instructed to transcribe sentences without any
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additional information, and the proportion of correctly identified
words was recorded.

F. JensenPOST

The sixth data set consists of speech subjected to post-
processing enhancement. In [47] phrases from the Dutch version
of the Hagerman test [58] were degraded by SSN at SNRs of
−8, −6, −4, −2, and 0 dB and processed by three enhance-
ment algorithms. The three algorithms compute a minimum
mean-squared error estimate of the clean speech by multiply-
ing the short-time spectral amplitude of the noisy speech with
a gain function. In total there are 5 SNRs × (3 algorithms +
1 unprocessed) = 20 conditions. Stimuli were presented to 13
normal-hearing listeners. For each word in a given sentence, the
listeners were shown ten candidate words from which they were
instructed to select from.

G. HuPOST

The seventh data set consists of speech subjected to post-
processing enhancement. In [48] IEEE sentences [54] were fil-
tered by a simulated telephone channel, degraded by four noise
types: babble, car, street, and train, at SNRs of 0 and 5 dB,
and processed by eight enhancement algorithms encompass-
ing spectral subtractive, sub-space, statistical model based and
Wiener-type algorithms. In total there are 4 noise types × 2
SNRs × (8 algorithms + 1 unprocessed) = 72 conditions. Stim-
uli were presented to 40 normal-hearing listeners where ten lis-
teners were used for each of the four noise types. The listeners
were instructed to transcribe sentences without any additional
information and the proportion of correctly identified words was
recorded. See [48] for more details.

H. HendriksPRE

The eighth data set consists of speech subjected to pre-
processing enhancement and degraded by reverberation and
noise. In [49] phrases from the Dutch version of the Hager-
man test [58] were processed by four enhancement algorithms,
convolved with a room impulse response with a T60 time of 1 s,
and then degraded by SSN at SNRs of −2, 0, 2, and 4 dB.
Three of the enhancement algorithms optimally redistribute the
energy of the clean speech according to a distortion criterion.
The fourth algorithm uses steady-state suppression to reduce
degradation caused by reverberation. In total there are 4 SNRs
× (4 algorithms + 1 unprocessed) = 20 conditions. Stimuli were
presented to eight normal-hearing listeners. For each word in a
given sentence, the listeners were shown ten candidate words
from which they were instructed to select from. See [49] for
more details.

I. KleijnPRE

The ninth data set consists of speech subjected to pre-
processing enhancement and degraded by noise. In [30] phrases
from the Dutch version of the Hagerman test [58] were sub-
jected to three pre-processing enhancement algorithms and then
degraded either by SSN at SNRs of −15,−12,−9, and −6 dB,

or car noise at SNRs of −23,−20,−17, and −14 dB. The three
enhancement algorithms optimally redistribute the energy of the
clean speech according to a distortion criterion. In total there
are 2 noise types × 4 SNRs × (3 algorithms + 1 unprocessed)
= 32 conditions. Stimuli were presented to nine normal-hearing
listeners. For each word in a given sentence, the listeners were
shown ten candidate words from which they were instructed to
select from. See [30] for more details.

J. CookePRE

The tenth data set consists of speech subjected to pre-
processing enhancement and degraded by noise. In [50] IEEE
sentences [54] were processed by 19 pre-processing enhance-
ment algorithms and degraded either by SSN at SNRs of 1, −4,
and−9 dB, or by speech from a competing talker at SNRs of−7,
−14, and−21 dB. Stimuli were presented to 175 normal-hearing
listeners. The listeners were instructed to transcribe sentences
without any additional information and the proportion of cor-
rectly identified words was recorded. Short words (e.g., a, the,
in, to) were not scored.

For this paper, a subset of the data in [50] was consid-
ered because the entire data set was not available. Ten of the
IEEE sentences for each condition and nine of the enhance-
ment algorithms were used. The algorithms are referred to in
[50] as AdaptDRC, F0-shift, IWFEMD, on/offset, OptimalSII,
RESSYSMOD, SBM, SEO, and SSS. In total there are 2 noise
sources × 3 SNRs × (9 algorithms + 1 unprocessed) = 60
conditions.

K. KhademiJOINT

The eleventh data set consists of speech that has been jointly
processed by far-end and near-end enhancement algorithms. In
[31], four enhancement strategies were considered, all of which
used an MVDR beamformer at the far-end. The first strategy
used no near-end enhancement, the second used blind optimal
energy redistribution at the near-end, the third used blind op-
timal energy redistribution at the near-end and an additional
Wiener filter at the far-end, and the fourth used jointly opti-
mal energy redistribution at the near-end. Three near-end SNRs
(−7.5, 0, and 5 dB) and two far-end SNRs (−10 and 2.5 dB)
were used. In total there are 4 enhancement strategies × 3 near-
end SNRs× 2 far-end SNRs = 24 conditions. For each condition
phrases from the Dutch version of the Hagerman test [58] were
presented to seven normal-hearing listeners. For each word in
a given sentence, the listeners were shown ten candidate words
from which they were instructed to select from. See [31] for
more details.

