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Abstract—Factor analysis is a popular tool in multivariate
statistics, applied in several areas of study such as psychology,
economics, chemistry and signal processing. Given a set of ob-
served random variables, factor analysis aims at explaining and
analyzing the correlation between these random variables. This
is done by finding a meaningful structural model representation
for the correlation matrix of the observed random variables,
and subsequently estimating the underlying model parameters.
In this paper, we focus on factor analysis methods applied to a
commonly used signal model for sensor arrays applications and
use it to jointly estimate the underlying model parameters. In
addition we discuss practical considerations of these methods.

Index Terms—Factor analysis, sensor array, signal processing.

I. INTRODUCTION

In sensor array signal processing applications [1]–[3], the
covariance matrix of the observed random variables at the
sensors is often described by a signal model, which depends
on a number of model parameters. As these parameters are
often unknown, estimation is often required. Examples of
such model parameters could be the relative transfer functions
(RTFs) between the sources and the sensor array, the power
spectral densities (PSDs) of the sources, the number of the
sources and the PSDs of the self-noise of the sensors. Several
methods have been proposed in the literature to jointly estimate
such model parameters [4]–[11].

In this paper, we focus on parameter estimation methods
that are based on factor analysis theory (see e.g., [12] for
an overview). Unlike the well-known principal component
analysis [13], [14] which aims to explain the variance of the
observed random variables, factor analysis aims to explain the
covariance of the observed random variables [15]. Specifically,
factor analysis finds a set of factors (sources) that explain the
correlations between the observed random variables.

Factor analysis mainly consists of two branches: the ex-
ploratory factor analysis (EFA) [12], [15]–[21] and the con-
firmatory factor analysis (CFA) [12], [22], [23]. EFA methods
decompose the covariance matrix of the observed random
variables into the sum of a low-rank non-diagonal covariance
matrix and a diagonal covariance matrix and based on this
one can extract the number of the important factors (sources)
which are responsible for the correlation of the observed
random variables. Once the number of sources is known, CFA
methods go one step further and deal with the estimation of the

powers of specific sources and how exactly they are correlated
with the observed random variables and with each other.

In this paper, we demonstrate the usefulness of both EFA
and CFA methods in the context of parameter estimation in
sensor arrays signal processing applications. In [7], several
CFA-based methods were proposed to estimate signal model
parameters in a microphone array context. The methods in [7]
assume that the number of sources is known and constant
in all time-frequency bins. Specifically, in [7] the number of
sources was set to the maximum number of sources present
in the acoustic scene. However, in many time-frequency bins
the number of sources is much less and, thus, the number
of parameters that are needed to be estimated are much
less. In order to reduce the parameter space and reduce the
computational complexity of the methods proposed in [7], in
this paper, we adapt the number of sources per time-frequency
bin such that we estimate only the essential parameters.

Determining the number of sources is a topic that has
been addressed from different angles, e.g., [24]–[27]. An
important class of methods among these, is based on informa-
tion theoretic concepts like the minimum description length
(MDL) [28] and Aikaike’s information criterion (AIC) [29].
However, the methods based on information theoretic concepts
as in [25] make rather strong statistical assumptions. When
translated to our scenario, these assumptions cannot always
be validated. Among these is the assumption that the variance
of the sensor self noise should be identical for all sensors.
Violating this assumption will result in an incorrect estimation
of the number of sources. Another source counting method
with less strong assumptions is the scree test proposed in [24].

In this paper, we use the scree test and we adjust it to the
broadband-signal scenario such that it becomes more robust
to outliers. Finally, we examine the performance of one of
the CFA-based methods proposed in [7] using the adaptive
number of sources in a source separation framework. The
results show that the computational complexity is significantly
reduced at the price of slight degradation of the segmental-
signal-to-noise-ratio (SSNR) [30] and predicted intelligibility
of the separated sources compared to the original CFA-based
method in [7].

