2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

Ctherm: An Integrated Framework for
Thermal-Functional Co-Simulation of
Systems-on-Chip

Sumeet S. Kumar, Amir Zjajo, Rene van Leuken
Circuits and Systems Group, Faculty of EEMCS,
Delft University of Technology, The Netherlands
{s.s.kumar, a.zjajo, t.g.r.m.vanleuken} @tudelft.nl

Abstract—This paper presents Ctherm, an integrated frame-
work for cycle-accurate thermal and functional evaluation of
systems-on-chip. The presented framework enables accurate
characterization of thermal behaviour by generating detailed
physical models for components based on input specifications,
and simulating them within a tightly integrated co-simulation
platform with an embedded thermal simulator. Ctherm’s fine-
grained modelling approach yields 70% higher accuracy in
hotspot resolution as compared to conventional approaches that
abstract component internals. Simulation runtime time is reduced
by upto 36% over conventional continuous approaches through
the use of thermal checkpointing, enabling the fast-forwarding
of thermal simulations without loss of thermal continuity.

I. INTRODUCTION

The increasing integration densities of modern high per-
formance systems-on-chip (SoC) has resulted in issues such
as thermal hotspots becoming a common occurrence. Con-
ventional system-level design space exploration (DSE) frame-
works, however, do not include such effects into their eval-
uation of design options [1]. This leads to actual system
performance varying significantly from DSE estimates, and
yielding thermally inefficient designs. Early knowledge of
runtime thermal behaviour of systems can be invaluable in
guiding architectural and system-level design decisions. A
thermal-aware DSE (tDSE) approach can enable the evaluation
of execution performance and thermal cost of architectural
choices, for instance, planar versus 3D stacked-die implemen-
tations for a multiprocessor SoC (MPSoC).

Over the years, a number of methodologies, frameworks
and tool flows have been proposed to meet this need. Skadron
et al.,, proposed one of the earliest thermal-functional co-
simulation frameworks comprising of the SimpleScalar ar-
chitectural simulator and the Hotspot thermal model [2].
Their pioneering work was followed by a number of other
proposals such as [3], which integrates a multi-core processor
simulator with a static thermal model to enable thermal-aware
performance evaluation of a low power MPSoC. Proposals
like [4] and [5] improved the coupling between functional and
thermal simulators to enable modelling of Dynamic Thermal
Management (DTM) schemes, and others such as [6] and
[7] enabled the thermal-exploration of system-designs using
SystemC/TLM models. The growing popularity of 3D design
for SoCs has led to the development of methodologies such

1066-6192/15 $31.00 © 2015 IEEE

DOI 10.1109/PDP.2015.56

674

as Pathfinder3D [8] and PathfindingFlow [9] for the thermal-
aware exploration of the 3D design space, and the MEVA-
3D [10] floorplanner for physical design and performance
estimation of 3D microarchitectures.

Despite their merits, all the surveyed proposals exhibit a
number of limitations that motivate this paper. Firstly, the
existing proposals require power and latency models to be
provided as an input along with system floorplans. Since
such methodologies are most often used in tDSE scenarios,
abstractions are used to avoid the time-consuming develop-
ment of detailed models and component floorplans for each
configuration at each design point. While this enables the
fast and simple revision of system specifications, it leads
to inaccuracies in thermal characterization [2]. Secondly, ex-
isting methodologies do not model the internal organization
of components such as caches, resulting in abstractions that
hide the internal power dissipation characteristics of individual
components. The ability to accurately characterize component
thermal behaviour is a prerequisite to developing thermally
efficient systems. Thirdly, existing methodologies require the
thermal simulation to be repeated from scratch even for minor
modifications and optimizations to the system, eg. a change in
the DTM’s critical temperature.

These limitations of existing proposals motivates Ctherm,
which is an integrated co-simulation framework that enables
thermal-aware design of systems on chip. It simplifies the
design process by automating the generation of detailed floor-
plans and area-latency-energy (ALE) models for components
from the input system specification. Abstract components in
the system-level floorplans are replaced with the generated
floorplans, preserving the flexibility afforded by abstraction
while removing the inaccuracy associated with their use. The
modeled system is instantiated as a SystemC virtual platform
together with an embedded thermal engine in the cycle-
accurate co-simulation stage to estimate functional as well as
thermal performance.

The primary contributions of this paper are:

e An integrated framework for thermal-functional co-
simulation of 2D/3D SoCs with automated generation
of detailed floorplans and area-latency-energy models

for system components.
Enables fine-grained thermal evaluation of systems,

Conference Publishing Services

SPECIFICATIONS

Comp List
- Processors

- Caches

- Interconnect

Comp C

System-level Floorplan

- Die stack

ation Tech p:

- Process node

- Clock freq.