L. DutchMRG

The twelfth data set was created by merging JensenPOST,
HendriksPRE, KleijnPRE, and KhademiJOINT. It is reasonable
to merge these data sets because the associated listening tests all
used phrases from the Dutch version of the Hagerman test [58]
and were conducted using the same procedures by the Circuits
and Systems Group at Delft University of Technology. Note,
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TABLE II
PRE-EXISTING INTELLIGIBILITY METRICS CONSIDERED IN THIS STUDY

that the number of subjects differed for the four experiments.
DutchMRG was included in the evaluation to test if the in-
telligibility metrics give consistent measurements for different
enhancement strategies.

M. DantaleMRG

The thirteenth data set was created by merging KjemsAN,
KjemsITFS, and TaalPOST. It is reasonable to merge these data
sets because the associated listening tests all used phrases from
the Dantale II corpus. To prevent KjemsITFS from dominating
the other data sets, 60 out of the 168 conditions from Kjem-
sITFS were randomly selected, and all of the conditions for
KjemsAN and TaalPOST were selected. Note that the listening
tests were conducted by different laboratory groups. Similarly to
DutchMRG, this data set was included to test if the intelligibil-
ity metrics give consistent measurements for different enhance-
ment strategies. JensenMOD also used the Dantale II corpus, but
was not included in DantaleMRG because the listening test for
JensenMOD presented listeners with ten candidate words to se-
lect from, whereas the listening tests for KjemsAN, KjemsITFS,
and TaalPOST did not.

III. PRE-EXISTING INTELLIGIBILITY METRICS

Over the past decade a large number of intrusive intelligibil-
ity metrics have been proposed. In this section, 12 metrics from
the literature, which are considered in this evaluation, are sum-
marized. An overview of the metrics can be found in Table II.
See the accompanying references for more detailed descriptions.
Unless stated otherwise, all parameters were selected according
to those recommended in the original publications.

A. Speech Intelligibility Index

The speech intelligibility index (SII) [10] is based on the idea
that intelligibility is related to audibility. To compute the SII,
a bandpass filterbank is applied to the clean speech and the

noise signal, and a weighted average of the long-term SNR of
each frequency band is calculated. The weights define a band-
importance function (BIF) that characterizes the relative impor-
tance of each frequency band. Prior to averaging, the SNR is
clipped to be between ±15 dB and normalized to be between 0
and 1. This reflects the idea that below −15 dB the speech signal
is inaudible and above 15 dB the intelligibility is at its maxi-
mum. The SII is known to perform well for speech degraded
by stationary additive noise, but poorly for speech degraded by
modulated noise sources [12].

In this paper, the SII was only evaluated using JensenMOD,
KjemsAN, and CookePRE. For the remaining data sets, either
the noise signal was not available, or noise was not the main
cause of distortion. The implementation of the SII was obtained
from the Acoustical Society of America (http://sii.to) and used
the 1/3 octave band procedure with the BIF tabulated in [10,
Table 3].

B. High-Energy Glimpse Proportion Metric

The glimpse proportion metric (GP) is the initial stage of the
glimpsing model of speech perception [27] and has been used
as an intelligibility metric in various studies (e.g., [28], [29]).
The GP is defined as the proportion of spectro-temporal regions
where the clean speech has energy greater than the noise signal
by a pre-defined threshold. The GP shares similarities with the
SII in that both metrics assume that audibility is the determining
factor of intelligibility. The difference is that the SII averages
the long-term SNR of each frequency band, whereas the GP
is the proportion of short-time frequency-local SNRs above a
threshold.

In [29] a variation of the GP called the high-energy GP
(HEGP) was shown to be more highly correlated with intel-
ligibility than the original GP. The main difference between the
metrics is that HEGP only uses spectro-temporal regions where
the noisy speech has above average energy. Similarly to the SII,
HEGP can only quantify distortion caused by additive noise
signals. For this reason, HEGP was evaluated using KjemsAN,
JensenMOD, and CookePRE only.

The implementation of HEGP used in this paper was obtained
from its developers. Note that CookePRE is a subset of a data
set that was used during the development of HEGP.

C. Coherence Speech Intelligibility Index

The coherence speech intelligibility index (CSII) [15] is based
on the SII, but replaces the SNR of each frequency band with
a signal-to-distortion ratio (SDR). The SDR is estimated from
the coherence function [59] of the clean and distorted speech
signal. For the case of speech degraded by additive noise, the
SDR and SNR are equivalent, making the CSII a generalization
of the SII that can be applied to a wider range of distortions.
In [15] it was found that the performance of the CSII could be
improved by calculating the CSII separately for low, mid, and
high-energy speech segments.