II. MULTIVARIATE SIGNAL MODEL

Let us assume that we have a sensor array of M elements
in total. When the nature of signals, in the application at
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hand, is broadband, it is frequently chosen to process each
time-frequency bin independently assuming that they are un-
correlated. This assumption is based on the fact that the
DFT approximately decorrelates the time samples if the time-
frame is sufficiently long. Consequently, the signal model,
used in this paper, represents the information of a single time-
frequency bin1. That is,

y =
r∑
i=1

aisi︸ ︷︷ ︸
As

+n, (1)

with y ∈ CM×1 the observed random variables, ai ∈ CM×1

the i-th RTF vector (also known as factor loading vector),
si ∈ C the DFT coefficient of the i-th source signal (also
known as common factor), r the number of sources, and n
all remaining contributions that are not point sources. The
matrix A ∈ CM×r has as its columns the RTF vectors, and
the vector s ∈ Cr×1 has as its elements the DFT coefficients
of the sources’ signals. If A and some realizations of y are
known, the model in (1) is called a linear regression model
and the parameters are estimated using classic linear regression
methods (see e.g., [31] for an overview). If only some realiza-
tions of y are known it is called a factor model [12] and the
parameters are estimated using factor analysis methods (see
e.g., [12] for an overview). The factor model typically assumes
that n is uncorrelated among sensors. If this assumption is
not true, the model is called approximate factor model [32],
[33]. Although, an approximate factor model may be in some
cases more accurate than the factor model, in this paper, for
simplicity, we focus mainly on the factor model.

If s is uncorrelated with n, the population covariance matrix
of the observed random variables, Py = E[(y − µy)(y −
µy)H ] ∈ CM×M in the factor model in (1) is given by [12]

Py = APAH︸ ︷︷ ︸
Φ

+D, (2)

where P = E[(s − µs)(s − µs)
H ] ∈ Cr×r, D =

Diag(d1, d2, · · · , dM ) ∈ RM×M , di=E[|ni − µni
|2]∈R, and

A are the unknown parameters. Unfortunately, there is not an
one-to-one relationship between the parameters A,P and the
population covariance matrix Py. In fact, for any non-singular
matrix T ∈ Cr×r, the following relationship holds [22]

Py = AT−1︸ ︷︷ ︸
Ā

TPTH︸ ︷︷ ︸
P̄

T−HAH︸ ︷︷ ︸
ĀH

+D. (3)

That is, there are infinite many pairs of Ā, P̄ that produce
exactly the same Py. The ambiguity introduced by T in (3)
together with the large number of unknowns make the estima-
tion of all the parameters of the factor model very challenging
compared to the linear regression type of problems in which
the number of unknowns is much smaller. In order to establish
an one-to-one relationship between the parameters and Py,
the number of equations should be sufficiently larger than the

1The same signal model can be used for narrowband signals as well.

number of unknowns and some of the elements in A,P should
be fixed to constant values [22], [23].

Typically, the problem of parameter estimation in factor
models is split into two phases. The first phase has a more
exploratory nature in which EFA techniques can be used (see
Sec. III) in order to determine the number of sources r. In
the second phase, CFA methods (see Sec. IV) estimate all the
remaining parameters of the factor model using the estimated r
from the first phase. The only prior knowledge that is used in
both phases is the sample estimate P̂y, which is in general
different from Py due to estimation and model-mismatch
errors.

III. SOURCE COUNTING USING EFA METHODS

The estimation of the number of sources in the factor model
has been investigated by many researchers. The method in [25]
estimates the number of sources by minimizing the MDL and
AIC information theoretic criteria (introduced in [28], [29],
[34]) under the assumption that the elements on the diagonal
of D are all equal. When this assumption is violated, this
method can lead to large overestimation [35], which becomes
even worse when the number of samples used to estimate Py

increases [35], [36]. In this paper, we do not constrain the
diagonal elements of D to be equal and, thus, this method is
not applicable here. Preliminary tests using the method in [25]
with non-identical values on the diagonal of D demonstrated
that indeed the overestimation error is quite high.