- TSV properties

- Cooling efficiency

- Memories

Parameterized Top-level

SystemC file

'

PHYSICAL MODEL

GENERATOR

Floorplan Generator

Custom
Component

1y

Interpreter |

4Av

Cache ALE Estimator

-

Interconnect ALE Estimator

Area-Latency

Processor ALE Estimator

Floorplan

L

Custom

—

Energy DB

I_|

ALE Modei

L

Floorplan &
Die/Stack
Descriptors.

Time Stepping
Data

ALE
Model

Configured Top-level

SystemC File

y

y

y

y

THERMAL-FUNCTIONAL CO-SIMULATION PLATFORM

Embedded Thermal Execution Engine

Simulation Engine

Simulation

Scheduler Component-level
&

Activity Monitors

L X2

Power
Mapper

Thermal
Checkpoints

v v ¥

isti i it Software
| Performance Statistics and Visualization ”ﬂjM
OUTPUTS
Component
Power profiles Thermal Maps
[o]]

Execution
Ctherm framework for thermal-functional co-simulation

Virtual Platform

Custom
Component|

Component Library |14

Thermal Sim Helper

optimizations/revision

Component
Temperature
profiles

Performance
Statistics

Fig. 1.

and allows 70% higher accuracy for thermal char-
acterization of components such as cache memories
by including their internal organization in the system-
level floorplan.

e Reduces the simulation time for iterative post-
optimization runs by upto 36% through the use of
reloadable thermal checkpoints.

e llustrates the potential of cycle-accurate thermal
aware design using four realistic design cases.

II. CTHERM FRAMEWORK

The Ctherm framework consists of two stages: the physi-
cal model generator, and the thermal-functional co-simulation
platform. These stages enable the translation of input specifica-
tions into a physical model of the system, and subsequently, the
thermal-functional evaluation of the model to determine system
performance and thermal efficiency. The Ctherm framework is
illustrated in Figure 1.

A. Physical Model Generation

The physical model consists primarily of a system-level
floorplan and area-latency-energy (ALE) models for compo-
nents. We generate the physical model in two stages; first, by

675

estimating the latency, energy and dimensions for components
based on their configuration, and second, generating fine-
grained floorplans for individual components based on these
estimates, and inserting them into the system-level floorplan.

1.) Area-Latency-Energy Model: The thermal behaviour of
components is largely dependent on their internal organization,
power dissipation characteristics and area. Accurate character-
ization requires detailed models of the energy and latency per
operation of each component, together with the area of its
constituent functional units. ALE data for generic components
such as cache memories, interconnects and simple processor
cores can be generated using existing parameterizable esti-
mators [11][12][13]. Since SoCs are often composed of such
generic components, Ctherm integrates a number of state-of-
the-art estimators within its configuration generator. A Python
interpreter is used to translate input system specifications into
a suitable format for each estimator, and further convert the
outputs of each into usable ALE data. ALE models contain
estimates of dimensions for components and their constituent
functional units, architectural organization (such as number of
cache banks, interconnect ports), as well as energy and latency
per operation, and per functional unit.

i. Cache ALE estimation: The internal organization
of on-chip cache memories often vary based on the config-
uration (size, associativity and cache line size) as well as
the chosen design target (minimized area, latency and power
dissipation). For instance, optimizations such as wordline and
bitline segmentation that are used to reduce access energy
also result in large SRAM arrays being divided into multiple
smaller sub-banks, each with its own decoder, sense amplifier,
comparators and output drivers. This change in organization
can significantly affect how dissipated power is distributed
across the the entire cache area. Thus it is essential to include
such estimates into ALE models in order to obtain an accurate
thermal characterization of components. A summary of data
included within cache ALE models is listed in Figure 2.

The wordline sharing factor (N,pq) parameter best illus-
trates the effect of changing component internal organization
on power distribution. This factor specifies the number of
cachelines stored per SRAM wordline, and is used to optimize
caches to meet specific power, area or latency constraints. N;,q
essentially also determines which SRAM banks are activated
on memory accesses. For instance, a value greater than one
results in the same SRAM wordline line being activated for

func. unit dimensions

bitline segmentation

access latency

decoders wordline segmentation cache size
output drivers sense amp/driver mux associativity
comparators sharing factor (Ngpa) line size

sense amplifiers

energy per func. unit

Fig. 2. ALE data for cache memories

H H

=

\]

Abstracted

Fig. 3.
with varying Ngp,q

Nspd > 1 Nspd =1

Access power distribution across sub-banks in

Nspd < 1

a cache data array

TSV
TSV topology
TSV conductivity
func. unit dimensions

ports
driver energy
crossbar energy
input port energy
arbiter energy

Fig. 4. ALE data for interconnect routers

accesses to all cache lines that share it, and conversely for
Npq values lesser than one, multiple SRAM wordlines being
activated for accesses to a single cache line. The location of the
dissipated power for accesses is observed to be strongly linked
to the Ny,q value, and in cases can result in the formation
of thermal hotspots. Ignoring this parameter during thermal
simulation results in the power dissipated on accesses to be
distributed across the entire cache’s area, as illustrated by the
Abstracted case in Figure 3.