The implementation of the CSII used in this paper was ob-
tained from [2] and is described in [42], where it is referred
to as CSIImid . Note that the implementation in [2] differs to
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that originally proposed in [15] in that [2] averages the CSII
over short-time segments. For this paper, the implementation
in [2] was modified to make it more similar to that originally
proposed (i.e., it does not use short-time segments) because we
found that the original method had higher overall performance.
In this paper the algorithm is referred to as CSII-MID.

D. Hearing-Aid Speech Perception Index

The hearing-aid speech perception index (HASPI) [20] is
based on an elaborate auditory model where the shape and band-
width of the cochlear filters depend on the speech signal intensity
and the outer hair-cell damage of the listener. Dynamic range
compression is applied to the output of each cochlear filter in
accordance with physiological measurements of compression
in the cochlea and psychophysical estimates of compression in
the human ear. Additionally, a time-alignment stage is included.
The auditory model has two outputs: a sequence of short-time
log-spectra, and a basilar membrane vibration signal for each
frequency band.

From the outputs of the auditory model the cepstral correla-
tion and auditory coherence are computed. To compute cepstral
correlation, the log-spectra are converted to an approximation
of Mel-frequency cepstral coefficients [60] by taking the inner
product between the log-spectra and a set of cosine functions.
Pearson’s correlation coefficient between the cepstra of the clean
and distorted speech is then computed for each cepstral dimen-
sion and the resulting coefficients are averaged.

The auditory coherence is computed by splitting the basi-
lar membrane vibration signals into three sets that contain low,
mid, and high-energy segments. For each set and each frequency
band, short-time correlation coefficients between the clean vi-
bration signals and the distorted vibration signals are computed
and then averaged over the time dimension and the frequency
dimension. This results in three auditory coherence terms cor-
responding to low, mid, and high energy segments.

HASPI is computed as a linear combination of the cepstral
correlation and the three auditory coherence terms. The relative
importance of each term depends on the type of distortion and
thus is fitted to the intelligibility data. In this paper the weights
of the cepstral correlation and auditory coherence terms were
computed for each data set such that the mean squared error
between the predicted and measured intelligibility scores was
minimized. However, it was found that similar performance
could be obtained simply by summing the cepstral correlation
and high-energy auditory coherence. The implementation of
HASPI used in this paper was obtained from its developers.

E. Normalized Covariance Measure

The normalized covariance measure (NCM) [17], [18] is a
variant of the STI that uses clean speech as the probe signal. To
compute the NCM, a band-pass filterbank is applied to the clean
and distorted speech signals, and the temporal envelope of the
output of each filter is extracted. Subsequently, the normalized
covariance (i.e., Pearson’s correlation coefficient) between the
clean and distorted envelopes is calculated and converted to an
apparent SNR for each frequency band. Similarly to the SII,

the apparent SNR is clipped before a weighted average over the
frequency bands is computed.

In [42] it was found that the NCM is strongly correlated with
intelligibility for speech subjected to post-processing enhance-
ment. The correlation was particularly strong when new signal
dependent BIFs were used. The implementation of the NCM
used in this paper was obtained from [2] and is described in [42]
where it is referred to as NCM W

(1)
i , p = 1.5. In this paper the

algorithm is referred to as NCM-BIF. Note that HuPOST was
used during the development of NCM-BIF.

F. Quasi-Stationary Speech Transmission Index

The quasi-stationary speech transmission index (QSTI) was
proposed in [16]. The QSTI is a variation of the STI that uses
clean speech as the probe signal and averages the score over
short-time segments. In [16] the QSTI was reported to be more
strongly correlated with intelligibility than the traditional STI.

The implementation of the QSTI used in this paper was ob-
tained from its developers webpage. Note that HuPOST, Taal-
POST, and KjemsITFS were used during the development of
QSTI.

G. Short-Time Objective Intelligibility Measure

The short-time objective intelligibility measure (STOI) was
proposed in [22] as an algorithm for predicting the intelligibility
of time-frequency weighted noisy speech. To compute STOI, a
simple model of the human auditory system is used to extract
temporal envelopes of the clean speech and the distorted speech
for various frequency bands. The temporal envelopes are seg-
mented into short-time frames with a duration of 386 ms and
a clipping procedure is used to ensure that the SDR of each
frame is greater than −15 dB. STOI is calculated by computing
Pearson’s correlation coefficient between the clean and distorted
envelopes for each short-time frame and each frequency band
and then taking the mean.

The implementation of STOI used in this paper was obtained
from its developer’s webpage. Note that TaalPOST and Kjem-
sITFS were used during the development of STOI.

H. Extended Short-Time Objective Intelligibility Measure

The extended short-time objective intelligibility measure (ES-
TOI) was proposed in [23] to address the finding that STOI per-
forms poorly for modulated noise sources (e.g., Gaussian noise
that is amplitude modulated by a sinusoid). Rather than com-
puting the correlation of the clean and distorted envelopes for
short-time segments, ESTOI computes the correlation between
clean and distorted spectra so that ‘glimpses of clean speech’ can
be detected. Additionally, the clipping procedure in STOI was
removed to make the new model more mathematically tractable.