Another popular (but heuristically motivated) approach,
which does not make the aforementioned limiting assumption,
is the scree test [12], [24], which first sorts the eigenvalues of
P̂y, or Φ̂ in descending order and finds at which point the
last smooth decrease of eigenvalues starts. This point is called
scree point and the index of the eigenvalue before this point
is the estimated number of sources, i.e., the scree point is
r̂+ 1. After the scree point the eigenvalues descend gradually
forming a smoothly changing segment until the last (smallest)
eigenvalue. Trying to determine the scree point based on the
eigenvalues of P̂y may be very challenging, especially when
the diagonal elements of D are not all equal. We therefore
first obtain an estimate of Φ and then apply the scree test on
this estimate.

To estimate Φ, one can use an EFA-based method. Several
EFA methods estimate the matrix Φ and the diagonal matrix
D in (2), e.g., [19]–[21]. EFA assumes that there are only a
few sources that explain the covariance of the observed random
variables, i.e., that the matrix Φ is low-rank (i.e., M � r). One
popular EFA method is the minimum-rank factor analysis [19],
[20] which is formulated as

Φ̂, D̂ = arg min
Φ,D

rank (Φ)

s.t. P̂y = Φ + D

Φ � 0

D = Diag(d1, d2, · · · , dM ) � 0. (4)

The problem in (4) is a non-convex optimization problem that
is hard to solve. A convex relaxation of the non-convex rank
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operation is to replace it with the trace norm operation, leading
to the suboptimal minimum trace factor analysis (MTFA)
problem [19], [21]. The MRFA and MTFA formulations result
in the same solution under certain conditions. One of these
conditions is that the number of sensors should be sufficiently
larger than the number of sources [21]. In this paper, we use
the MTFA problem formulation to obtain Φ̂. Using an estimate
Φ̂ obtained with an EFA method, one may trivially compute
the number of sources as r̂ = rank(Φ̂). Since r̂ = rank(Φ̂)
is based on the estimated Φ̂, we will have estimation errors
on r̂ due to estimation errors in Φ̂. To obtain a more robust
estimate of r̂, we propose in Sec. V a modified version of the
scree test originating from [24]. In Sec. V we use the scree
test applied to Φ̂ with some adjustments to the sensor array
context, to estimate the number of sources r.

IV. CONFIRMATORY FACTOR ANALYSIS

Unlike EFA, CFA [22], [23] estimates all parameters of the
signal model in (2) (except for r), including A and P. This
results in an increased number of unknowns compared to EFA.
In order to guarantee that the number of equations is greater
than the number of unknowns and to avoid identifiability prob-
lems (see Sec. II), we need to fix some of the variables using
linear equality constraints and share some of the variables over
multiple time-frames [7]. Specifically, a common assumption
used in sensor array applications is to assume that the source
signals are uncorrelated to each other so that the matrix P is
real and diagonal [5], [7]. Moreover, typically, A and P are
estimated relative to a reference sensor which can be translated
as constraining the row of A corresponding to the reference
sensor to be equal to the all-ones vector [7]. The matrices A
and/or D can also be shared over multiple time-frames within
a time-segment [5], [7]. The CFA problem formulation used
in this paper is given by [7]

Â, {P̂(t) : t ∈ T }, D̂ = arg min
A,D,

{P(t):t∈T }

∑
∀τ∈T

F (P̂y(τ),Py(τ))

s.t. Py(t) = AP(t)AH + D, ∀t ∈ T
P(t) = Diag(p1, p2, · · · , pM ) � 0

D = Diag(d1, d2, · · · , dM ) � 0,

aρj = 1, ∀j,
− ba ≤ < (aij) ,= (aij) ≤ ba, ∀i, j,
di ≤ ηi min

∀t∈T
(p̂y,ii(t)) , ∀i, (5)

with T the set of the time-frames in which the matrices A,D
are shared, p̂y,ii the i-th diagonal element of P̂y, aij the (i, j)-
th element of A, ba = (Nc)/(fsλ) + 1, N the time-frame
length, c the speed of sound, fs the sampling frequency, λ the
minimum possible distance between any source-sensor pair,
ρ the index of the reference sensor, ηi a bias compensation
parameter for di, and F (·) a discrepancy function measuring
the error between the sample estimate P̂y and the signal model
in (2). In the current paper, we use the maximum likelihood
discrepancy function [22], [23]. Note that the last constraint
in (5) is less tight than the corresponding constraint proposed
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Fig. 1. Scree point and estimated number of sources based on scree-test.

in [7] in which it was assumed that di = dj ,∀i, j. Moreover,
unlike the corresponding constraint proposed in [7], in this
paper we also use the scaling ηi which avoids biased estimates
of di. ηi can be estimated using the technique in [37]. The CFA
problem is applied to each time-segment independently.

