
A Software Tool for 3D Meshing of VLSI
Interconnect Structures

K.J. van der Kolk and N.P. van der Meijs
Delft University of Technology,

EEMCS, Circuits and Systems group,
Mekelweg 4, 2628 CD Delft, The Netherlands

Email: {keesjan,nick}@cas.et.tudelft.nl

Abstract— Due to decreasing dimensions and increasing signal-
frequencies, the study of on-chip parasitic effects has become of
basic importance. In order to accurately predict the behavior of
a VLSI design, it is nowadays necessary to use tools capable of
performing detailed field-calculations. A primary requirement for
such computations is that the domain is decomposed into a mesh.
This paper describes the design and implementation of a software
tool capable of generating fully three-dimensional meshesfrom
VLSI layout information. The main features of the tool are that
the basic elements are tetrahedral, the generated elementssatisfy
a predetermined quality condition, and the meshes exhibit good
grading.

I. I NTRODUCTION

As chip dimensions decrease and signal-frequencies rise,
the parasitic coupling between on-chip interconnect becomes
more and more important. Therefore, designers of VLSI
circuits become increasingly dependent on automated tools to
inspect if what they designed will actually have the desired
physical behavior. Since several decades, many publications
have appeared on the topic of parasitic coupling and its
efficient computation (see, e.g., [1]). To actually incorporate
such techniques into software, one needs to build appropri-
ate data-structures describing the geometric details of the
interconnect. A so-called boundary representation (b-rep) may
not be sufficient, and what is often needed is a two- or
three-dimensional mesh of the interconnect and possibly the
surrounding structures, including the substrate.

In this paper, we describe a software tool we developed
for converting arbitrary VLSI layouts into a three-dimensional
tetrahedral quality mesh. This implies that only tetrahedra (or
3-simplices) are used as the building block of our meshes.
Further, each tetrahedron is guaranteed to satisfy some quality
condition.

This paper is structured as follows. First, we make a brief
reference to the mesh-generation literature on which our work
is based (unfortunately the theory is too extensive to replicate
here). Then, we discuss the implementation-details of our
mesh-generator, where it will become clear that, although
the underlying theory of Delaunay-based mesh generation
is gaining maturity, robust implementation is still far from
trivial. Finally, we describe the implementation of a front-end
which renders our mesh-generator suitable for handling VLSI
structures.

II. D ELAUNAY REFINEMENT

Our mesh-generator is based on techniques from the theory
of Delaunay refinement, that evolved in recent years. Limita-
tion of space restrains us from publishing a full account of
this theory, and we refer to [2], [3], and [4] for expositions of
the matter.

Figure 1 shows the Delaunay refinement algorithm in the
form of pseudo-code. The functionsSPLIT1, SPLIT2, and
SPLIT3 perform the operations of segment, subfacet and
tetrahedron splitting, respectively. The functionγ(t) gives
the circumradius-to-shortest-edge ratio of a tetrahedront. A
tetrahedront with γ(t) > B has an unfavorable circumradius-
to-shortest-edge ratio and is calledskinny(such tetrahedra will
be eliminated).

When one choosesB > 2, and all inter-edge and dihedral
angles in the input domain are greater than, or equal toπ/2,
then the algorithm is guaranteed to terminate ([3]).

III. G EOMETRIC PREDICATES AND ROBUSTNESS

Geometric predicates form the necessary link between the
geometric information and topological information present in
the mesh. Geometric and topological interpretations should
always be mutually consistent: for example, a point which is
geometrically in the interior of a triangle (in two dimensions)
must not simultaneously be considered to lie on its outside on
the basis of topological inspection.

In our implementation, only two geometric predicates are
needed. One predicate, ORIENT3D, determines the relative ori-
entation of four points (inR3). Another predicate, INSPHERE,
determines, given four points (inR3) p1, p2, p3, p4, whether
a given fifth pointp5 lies inside or outside the circumscribed
sphere of the other four points. Both predicates can be com-
puted by the evaluation of a determinant. See [4] for details
on these predicates. Note that the two-dimensional variants
of these predicates are not needed in our implementation
(for example, all operations on subfacets are performed using
three-dimensional predicates for robustness, see Section IX).