The implementation of ESTOI used in this paper was ob-
tained from its developer’s webpage. Note that JensenPOST,
JensenMOD, KjemsITFS, and a data set similar to KjemsAN
were used during the development of ESTOI.
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I. K-Nearest Neighbour Mutual Information
Intelligibility Measure

The k-nearest neighbour (KNN) mutual information intelli-
gibility measure (MIKNN) was proposed in [32] while inves-
tigating the use of information theoretical techniques for intel-
ligibility prediction. MIKNN uses the same representation of
speech as STOI, however, rather than using the short-time cor-
relation coefficient to quantify distortion, MIKNN estimates the
mutual information between the clean and distorted temporal
envelopes using a non-parametric estimator based on k-nearest
neighbours [61]. One advantage of mutual information is that
unlike Pearson’s correlation coefficient, mutual information can
account for non-linear dependencies.

The implementation of MIKNN used in this paper was ob-
tained from its developer’s webpage. Note that TaalPOST and
KjemsITFS were used during the development of MIKNN.

J. Speech Intelligibility Prediction Based on
Mutual Information

Similarly to MIKNN, the speech intelligibility prediction
based on mutual information measure (SIMI) [33] is based on
the hypothesis that intelligibility is related to the mutual infor-
mation between the clean and distorted temporal envelopes. In
contrast to MIKNN, SIMI estimates a lower bound on the mutual
information by assuming a parametric statistical model. Another
important difference between SIMI and MIKNN is that SIMI
operates on short-time segments of 250 ms, whereas MIKNN
uses whole utterances. In [33] SIMI was used to justify some of
the heuristic design decisions of STOI.

The implementation of SIMI used in this paper was obtained
from its developer’s webpage. Note that JensenPOST, Kjem-
sITFS, and a data set similar to KjemsAN were used during the
development of SIMI.

K. Speech Intelligibility in Bits

Speech intelligibility in bits (SIIB) is an information theoretic
intelligibility metric that was recently proposed in [34]. Similar
to MIKNN, a non-parametric mutual information estimator [61]
is used to estimate the information shared between a clean and
distorted speech signal.

There are three main differences between SIIB and MIKNN.
First, SIIB uses the Karhunen-Loève transform (KLT) [62] to re-
duce statistical dependencies between spectro-temporal regions,
and thus reduces overestimation of the information rate.

Second, SIIB accounts for ‘production noise’, which incorpo-
rates differences in pronunciation between talkers. Importantly,
production noise causes the information rate of the communi-
cation channel to saturate [30].

Third, SIIB uses an auditory model that more accurately ac-
counts for the frequency masking [63] and temporal masking
[64] of the human auditory system. To account for frequency
masking, the temporal envelopes are extracted using an equiv-
alent rectangular bandwidth (ERB) gammatone filterbank [65].
To account for temporal masking, the forward masking function

suggested in [66] is used. Additionally, logarithmic compression
is applied to the envelopes.

The end result of SIIB is an estimate of the information shared
between a talker and a listener in bits per second. Note that all
of the data sets considered in this paper were used during the
development of SIIB.

L. Speech-Based Envelope Power Spectrum Model With
Short-Time Correlation

The speech-based envelope power spectrum model forms the
basis of three intelligibility metrics: sEPSM [24], mr-sEPSM
[25], and sEPSMcorr [26]. All of the sEPSM metrics use the
Hilbert transform and a gammatone filterbank to extract tem-
poral envelopes for different frequency bands. A second band-
pass filterbank called a modulation filterbank is then applied
to each envelope signal. This results in a multi-dimensional
representation that includes a time, frequency, and modulation
dimension. Within this multi-dimensional domain, sEPSM and
mr-sEPSM quantify distortion using a SNR metric, whereas
sEPSMcorr quantifies distortion using short-time correlation co-
efficients similarly to STOI. In this paper only the most recent
metric is considered: sEPSMcorr.

Note that the output of sEPSMcorr increases as the duration
of the stimulus increases. This is a consequence of the ‘multiple
looks’ strategy that sEPSMcorr uses to integrate information over
the time dimension. For this reason, when comparing results
from multiple data sets (i.e., for the merged data sets), it is
important that the duration of the stimuli is held constant. In this
paper, when evaluating sEPSMcorr, all stimuli were truncated to
have a duration of 20 seconds.

The implementation of sEPSMcorr used in this paper was
obtained from its developers. Note that KjemsITFS was used
during the development of sEPSMcorr.

IV. MODIFIED INTELLIGIBILITY METRICS

One of the goals of this paper is to investigate why some
intelligibility metrics have higher performance than others. In
this section we modify existing intelligibility metrics so that
effective strategies can be identified.

A. Investigating the Effect of Decorrelating Input Features

The majority of the intelligibility metrics in the previous sec-
tion quantify distortion by comparing time and/or frequency
local features. SIIB and HASPI are exceptions to this. SIIB
decorrelates log-spectra over the time and frequency dimension
using the KLT, and HASPI decorrelates log-spectra over the fre-
quency dimension using a cosine expansion similar to the type-1
discrete cosine transform (DCT) [67]. Recall that for stationary
signals the DCT asymptotically approximates the KLT.