For |T | ≥ 2, the CFA problem in (5) can always provide
uniquely identifiable solutions up to a permutation ambiguity
in A if the ratio between the number of sensors and the number
of sources is large enough [7]. Several approaches have been
proposed to resolve the permutation problem (see e.g., [8],
[38]). In this paper we do not focus on this problem and we
assume that we know the perfect permutation matrix.

Unlike the CFA method proposed in [7], in which a constant
(a priori known) r = rmax is used for all time-frequency
bins, in this paper, to reduce the computational complexity, we
estimate the number of sources using the method that we will
present in Sec. V over each frequency bin of an entire time-
segment. Each time segment consists of multiple time-frames,
which share the same A and D. Note that we did not estimate
r for every time-frame within the same time-segment, since
CFA shares the same A and D and assumes a common signal
model for all time-frames within a time-segment. Hence, in
this paper we adapt r per time-segment and frequency bin.

V. IMPLEMENTATION DETAILS ON SOURCE COUNTING

Having an estimate of Φ̂ using the EFA method in Sec. III,
the scree test [24] sorts the eigenvalues of Φ̂ in descending
order (λ1, λ2, · · · , λM , where λi ≥ λj ≥ 0, i < j) and finds
the scree point which is equal to r̂+ 1. The scree point is the
first point of the last segment (which can be well approximated
by a line) which is formed after the last jump of eigenvalues
downwards (see the example in Fig. 1).

As the second derivative of an affine function is zero, we
first find where the second derivative becomes approximately
zero and then we determine the scree point. Specifically, we
obtain the scree point using the following steps. We first
normalize all eigenvalues with the maximum eigenvalue λ1

leading to the normalized eigenvalues, λ̃1, λ̃2, · · · , λ̃M , where
λ̃i = λi/λ1. After that, we compute the set of all differences
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(which can be seen as an approximation of the first derivative)
between consecutive normalized eigenvalues, i.e.,

D = {d̄i : d̄i = λ̃i − λ̃i+1, 1 ≤ i ≤M − 1}. (6)

Then we compute the set of all absolute-valued differences
between the consecutive differences in the set D, i.e.,

G = {∆d̄i : ∆d̄i = |d̄i − d̄i+1|, 1 ≤ i ≤M − 2}. (7)

Note that G basically approximates the (absolute value of the)
second derivative. Selecting all indices i where ∆d̄i ≥ ε (with
ε a small positive number), we find all eigenvalues that are
not part of a line segment. That is, we calculate the set K,

K = {i : ∆d̄i ∈ G, ∆d̄i ≥ ε}. (8)

The estimate r̂ is then given by

r̂ = max(K). (9)

Some remarks are in place here. For sensor arrays with a
small aperture, the low frequency components of the signals
will not have very distinguishable phase differences among the
sensors and the prominent eigenvalues can be much less than r
leading to underestimation of r using the scree test. When it is
difficult to have a good estimate of r, we believe that is better
to have an overestimate rather than an underestimate for the
CFA methods (see Sec. IV). When we have an underestimate,
the signal model is not accurate, while when we have an
overestimate it still is, however, at the expense of additional
(unnecessary) computational complexity. Hence, for the φ%
lowest frequencies we therefore set r̂ = r̂max, where r̂max is
an estimate of the maximum number of sources among all
frequency bins. The value of φ depends on the size of the
array aperture. Finally, to reduce outliers we set r̂ = r̂max in
those frequency bins where r̂> r̂max.

A. Proposed Estimation of rmax

To obtain a robust estimate r̂max, we create a histogram of
the percentages (fr=1, fr=2, · · · , fr=M−2), where fr=i is the
percentage of the frequency bins that have i sources. We then
find a robust max number of sources as follows

r̂max = max
i
{i : fr=i > λ}, (10)

where λ is a small percentage threshold (e.g., 10%). This
avoids to find an overestimate of r̂max.