ii. Interconnect ALE estimation: Network-on-Chip in-
terconnect routers consist of multiple input/output ports ar-
ranged around a central crossbar switch. The area, latency
and energy of routers is influenced by the width of the
NoC links, their physical length (output driver size), and
the number of ports. For 3D routers, Through Silicon Via
(TSV) count and topology are also important parameters as
they determine the thermal conductivity between tiers of the
die-stack. Interconnect ALE estimation for 3D routers must
also determine the optimal TSV topology, and thus total TSV
count per switch. In Ctherm, this is done using an exploration
methodology that determines the optimal TSV topology based
on placement feasibility, electrical performance and area cost.
The details of this methodology are covered in our earlier paper
[14]. Figure 4 lists the significant data fields within the router
ALE model.

iii. Processor ALE estimation: The ALE model for pro-
cessors can be generated in one of two ways - per instruction,
and per pipeline stage. The former lumps the power of individ-
ual pipeline stages into an aggregate value for each instruction,
while the latter specifies a generalized average power value per
pipeline stage regardless of the actual instruction. Processor
ALE models consist primarily of functional unit dimensions,
and the power dissipation at the chosen granularity.

For other components, custom ALE estimators can be
added to the framework by simply extending the Python
interpreter. However, for components with optimized imple-
mentations, and those for which no parametrizable estimators
exist, custom ALE models must be provided as an input to the
configuration generator.

2.) Floorplan Generation: To enable fine-grained thermal
characterization of systems, Ctherm automates the generation
of floorplans based on component dimensions extracted from
ALE models, using specific Python based planning routines
for each component type. These routines only require specifi-
cation of the anchor position for components in the system
floorplan. The pseudo-code for the planning routines used
for memories, interconnect routers and processing elements
is listed in Figure 5. For components without a rigid internal
organization, functional units are placed at Manhattan distance
from one another with a target aspect ratio determined by the
system floorplan. Although basic, Ctherm’s routines can be
extended with techniques such as [15] for fast thermal-aware
floorplanning of tiles, and [16] for minimizing the wirelength

676

position < init Anchor Position
for currentUnit in list(cache FunctionalUnits) do
(dimensions, pitch, count) < ALEmodel
(mazRows, maxColumns) < ALEmodel
for rows in 0 to mazRows do
for cols in 0 to mazColumns do
PLACEUNIT(id, position, dimension)
UPDATE(position)
————————— Interconnect Routers
(dimensions, ports, TSV _count) < ALEmodel
position < init Anchor Position
center Point < CALC(initAnchorPosition,dimensions)
position < center Point
for currentUnit in list(interconnect FunctionalUnits) do
if currentUnit == Crossbar then
PLACEUNIT(id, position, dimension)
else if currentUnit == I/O Port then
for currentPort in list(N, S, E, W, L,Up, Down) do
newPosition <— CALC(position,dimensions)
position < newPosition
PLACEUNIT(id, position, dimension)

else
Perform TSV Topology Exploration
PLACETSV(T'SV _count, generated_topology)
Processing Elements
(dimensions) <+ ALEmodel
position < init Anchor Position
for currentUnit in list(processor FunctionalUnits) do
PLACEUNIT(id, position, dimension)
nextPosition < CALCMANHATTAN (position, aspectRatio)
position < nextPosition

Fig. 5. Routines for generation of fine-grained cache memory, interconnect
router and processing element floorplans.

between functional units. Furthermore, support for components
such as programmable accelerators can be added through the
inclusion of additional planning routines. The floorplanner
computes the overall die size, and generates a die descriptor
containing a physical description of the die and its material
properties, in addition to the detailed system floorplan. For
3D stacked SoCs, the floorplanner is executed iteratively till
floorplans for each die have been generated, and the stack
descriptor describes each die of the stack together with a path
to its corresponding floorplan. This descriptor also includes
the inter-tier thermal conductivity corresponding to the chosen
TSV count and topology.

B. Thermal-Functional Co-simulation Platform

The second stage of the Ctherm framework performs the
thermal-functional evaluation of the SoC using the gener-
ated physical model, and the input SystemC top-level file
configured with the system specifications. The co-simulator
consists of a cycle-accurate simulation engine integrated with
an embedded thermal simulator. The simulation engine in-
stantiates components from the SoCLiB IP library [17] which
consists of an extensive set of SystemC behavioural models for
processor cores, interconnects, caches, memories, controllers
and accelerators. Thermal simulation of modeled platforms
is enabled by an adapted version of the 3D-ICE thermal
simulation engine [18], embedded within the co-simulation
platform core.