To investigate the effect of decorrelating input features, SIIB
and STOI were modified to produce two intelligibility metrics
denoted SIIBnoKLT and STOIKLT. To compute SIIBnoKLT, the
implementation of SIIB described in [34] was used, but the
KLT was not applied. To compute STOIKLT three changes are
made to the original STOI implementation [22]:
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1) Instead of using temporal envelopes to represent speech
signals, log-temporal envelopes are used. To prevent sin-
gularities, a small amount of uniformly distributed noise
is added to the envelopes before applying the logarithm.

2) The KLT is used to decorrelate the log-temporal envelopes
over the frequency dimension. To do so, the eigenvectors
of the covariance matrix of the clean log-temporal en-
velopes are computed.

3) Short-time correlation coefficients for the eigenchannels
are computed and then averaged to produce a final value.
The short-time segmentation approach in [22] is used, but
the clipping procedure is not.

By comparing the performance of STOI with STOIKLT, and
SIIB with SIIBnoKLT the effect of decorrelating input features
can be investigated.

B. Investigating the Effect of the Auditory Model

The auditory model that is used to extract features could
have a significant impact on performance. To investigate this
effect, the auditory model used for STOIKLT (i.e., STOIs auditory
model) was replaced with the auditory model used by SIIB. The
differences between the auditory models are: 1) SIIB uses an
ERB gammatone filterbank, whereas STOI uses a 1/3 octave
band rectangular filterbank, 2) SIIB considers frequencies up to
8 kHz, whereas STOI considers frequencies up to 5 kHz, and
3) SIIB includes a forward temporal masking function, whereas
STOI does not. The resulting intelligibility metric is denoted
STOIKLT

gamma.

C. Investigating the Effect of Mutual Information Estimation

The majority of the intelligibility metrics in the previous sec-
tion rely on the correlation coefficient to quantify distortion. On
the other hand, SIIB and MIKNN use a non-parametric mutual
information estimator. Recall that if the clean and degraded sig-
nals are jointly Gaussian, then the mutual information is a func-
tion of the correlation coefficient only. In [33] this observation
was used to justify the use of the correlation coefficient. How-
ever, a direct comparison between the performance obtained
using a non-parametric mutual information estimator and the
performance obtained using the capacity of a Gaussian channel
has not been made.

To investigate the effect of mutual information estimation,
SIIB was modified to produce a simpler metric called SIIBGauss.
The original SIIB algorithm [34] quantifies distortion using a
KNN mutual information estimator, whereas SIIBGauss uses the
information capacity of a Gaussian channel. Concretely,

SIIBGauss = − F

2K

∑

j

log2(1 − r2ρ2
j ), (1)

where F is the frame rate, K = 15 is the number of stacked log-
spectra, r = 0.75 is the production noise correlation coefficient,
j is the eigenchannel index, and ρj is the correlation coefficient
between the jth clean eigenchannel and the jth distorted eigen-
channel. The values for F , K and r are the same as those in
[34].

V. PERFORMANCE CRITERIA

The key requirement of an intelligibility metric is that it has
a strong monotonic increasing relationship with intelligibility.
This paper uses two performance criteria to quantify the strength
of the relationship: Kendall’s tau coefficient, τ , and Pearson’s
correlation coefficient, ρ. Both performance criteria are dis-
cussed below.

In the following, pc is the intelligibility in terms of percentage
of words correctly identified for condition c in a particular data
set and d(xc, yc) is the corresponding score computed by an
intelligibility metric. The clean signal xc is formed by concate-
nating all available clean sentences for condition c and likewise
for the distorted signal yc .

A. Kendall’s Tau Coefficient

Kendall’s tau coefficient [68], τ , measures the ordinal asso-
ciation between two quantities and ranges between −1 and 1. If
τ = −1 then pc and d(xc, yc) have a monotonic decreasing rela-
tionship, if τ = 1 they have a monotonic increasing relationship,
and if they are statistically independent then τ = 0.

B. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient, ρ, is defined as the normal-
ized covariance between two quantities. To use ρ effectively,
the relationship between the quantities must be linear. For this
reason, a monotonic function f is applied to d(xc, yc) to lin-
earize the relationship before computing ρ. The function f can
be thought of as a mapping from the metric to predicted in-
telligibility scores, but more generally it is simply a tool for
quantifying the strength of the relationship between d(xc, yc)
and pc .

In the literature f is commonly assumed to be a logistic
function, e.g., [15], [22], [69]:

f(d(xc, yc)) =
100

1 + ea(d(xc ,yc )−b) , (2)

where b is the midpoint and a is the slope at the midpoint. These
parameters are fitted to the data to minimize the mean squared
error between pc and f(d(xc, yc)).