VI. EXPERIMENTS

In this section, we examine the performance of the factor
analysis methods discussed in Secs. III and IV in the context
of source separation in an anechoic acoustic environment.
Similar to [7], the source separation was implemented by
using a separate multi-channel Wiener filter for each source
using the appropriate estimated parameters from the factor
analysis methods presented in this paper. The parameters of
the proposed method in Sec. V are selected as ε = 0.07,
φ = 25% and λ = 10%. Moreover, the bias compensation
parameter ηi was selected to be always 1 for simplicity.
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Fig. 2. Evaluation of the source separation performance in terms of SSNR
gain (in dB) and SIIB gain (in bits/sec), using a constant r̂ = r̂max, and an
adaptive r̂ per time-frequency bin.

The microphone array is uniform circular with radius 5 cm
consisting of M = 8 microphones. The self-noise of each
microphone was simulated as white Gaussian noise with a
different power randomly chosen for each microphone. This
simulates microphones with different characteristics. Specif-
ically, the SSNRs of the mixture of the recordings at each
microphone with respect to the corresponding microphone
self noise was [26.7, 24.6, 17.6, 27.6, 26, 29.7, 15.1, 18.1] dB.
There are three acoustic sources (r = 3), a female talker at
0o and two male talkers at 70o and −110o. The sources are 2
meters from the center of the microphone array. The sampling
frequency is 16 kHz, the time-frame length is 0.125 sec and
the time-segment consists of |T |= 16 time-frames and, thus,
its length is 2 sec. The total duration of the recorded mixture
of signals is 28 sec.

Note that r will not always be equal to 3 at each time-
frequency bin (because sources are not always simultaneously
active at all time-frequency bins), but its true maximum value
will be rmax = 3. We examine the difference in performance
of the method in Sec. IV using a constant r̂ = r̂max per time-
segment (where r̂max is estimated as described in V-A) as
proposed in [7], and with the adaptive r as proposed in this
paper. The reconstruction accuracy and predicted intelligibility
are measured in terms of the SSNR gain [30] and speech
intelligibility in bits (SIIB) gain [39]. We also measure the
elapsed time for our MATLAB implementations. Note that
the elapsed time was measured as the average time in seconds
that it takes to estimate all parameters including r, rmax per
frequency-bin and time-segment. Fig. 2 shows the trade-off
between SSNR gain and elapsed time and SIIB gain and
elapsed time. We also computed the mean absolute error of r̂
compared to the true r over all time-segments and frequency
bins, i.e.,

Error =
1

NB

B∑
i=1

N∑
j=1

|r̂ij − rij |, (11)

where B is the total number of time-segments and N is
the number of frequency bins. The true r was obtained by
checking the activity of each recorded source separately by
checking if the source’s PSD is above a certain small threshold.
If the outcome of this check is positive, this source is active,
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otherwise not. The error was found to be 0.5399. The estimate
r̂max was correct (i.e., r̂max = 3) in 71.43% of the time-
segments, while r̂max =4 in 28.57% of the time-segments.

It is clear from Fig. 2 that the separation of the sources
is slightly better with the constant r̂ = r̂max compared to the
adaptive r̂, because as explained in Sec. V, overestimation
errors do not negatively influence the signal model compared
to the underestimation errors. This slight advantage in SSNR
and predicted intelligibility for the constant r̂ = r̂max method
comes with the cost of a much larger computational load
compared to the adaptive r̂ method.

VII. CONCLUSIONS

We reviewed factor analysis in the context of parameter
estimation in a commonly used signal model for sensor arrays.
We discussed how exploratory and confirmatory factor analysis
can be used to estimate all the parameters of the signal model.
That is, the number of sources, PSDs of the sources, relative
transfer functions of the sources and PSDs of the sensor-self
noises. We also proposed a robust source counting method
using an EFA method and we used this in a CFA method
to estimate all the remaining signal model parameters. As
a result, the complexity was reduced significantly, while the
separation of the sources was only slightly worse compared to
the case where a constant number of sources is used.
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