1.) Power Mapper: A thermal model for the system is
generated based on the die descriptor and floorplan generated
in the previous stage of the framework. The die is discretized
into a grid of thermal cells, with cell size determining the
resolution of the resulting thermal maps, and also complexity
of the thermal model. The thermal model generation step is
performed only once per simulation run, and usually completes
in under a minute for cell sizes of 50um. Logging of thermal
maps on the other hand poses a significant overhead that is
dependent on thermal cell size. However, since temperatures
on die do not change at the one-cycle time scale, a logging
interval of 50us provides sufficient resolution for visualization
of hotspots in most simulations, with an acceptable overhead.

SystemC components of the SoCLiB IP library are aug-
mented with an activity tracking function that logs the op-
erations performed by their constituent functional units on a
cycle-accurate basis. All activity frames are evaluated at the
start of every thermal simulation time step, and are converted
into a detailed power map using the corresponding ALE
model for each component. Since the model contains internal
organization details of components, an exact list of units
activated and their corresponding power dissipation can be
computed by the power mapper.

The thermal simulation is triggered once activity data has
been collected from all components, at a rate determined by
the thermal time step. Time steps larger than the execution
step requires aggregation or averaging of power maps until
insertion, which can result in false hotspots and false blurring
of hotspots respectively.

2.) Checkpointed Thermal Simulation: Thermal simula-
tions are normally carried out for the same duration of time
as the functional simulation. However, in some cases, the
thermal behaviour that we want to characterize can occur much
later in the simulation. In order to observe this behaviour in
isolation, Ctherm supports the discrete starting and stopping
of the thermal simulation engine at any time during the
execution. This is achieved through the Thermal Simhelper
component which acts as an interface between the virtual
and co-simulation platforms, enabling control of the thermal
simulation both from the behavioural model of components,
as well as from software executing on the virtual platform.
With thermal simulation disabled, functional simulation speed
increases by a minimum of 30%.

A drawback of this approach is that it results in the loss
of thermal continuity until the point thermal simulation is
enabled. Therefore, fast-forwarding from the start of functional
simulation results in the thermal simulation starting with a
die at initial temperature (ambient). To overcome this, we
integrated the ability to save thermal checkpoints to disk
using the Thermal Simhelper. Furthermore, we adapted the
3D-ICE core to initialize the system’s thermal model using
user-specified checkpoints. Consequently, Ctherm allows the
saving of thermal checkpoints to disk during simulation, and
the initialization of the system’s thermal state with any user
specified checkpoint during the simulation. In order to do this,
thermal simulation is first performed for the time interval that
will be fast-forwarded, and a thermal checkpoint is created
at the end, as illustrated in Figure 6. Subsequent thermal
simulations can begin directly at the point of interest, after
initializing the thermal state with the saved checkpoint. Once

677

LEGEND
Functional Thermal- Save Load
Only Functional Checkpt Checkpt

Checkpointing Run

> wn TS 5 B) B
Save Save Save
Checkpoint Checkpoint Checkpoint
Fast Forwarded Run — Point of Interest: A
S o EE s > >
Load Save
Checkpoint Checkpoint
Fast Forwarded Run — Point of Interest: B
> INIT > A B8 ¢ >
Load Save
Checkpoint Checkpoint
Fast Forwarded Run — Point of Interest: C
> INT > A > D >
Load
Checkpoint
Fig. 6. Illustration of checkpointing run generating thermal checkpoints,

followed by fast forwarded runs using saved thermal checkpoints.

initialized, the system appears as if thermal simulation has
been running since the beginning. Checkpointed simulations
can drastically cut time spent in simulating specific temporal
effects, and testing systems post optimization.

In addition to thermal checkpointing, Simhelper also allows
the temperature map of the die to be saved and read at any
point during the co-simulation. These maps can be sampled at
discrete locations to emulate temperature sensor readouts.

III. EVALUATION

The effectiveness of Ctherm is illustrated using real design
cases, each performed on an Intel PentiumD 3.0GHz machine
with 4GB memory. CACTI [12], WATTCH [11] and ORION
[13] are used as ALE estimators for caches, processors and
the system interconnect respectively. All design cases consider
the 90nm technology node, a 200MHz clock frequency and a
340K (67°C') critical temperature. The results of the evalua-
tion are presented in two parts, starting with the accuracy of
thermal characterization and simulation speed. This is followed
by the four design cases.

A. Validation, Accuracy and Simulation Speed

Since Ctherm implements changes to the 3D-ICE core in
order to enable thermal checkpointing, the effect of these
modifications was validated against an unmodified version.
The two versions were found to produce matching thermal
profiles, and the implemented modifications were found to
induce no errors or variations in the thermal simulation results.
The modified version therefore has the same accuracy and
correctness as the standard 3D-ICE core. To verify the power
mapper, the total power inserted per operation during the
simulation was validated against the values reported by the
ALE estimators, and the locations of these insertions were
compared against manually computed locations and verified
to be correct across different system configurations.