In the literature ρ is sometimes also computed without ap-
plying a mapping function. However, we believe that such a
measure is misleading because without f , a metric with a strong
non-linear relationship between pc and d(xc, yc) will have a
small value for ρ, but could also have a monotonic increasing
relationship with intelligibility.

Note that pc depends on the experimental procedures used to
measure intelligibility, but that d(xc, yc) does not. For example,
the intelligibility of a given stimulus can be increased by chang-
ing an open listening test to a closed listening test.1 It follows
that the relationships between intelligibility and intelligibility
metrics also depend on experimental procedures. For this rea-
son, f is fit individually to each data set. Finally, negative values
of ρ and τ are set to zero.

1In a closed listening test, subjects are given a list of possible speech sounds,
e.g., phones or words, and are asked to identify the sounds that they heard. In
an open listening test, no list is provided, which makes the test more difficult.
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Fig. 1. Scatter plots for all data sets and pre-existing intelligibility metrics. The vertical axis is the ‘ground-truth’ intelligibility in terms of the percentage of
words correctly identified during listening tests, and the horizontal axis is the score computed by an intelligibility metric. The horizontal axis of each plot has been
normalized to be between 0 and 1. Each data point corresponds to a processing condition. The mapping function in (2) is also shown.

VI. RESULTS

Scatter plots for all data sets described in Section II and
all pre-existing intelligibility metrics described in Section III
are displayed in Figure 1. Each row of plots corresponds to
a data set and each column of plots corresponds to an intel-
ligibility metric. The vertical axis of each scatter plot is the
’ground-truth’ intelligibility in terms of the percentage of words
correctly identified during listening tests, and the horizontal
axis is the score computed by an intelligibility metric. To fa-
cilitate an easy visual comparison, the horizontal axis of each
scatter plot is normalized to be between 0 and 1. Each point
on a scatter plot corresponds to a condition in the respec-

tive data set. The function in (2) that was used to linearize
the relationship between the intelligibility scores and the met-
ric for each data set is also shown. For an ideal intelligibil-
ity metric, all points would fall exactly on top of the fitted
curve.

The labels ‘icra’, ‘sin’, ‘noisex’, ‘noise’, ’reverb’, ‘both’,
‘ssn’, ‘cafe’, ‘car’, ‘bottles’, ‘talk’, and ‘ssn’ in Figure 1 in-
dicate the type of environmental degradation in the data set. The
labels ‘pro’ and ‘un’ indicate whether a stimulus was processed
by an enhancement algorithm or was unprocessed. The labels
‘jensen’, ‘hend’, ‘kleijn’, ‘khad’, ‘itfs’, ‘an’, and ‘post’ refer to
individual data sets within the merged data sets.
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TABLE III
PERFORMANCE IN TERMS OF KENDALL’S TAU COEFFICIENT, τ , FOR ALL DATA SETS AND INTELLIGIBILITY METRICS. THE INTELLIGIBILITY METRICS ARE LISTED

IN ORDER OF MEAN PERFORMANCE AND ARE GROUPED BY PRE-EXISTING METRICS (LEFT) AND MODIFIED METRICS (RIGHT)

TABLE IV
PERFORMANCE IN TERMS OF PEARSON’S CORRELATION COEFFICIENT, ρ, FOR ALL DATA SETS AND INTELLIGIBILITY METRICS. THE INTELLIGIBILITY METRICS ARE

LISTED IN ORDER OF MEAN PERFORMANCE AND ARE GROUPED BY PRE-EXISTING METRICS (LEFT) AND MODIFIED METRICS (RIGHT)

Table III displays Kendall’s tau coefficient for all data sets and
intelligibility metrics and, similarly, Table IV displays Pearson’s
correlation coefficient. In both tables, an asterisk is used to in-
dicate when a data set was used during the development of an
intelligibility metric. For the remainder of the paper, ’unseen’
refers to a data set that was not used during development, and
’seen’ refers to a data set that was used during development.
The mean performance of each intelligibility metric and a con-
fidence interval, [CIlow , CIhigh ], with 95% coverage of the mean
performance is also included. The confidence intervals were cal-

culated using the non-parametric BCa bootstrap approach [70].
To do so, 5000 bootstrap sample sequences of pc and d(xc, yc)
were generated for each data set and intelligibility metric. The
sample distribution of the mean performance of each intelli-
gibility metric was then estimated from the bootstrap sample
sequences.

From here on, subscripts are used to indicate performance
criteria for particular intelligibility metrics. For example, ρSIIB ,
refers to the correlation coefficient that SIIB achieved on some
data set.
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Fig. 2. An example of a clean and degraded stimulus from HendriksPRE. The
severe reverberant distortion ‘blurs’ the time-alignment between the stimuli.

A. Remarks for the Preexisting Metrics

It is clear that out of the pre-existing metrics SIIB and HASPI
have the highest performance overall, on average achieving
τSIIB = 0.79 and ρSIIB = 0.92, and τHASPI = 0.76 and ρHASPI
= 0.89. This performance is followed closely by ESTOI, which
has an average score of τESTOI = 0.72 and ρESTOI = 0.86.
HEGP has high performance for data sets distorted by additive
noise achieving an average score of τHEGP = 0.73 and ρHEGP
= 0.89, but its usefulness is limited to situations where noise
is the main source of degradation and where the noise signal is
available.

The top performance rating of SIIB may be criticized on
the grounds that SIIB has been ‘over-designed’ for the data
sets in this evaluation. Although the parameters of SIIB were
not intentionally optimized for the data sets in this paper, the
developers of SIIB were the only researchers with access to
all the data sets and thus had greater opportunity to redesign
their algorithm when weaknesses were exposed during SIIBs
development.

Many of the intelligibility metrics performed poorly on Hen-
driksPRE. This is likely due to the large T60 time of the room
impulse response that causes severe reverberant distortion. As
shown in Fig. 2, the large T60 time somewhat ‘blurs’ the time-
alignment of clean and degraded temporal envelopes. Many in-
trusive intelligibility metrics require that the clean and degraded
signals are strictly time-aligned, and thus are over-sensitive to
temporal blurring. Out of all the intelligibility metrics in this
evaluation, HASPI achieved the highest performance for Hen-
driksPRE (τHASPI = 0.78, ρHASPI = 0.92) and is also the only
intelligibility metric that included time-alignment processing.

Recall that HASPI is computed as a linear combination of
four terms: the cepstral correlation, and three auditory coher-
ence terms. The weights in the linear combination were opti-
mized for each data set to maximize performance. None of the
other intelligibility metrics modify their parameters based on the
data, suggesting that the high performance of HASPI may be at-
tributed to overfitting. To test this hypothesis, HASPI was com-
puted simply by summing the cepstral correlation term and the
high-energy auditory coherence term with equal weight. Doing
so reduced the mean performance of HASPI to τHASPI = 0.73

and ρHASPI = 0.88, which is still very high. Thus, the high
performance of HASPI is unlikely the result of overfitting.

Another criteria that can be used to evaluate performance is
whether a metric gives consistent predictions across classes of
distortions. For example, CookePRE has two distinct classes:
stimuli degraded by a competing talker, and stimuli degraded
by SSN. Metrics may give consistent intelligibility predictions
within a class, but could give inconsistent predictions between
classes. An example of this can be seen in the scatter plot corre-
sponding to STOI and DutchMRG. STOI gives consistent pre-
dictions for JensenPOST, KleijnPRE, and KhademiJOINT, but
when the data sets are merged together we see distinct clusters
corresponding to each data set. This means that for a given clean
stimulus, a STOI score of 0.5 for noise-reduced speech and a
STOI score of 0.5 for pre-processed speech could correspond to
different intelligibility scores.

B. Investigating the Performance in Terms of Generalization

Considering only entries in Table III and Table IV that have
an asterisk, the mean performance of all such entries for all
pre-existing metrics and data sets is τ = 0.78 and ρ = 0.92.
Considering only entries that do not have an asterisk, the mean
performance for all pre-existing metrics and data sets is τ =
0.62 and ρ = 0.76. This result demonstrates that, in general,
intelligibility metrics have high performance for seen data sets,
and poor performance for unseen data sets.

To further investigate the performance of intelligibility met-
rics in terms of their ability to generalize, Table V displays the
mean performance for unseen data sets and seen data sets for
each pre-existing intelligibility metric. HASPI has the highest
performance for unseen data sets achieving τunseen

HASPI = 0.76 and
ρunseen

HASPI = 0.89. HEGP also has high performance for unseen
data sets, however, recall that HEGP was evaluated exclusively
on data sets with additive noise degradation.

STOI and SIMI both have outstanding performance for seen
data sets (τ seen

STOI = 0.87, ρseen
STOI = 0.97, and τ seen

SIMI = 0.84, ρseen
SIMI

= 0.95), but poor performance for unseen data sets (τunseen
STOI =

0.66, ρunseen
STOI = 0.80, and τunseen

SIMI = 0.60, ρunseen
SIMI = 0.78). This

is because STOI and SIMI were specifically designed for speech
processed by ITFS and noise-reduction algorithms, whereas the
data sets in this evaluation include degradation caused by rever-
beration and modulated noise sources. Similarly, NCM-BIF was
designed specifically for speech processed by noise-reduction
algorithms. Observe that in Fig. 1 NCM-BIF has good perfor-
mance for the data sets with noise-reduction: HuPOST, Jensen-
POST, and TaalPOST, but poor performance for the remaining
data sets. These results show the danger of using intelligibility
metrics outside of their intended domain.

In light of the above paragraphs, to ensure that future in-
telligibility metrics generalize to new data sets and give con-
sistent predictions between classes, it may be more beneficial
to gather data points with different types of degradation than
to collect many data points for a single type of degradation.
This notion is consistent with the high performance of HASPI,
which considered six types of degradation during development:
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TABLE V
MEAN PERFORMANCE OF PRE-EXISTING INTELLIGIBILITY METRICS FOR ‘SEEN’ AND ‘UNSEEN’ DATA SETS

additive noise, envelope-clipping, ITFS processing, frequency-
compression, noise reduction, and vocoded-speech.