Ctherm improves thermal simulation accuracy by using
generated fine-grained internal floorplans for components. This
enables the accurate distribution of dissipated power across the
constituent functional units of components. To illustrate the
advantage such fine-grained modelling provides, we examine

340

120

Peak Temperature ==z
Minimum Temperature sz
335 Hotspot Temperature Inaccuracy
100
g
>
= &g
H
2 <
o 60 =
® o
I3 e
:
= 40 3
£
&
i
20
- 0
Conv(>1) Conv(=1) Conv(<1) Ctherm(>1) Ctherm(=1) Ctherm(<1)
Fig. 7. Comparison of thermal simulation with abstract floorplans (Conv)

and thermal simulation using Ctherm’s fine grained floorplans (Ctherm) for
a cache memory with varying wordline sharing factor (Ngpq). Three cases:
Nspg > 1, Ngpg = 1, Ngpg < 1.

500 320 320

300
0 200 400 600 800 1000 1200 1400 0

pm

(a)

300
200 400 600 800 1000 1200 1400

(b)

320 320

0 300
0 200 400 600 800 1000 1200 1400 0

(©)

Fig. 8. Heatmaps for 32KB data cache using (a) conventional thermal-
simulation with abstracted cache internals, and Ctherm with fine-grained cache
floorplans for (b) Nspq > 1, (¢) Ngpg = 1, (d) Nspg < 1. Temperatures are
measured in Kelvin (K).

300

200 400 600 800 1000 1200 1400
pm

(d)

the influence of varying the wordline sharing factor (Ngpq)
on the temperature profile of a 32KB data cache following
1E5 sustained accesses to a single cacheline. This evaluation
follows the illustration previously shown in Figure 3.

The three cache organizations (Ngpq > 1, Ngpg = 1, and
Ngpqg < 1) are first evaluated using the conventional thermal
simulation approach (Conv), i.e. abstracting component inter-
nals. This abstraction results in the distribution of dissipated
power across the complete area of the cache, and thus the
peak and minimum temperatures for the three are identical as
observed in Figure 7. The organizations are subsequently eval-
uated using Ctherm’s fine-grained floorplans which account
for the N,p,q parameter. The results of this evaluation reveal
remarkable differences in the peak temperature for each case,
indicating the presence of a hotspot especially in the case of
Ngpa > 1. The difference in temperature profiles as a result
of varying distribution of dissipated power are clearly visible
in Figure 8b-d. The temperature map obtained with abstracted

678

TABLE 1. SIMULATION SPEED ACROSS DESIGN CASES LISTED IN

SECTION III-B

Case Tcell Size Die Size Sim. Speed
(pm) (pm X pm) (cycles/min)
1 (FP_A,FP_B) 100 1400 x 1200 200K
I(FP_C,FP_D) 100 700 x 1200 (x2) 200K
2 100 1400 x 1200 400K
3 50 1350 x 850 215K
4 100 700 x 600 600K

component internals in Figure 8a on the other hand incorrectly
reports peak temperatures upto 70% lower than those obtained
with fine-grained simulation. This highlights the importance of
fine-grained floorplans during tDSE and thermal-aware system
design.

The speed of the Ctherm framework largely depends on
the complexity of the system being evaluated, granularity of
thermal simulation and die size. In order to provide an idea
of the average simulation speed in realistic design scenarios,
we report the runtime Ctherm incurred in performing the four
design cases listed in Section III-B. The simulation speeds are
reported in Table I.

B. Design Cases:

In this subsection, we illustrate the applicability of Ctherm
using four specific design cases:

1.) 2D/3D Floorplan Selection: On account of severe
space constraints in portable devices, embedded MPSoCs
cannot afford to have extravagant heatsinks, and it is therefore
important for them to be designed for operation within an
extremely narrow thermal envelope. This design case involves
the evaluation of floorplan options for a multiprocessor array
with four processing elements (PE). Candidate floorplans for
the array are illustrated in Figure 9(a). Each floorplan depicts
four tiles containing a simple RISC PE, private 4KB 2-way in-
struction and data caches, a 64b 5-port network-on-chip router
connecting to neighbouring tiles and a temperature sensor at
the location marked as +. A Dynamic Thermal Management
(DTM) scheme is included in PE tiles to disable switching
activity as soon as the critical temperature is breached, with a
reactivation temperature margin of 2K. The dijkstra shortest-
path benchmark from the MiBench suite [19] is used as a test
workload for the virtual platform. The thermal and functional
performance of the system for each floorplan is reported in
Table II.

Average Off Time indicates the fraction of the simulation
time for which PEs remained disabled due to a DTM action,
thus indicating the thermal efficiency of floorplans. F'P_B’s
spreading out of PEs is seen to result in decreased average
off time, causing a decrease in the number of cycles taken
to execute the workload, i.e. cycles per instruction (CPI).
Figure 9(b) illustrates the thermal maps for each floorplan.

TABLE II. THERMAL-AWARE PERFORMANCE ESTIMATES FOR
FLOORPLAN EXPLORATION. * MARKS THERMAL RUNAWAY.
FPA | FP.B | FP_.C | FP_.D
Cumulative CPI 1.07 1.05 1.33 1.24
Data Refs/cycle | 0.265 | 0.270 0.215 0.229
Avg. Off Time 55% 45% 100%* | 100%*

Floorplan FP_A Floorplan FP_B

Floorplan FP_C Floorplan FP_D

L1 D-Cache ‘ L1 D-Cache ‘ L1 D-Cache ‘ ‘ L1 D-Cache L1 D-Cache ‘ L1 D-Cache ‘ L1 D-Cache ‘ ‘ L1 D-Cache
PE3 PEO Router PE3 Router Router PEO PEO Router PE3 Router PEO Router Router PE3
+ + + + + + + +
L1 I-Cache ‘ L1 I-Cache ‘ ‘ L1 I-Cache ‘ ‘ L1 I-Cache ‘ ‘ L1 I-Cache ‘ ‘ L1 I-Cache ‘ L1 I-Cache ‘ ‘ L1 I-Cache
L1 D-Cache ‘ L1 D-Cache ‘ L1 D-Cache ‘ ‘ L1 D-Cache L1 D-Cache ‘ L1 D-Cache ‘ ‘ L1 D-Cache L1 D-Cache ‘
PE2 PE1 Router PE2 Router Router PE1 PE1 Router PE2 Router Router PE1 PE2 Router
+ + + + + + + +
L1 I-Cache ‘ L1 I-Cache ‘ ‘ L1 |-Cache ‘ ‘ L1 I-Cache ‘ ‘ L1 I-Cache ‘ ‘ L1 I-Cache ‘ ‘ L1 I-Cache L1 I-Cache ‘
(a) Tier 0 (Upper) Tier 1 (Lower) Tier 0 (Upper) Tier 1 (Lower)
FP_C Tier 1 FP_D Tier 1
1200 1200 1200 340 1200
1000 1000 1000 339 4000
338
800 800 800 800
337
600 600 600 ﬁ 600
Il o8
400 400 400 400
335
200 200 200 E 334 200
0 0) 0 333 0
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
(b) pm um um um
Fig. 9. (a) Floorplan options for the four-PE multiprocessor array. Temperature sensor locations are marked as +. (b) Thermal maps sampled during execution

of the MiBench-dijkstra workload. Note: Tier 0 is located close to the heatsink/connection to ambient, temperatures are measured in Kelvin (K).

These were automatically generated by Ctherm together with
the floorplan overlay. The 3D options F'P_C and F'P_D split
the four processors over two dies, thus halving the overall
area footprint for the system, without changing the total power
dissipation. Since the power dissipated by PEs is conducted to
the ambience through the surface of the die, this reduction
results in decreased cooling efficiency. In fact, the cooling
efficiency of the 3D configuration is constrained to such an
extent that even after disabling all switching activity in the
system, temperatures continue to rise due to the leakage power
dissipation. Floorplans F'P_C' and FP_D thus encounter a
thermal runaway. This result indicates that in order to use the
3D design points, either cooling efficiency must be improved,
or leakage control/power gating mechanisms must be inte-
grated into the architecture to limit leakage power dissipation
especially in lower tiers of the stack.

2.) Thermal-aware Architecture Exploration: An architec-
tural scheme is described in [20], that uses a small fully
associative assist cache to decrease the average latency and
energy for data cache accesses. We evaluate the thermal impact
of such a cache assist on the performance of uniprocessor
SoC consisting of a single PE, a 64KB 4-way data cache and
an 8KB 2-way instruction cache. A multi-dimensional array
implementation of the first sum (kernelll) workload from the
Livermore Loop Kernels benchmark [21] is executed on the
platform, with an array size of 168 x168. The assist scheme is
observed to reduce the average latency of memory accesses,
and consequently CPI by upto 24% compared to a conventional
data cache. While this improves performance, it results in
execution proceeding at a faster rate, leading to a quicker ramp
up of temperatures as seen in Figure 10. However, since CPI
is reduced, execution performance completes approximately 1
million cycles earlier, leading to a peak temperature that is
0.9K lower than the conventional data cache.