C. Remarks for the Modified Intelligibility Metrics

In general, removing the KLT from SIIB significantly reduced
performance (on average τSIIBn o K LT = 0.69 and ρSIIBn o K LT =
0.85). Furthermore, introducing the KLT to STOI improved per-
formance (on average τSTOIK LT = 0.73 and ρSTOIK LT = 0.88).
The increase in overall performance for STOIKLT is mainly due
to large increases in performance for JensenMOD, Hendrik-
sPRE, and CookePRE. Note that STOIKLT performs worse than
STOI for KjemsITFS and TaalPOST, however, these are the
same data sets that were used to tune the parameters of STOI
during STOIs development.

The five intelligibility metrics with the highest performance:
SIIB, SIIBGauss, STOIKLT

gamma, HASPI, and STOIKLT are also the
only metrics that decorrelate log-spectra. This outcome clearly
demonstrates the advantage that can be obtained by reducing
the statistical dependencies between input features.

Recall that ESTOI was proposed as an extension to STOI
that can ’listen to glimpses of clean speech’. Interestingly,
for the data sets that contain modulated noise, STOIKLT has
similar performance to ESTOI (for JensenMOD, τSTOIK LT =
0.72, ρSTOIK LT = 0.90, and for CookePRE, τSTOIK LT = 0.87,
ρSTOIK LT = 0.96). SIIB and SIIBGauss, which are based on long-
term statistics, also have good performance for JensenMOD
and CookePRE. Such results contest the idea that short-time
segmentation is necessary for predicting the intelligibility of
modulated noise sources.

On average STOIKLT
gamma achieved τSTOIK LT

g a m m a
= 0.76 and

ρSTOIK LT
g a m m a

= 0.91. Thus, by introducing the KLT to STOI and
using a more realistic auditory model, performance competitive
with SIIB could be obtained. This means that for some represen-
tations of speech signals, the correlation coefficient and the KNN
mutual information estimator can quantify distortion equally
well. A partial explanation for this result can be found by con-
sidering the high performance of SIIBGauss (ρSIIBG a u s s = 0.92
and τSIIBG a u s s = 0.79), which suggests that the Gaussian com-
munication channel is a reasonable approximation of the true
communication channel for many real-word distortions.

Finally, recall that SIIBGauss = − F
2K

∑
j log2(1 − r2ρ2

j ).
Since r and ρj are between−1 and 1, the product of their squares
is likely to be small, particularly for challenging listening envi-
ronments. Using the approximation log2(1 + a) ≈ a/ ln(2) for
small a, we have that SIIBGauss ≈ F

2K ln(2) r
2 ∑

j ρ2
j . This ap-

proximation strongly resembles the distortion measure used by

STOIKLT and STOIKLT
gamma, which can be written as

∑
j

∑
t ρj,t ,

where t is the short-time segment index.

VII. CONCLUSION

In this paper, the accuracy of 12 intelligibility metrics from
the literature was evaluated using the results of 11 listening
tests. The stimuli included pre-processing enhancement, post-
processing enhancement, and environmental distortions such as
noise and reverberation. In order to analyze why the top per-
forming metrics have high performance, four new intelligibility
metrics were proposed. The main conclusions are as follows.

1) Out of the pre-existing metrics, SIIB and HASPI had the
highest overall performance.

2) Many intrusive metrics struggle with severe reverberant
distortion. This may be because they are over-sensitive
to the time-alignment of clean and distorted temporal en-
velopes.

3) In general, intelligibility metrics perform more poorly on
unseen data sets than on seen data sets. For this reason,
caution should be taken when using intelligibility metrics
outside of their intended domain.

4) For unseen data sets, HASPI had the highest performance.
This suggests that HASPI is appropriate for situations
where many types of potentially new speech material and
distortions are likely. Additionally, unlike the other met-
rics, HASPI has built-in time-alignment processing and
can account for hearing impairments.

5) The five intelligibility metrics with the highest overall
performance are also the only metrics that decorrelate
log-spectra. On average, introducing the KLT to STOI
improved performance and removing the KLT from SIIB
reduced performance. These results demonstrate the ad-
vantage of removing statistical dependencies between in-
put features.

6) The high performance of SIIBGauss suggests that the Gaus-
sian communication channel is a reasonable approxi-
mation of the true communication channel for many
real-world distortions. Additionally, SIIBGauss has perfor-
mance similar to SIIB, but takes less time to compute by
two orders of magnitude.2

7) It was shown that STOIKLT and STOIKLT
gamma can be inter-

preted as approximations of SIIBGauss.

2MATLAB implementations of SIIBGauss and SIIB are available at
www.stevenvankuyk.com/MATLAB_code
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