3.) Temperature Sensor Placement: The ability to moni-
tor die temperature is a prerequisite for performing runtime

679

340 Assisted ——

Unassisted

338

Temperature (K)

0

1e+06 2e+06 3e+06 4e+06 5e+06
Cycles

Fig. 10. Comparison of temperature profiles obtained using a conventional
data cache (Unassisted), and a data cache with an 8-entry assist (Assisted).

thermal management. Temperature sensors usually integrate
an analog-to-digital converter or a digital-to-analog converter
[22] for accurate digital readouts. Their size however limits the
number, as well as the locations at which they can be placed.
Sensors located far from hotspots exhibit delayed responses
and inaccurately measure hotspot temperature, as we illustrate
in this design case. It is therefore prudent to evaluate placement
options for sensors by using thermal-functional co-simulation
of the system. In the event that a sensor cannot be placed close
to a hotspot, results of the co-simulation yield information on
how to calibrate the DTM’s temperature margins.

Figure 11(a) shows a 1350pmx850um die with a single
PE and its caches. The ideal temperature sensor location is
marked with a 4+ symbol, while candidate locations for sensor
placement are indicated with labels A through F'. Locations
shown inside the caches are situated in wiring tracks with
unused active regions. Figure 11(b) plots the rise in PE
temperature as a function of time, and also the perceived
temperature rise at each sensor location. Due to their distance
from the PE, sensors at C' and F exhibit a delayed response,

L1 D-Cache
[} [[}
D E F
A B [
[PE @ [}
L1 I-Cache
+
(a)
338 Actual D ——-
A ---—-- E -
337 B oo F oo
336 C:
<
o 335
=]
© 334
[
Q.
£ 333
()
i
332
331
330 &=
0 1e+06 2e+06 3e+06 4e+06 5e+06
(b) Cycles

Fig. 11. (a) Floorplan indicating candidate locations for temperature sensors.
(b) Tracking from each sensor location.

and report temperature readings 2K lower than the actual. A
DTM using sensors at these locations must account for this
inaccuracy in its temperature margins in order to effectively
control system temperature.

4.) Thermal Impact of Software Workloads: The thermal
behaviour of processors in SoCs is largely determined by
the workloads that execute on them. Minor changes to the
software algorithm can have a drastic impact on both execution
performance as well as system power and thermal profiles.
To illustrate this, we extend the first sum workload of design
case 2 with an additional kernel option (B). The original
kernel (A) performs the first sum computation in a column-
first manner, while the new kernel (B) follows a row-first
approach. The kernels are precluded by an initialization of
the multidimensional arrays, which executes for approximately
2.75M cycles, following which the computation begins. In
order to emulate the iterative nature of optimizations and
thermal evaluations for workloads, each kernel’s evaluation
was repeated 10 times. Two sets of runs were performed,
one using the conventional continuous thermal simulation, and
another using Ctherm’s checkpointed simulation.

The conventional approach without checkpointing requires
the simulation to be restarted from the beginning of execution
following each optimization to the kernel. This means that in
addition to the kernel under test, all other sections of the pro-
gram must also be re-simulated. Thus the initialization section
is simulated a total of 20 times, 10 times for each kernel.
Note that since each simulation in the conventional approach
causes the entire program to be executed, the runtime of the
initialization section is included within that of the kernels. With
the checkpointed approach, on the other hand, the initialization
is simulated only once and its resulting thermal map saved
as a checkpoint. This checkpoint is subsequently used as a
starting point for each kernel’s thermal simulation, thereby

680

TABLE II1. COMPARISON OF CONVENTIONAL AND CHECKPOINTED

THERMAL SIMULATION RUNTIME

ITERATIONS RUNTIME (SECONDS)
Conv | Checkpointed | Conv | Checkpointed
Initialization 20 1 - 159
Kernel A 10 10 2060 760
Kernel B 10 10 4640 3340
Total Runtime (seconds) 6700 4259
Improvement over Conventional Approach 36%
350 Init Temp. Init. Power
Kernel A Temp Kernel A Power - 35
Kernel B Temp Kernel B Power --------

30 —~
= =
< 5 E
2 20
5 2
o [0
5 i
T a3 10 2

5

330 0
0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06
Cycles
Fig. 12. Temperature and power profiles for initialization, kernel A and

kernel B of the extended first sum workload

allowing the initialization to be fast-forwarded. Total runtime is
consequently decreased by 36% as observed in Table III The
temperature and power profiles for the initialization and the
two kernels are reported in Figure 12. The row-first approach
of kernel B results in a high miss-rate observable from the
repeated fluctuations in its power trace. This consequently
increases runtime, resulting in a higher leakage energy con-
sumption, and a peak temperature over 4K higher than that of
kernel A.

IV. CONCLUSIONS

This paper presented Ctherm, an integrated framework for
thermal-functional co-simulation of systems-on-chip. Ctherm
enables the characterization of internal component thermal
behaviour by using fine-grained physical models for compo-
nents, automatically generated from input system specifica-
tions. Ctherm’s fine-grained modelling improves accuracy of
hotspot temperature resolution by upto 70% as compared to the
conventional approach that abstracts component internals. Fur-
thermore, by introducing thermal checkpointing, the Ctherm
framework enables discrete thermal simulations which reduce
the runtime of post-optimization evaluation runs by upto 36%
over the conventional continuous simulation approach. The
efficacy and applicability of the framework were illustrated
with four realistic design cases.

ACKNOWLEDGMENT

This research was supported in part by the CATRENE
programme under the Computing Fabric for High Performance
Applications (COBRA) project CA104. The authors would
like to thank Michel Berkelaar for his inputs on floorplan
generation for cache memories, and Jurrien de Klerk for his
assistance with the instruction energy estimation.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

REFERENCES

W. Heirman, S. Sarkar, T. E. Carlson, I. Hur, and L. Eeckhout, ‘“Power-
aware multi-core simulation for early design stage hardware/software
co-optimization,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2012, pp. 3—12.

K. Skadron et. al, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Transactions on Architectural Code Optimiza-
tions, vol. 1, no. 1, pp. 94-125, 2004.

G. Paci et. al, “Exploring “temperature-aware” design in low-power
mpsocs,” in Proceedings of the Design, Automation and Test in Europe
Conference Exhibition, 2006, pp. 838—843.

D. Atienza et. al, “Hw-sw emulation framework for temperature-
aware design in mpsocs,” ACM Transactions on Design Automation
of Electronic Systems, vol. 12, no. 3, pp. 26:1-26:26, May 2008.

A. Bartolini et. al, “A virtual platform environment for exploring
power, thermal and reliability management control strategies in high-
performance multicores,” in Proceedings of the Great Lakes Symposium
on VLSI, 2010, pp. 311-316.

T. Bouhadiba et. al, “Co-simulation of functional systemc tIm models
with power/thermal solvers,” in Proceedings of the International Sym-
posium on Parallel and Distributed Processing, 2013, pp. 2176-2181.

A. Varma, PhD Dissertation: High-speed Performance, Power and
Thermal Co-simulation for SoC design. University of Maryland, 2007.
S. Priyadarshi et. al, “Thermal pathfinding for 3-d ics,” IEEE Transac-

tions on Components, Packaging and Manufacturing Technology, vol. 4,
no. 7, pp. 1159-1168, 2014.

D. Milojevic, T. Carlson, K. Croes, R. Radojcic, D. Ragett, D. Seyn-
haeve, F. Angiolini, G. Van der Plas, and P. Marchal, “Automated
pathfinding tool chain for 3d-stacked integrated circuits: Practical case
study,” in Proceedings of the IEEE International Conference on 3D
System Integration, 2009, pp. 1-6.

J. Cong et. al, “An automated design flow for 3d microarchitecture
evaluation,” in Proceedings of the Asia and South Pacific Design
Automation Conference, 2006, pp. 384-389.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Proceedings

of the International Symposium on Computer Architecture, 2000, pp.
83-94.

681

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

N. Muralimanohar et. al, “Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0,” in Proceedings of the
International Symposium on Microarchitecture, 2007, pp. 3-14.

A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in Proceedings of the Design, Automation, Test in Europe
Conference Exhibition, 2009, pp. 423-428.

S. S. Kumar, A. Aggarwal, R. Jagtap, A. Zjajo, and R. van Leuken,
“System level methodology for interconnect aware and temperature
constrained power management of 3-d mp-socs,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 7, pp.
1606-1619, July 2014.

D. Cuesta, J. Risco-Martin, J. Ayala, and D. Atienza, “3d thermal-aware

floorplanner for many-core single-chip systems,” in Proceedings of the
Latin American Test Workshop (LATW), 2011, pp. 1-6.

D. Cuesta, J. Risco-Martin, J. Ayala, and J. Hidalgo, “3d thermal-
aware floorplanner using a moea approximation,” Integration, the VLSI
Journal, vol. 46, no. 1, pp. 10-21, 2013.

SoCLiB-Project, “Soclib: an open platform for virtual prototyping
of multi-processors system on chip.” [Online]. Available:
http://www.soclib.fr

A. Sridhar et. al, “3d-ice: Fast compact transient thermal modeling for

3d ics with inter-tier liquid cooling,” in Proceedings of the International
Conference on Computer-Aided Design, 2010, pp. 463—470.

M. R. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the International Work-
shop on Workload Characterization, 2001, pp. 3—14.

S. S. Kumar and R. van Leuken, “Improving data cache performance
using persistence selective caching,” in Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), 2014, pp. 1945—
1948.

F. Mahon, The Livermore Fortran Kernels: A Computer Test of the Nu-
merical Performance Range. Lawrence Livermore National Laboratory,
1986.

A. Zjajo, N. van der Meijs, and R. van Leuken, “A 11 pw 0°c-160°c
temperature sensor in 90 nm cmos for adaptive thermal monitoring of

visi circuits,” in Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), 2012, pp. 2007-2010.