Without additional care, both predicates can run into de-
generate situations. In the case of ORIENT3D, a degeneracy
occurs if the four given points lie exactly in a plane. In the
case of INSPHERE, a degeneracy occurs if the five given points
lie exactly on a sphere. For both predicates, the underlying
determinant evaluates to zero in case of a degeneracy. Because

286

01: while True:
02: (STEP1) if some subsegments is encroached:
03: SPLIT1 s

04: else (STEP2) if some subfacetu is encroached:
05: let c be the circumcenter ofu

06: if c encroaches upon a subsegments:
07: SPLIT1 s

08: else:
09: SPLIT2 u

10: else (STEP3) if there exists a tetrahedront with γ(t) > B:
11: let c be the circumcenter oft

12: if c encroaches upon some subsegments:
13: SPLIT1 s

14: else if c encroaches upon some subfacetu:
15: SPLIT2 u

16: else:
17: SPLIT3 t

18: else:
19: break

Fig. 1. Pseudo-code for the three-dimensional mesh-refinementalgorithm.

degeneracies would greatly complicate the implementation of
the algorithm, we adopted the symbolic perturbation scheme
by Edelsbrunner and M̈ucke, named Simulation of Simplic-
ity (SoS) [5]. Essentially, this scheme perturbs the points sym-
bolically, such that the determinants underlying the predicates
can never evaluate to zero.

The SoS method is in principle quite inefficient, since it
relies on exact arithmetic, and therefore we apply it only in
case of actual degeneracies. For the conventional evaluation
of predicates, we use Shewchuk’s adaptive floating point
library [6]. In order to decrease the probability of degeneracies,
we also apply a slight physical perturbation to the points which
are inserted into the mesh. As a consequence, degeneracies are,
in practice, quite rare, so that the efficiency of our SoS im-
plementation is not very important. In fact, the optimizations
proposed in [5] are only marginally relevant in our case.

IV. D ELAUNAY TRIANGULATIONS AND

TETRAHEDRIZATIONS

In a three-dimensional Delaunay refinement scheme, the
mesh starts as a Delaunay tetrahedrization (DT) [7] of the
vertices in the input, which is supposed to be a piecewise
linear complex (PLC). (We use the abbreviation “DT” both
for “Delaunay tetrahedrization” and “Delaunay triangulation,”
but we add the prefix “2d” or “3d” if confusion may arise.)
Eventually, i.e., in the final mesh, all facets should appear
as a union of (triangular) faces of tetrahedra, since facets
typically form the domain-boundaries, with different materials
on both sides. We say then that the meshconforms to the
domain-boundaries. However, in the initial DT, this is not the
case (in general), and tetrahedra may ‘pierce’ through facets.

Therefore, points are added to the DT until all segments and
facets of the input PLC are represented in the DT as the
union of tetrahedron-edges and tetrahedron-faces respectively
(according to Figure 1).

The incremental insertion of a point to the DT is imple-
mented using the Bowyer-Watson scheme [8], [9]. Essentially,
when a pointp is added to a DT, we first find the so-called
Bowyer-Watson polyhedron, which is the union of tetrahedra
containingp in their circumscribed sphere. Starting from a
tetrahedront containingp (t is clearly in the polyhedron),
the full polyhedron is computable by a simple breadth-first
search (an elegant proof of this fact can be given along the
lines of the proof of the “acyclicity lemma” given in [3]).
After collecting the tetrahedra which form the polyhedron,
we remove them, and we add a new tetrahedron between
p and each of the triangles at the boundary of the formed
cavity. The resulting complex is guaranteed to be a consistent
Delaunay tetrahedrization, and it is unique due to the exclusion
of degeneracies. Note that this point-insertion scheme indeed
requires exclusively the two geometric predicates described in
the previous section.

The algorithm manages one large 3d DT for the overall
mesh, and one 2d DT for every facet, so that the current set of
subfacets is always known. In 2d, point-insertion is handled
similarly as in 3d. However, for efficiency, we remove the
exterior subfacets from the triangulations atSTEP 2 of the
algorithm (see Figure 1), since at this step, all subsegments are
guaranteed to be in the mesh. The triangulation is therefore a
kind of constrained Delaunay triangulation (CDT) [3], where
the boundary edges are the constraining ones. (Note that in

287

three dimensions, a concept similar to that of a CDT does not
exist [4], and therefore we leave external tetrahedra in place.)

The Bowyer-Watson algorithm (in 2d) can be shown to
work also in the case of constrained boundary edges. However,
the insertion-polygon does not necessarily contain all trian-
gles which have the insertion pointp in their circumcenter.
Basically, the insertion-polygon should be computed from a
breadth-first search starting at the trianglet containingp, and
the search should stop at the boundary of the domain. After the
insertion-polygon is found, the insertion procedure continues
by removing the corresponding triangles, and connecting the
new pointp to the edges of the polygon (in a similar fashion
to the 3d case).

V. ELEMENTARY DATA -STRUCTURES

In this section we describe the elementary data-structures
used in the implementation. The data-structures are chosen
such that all operations can be performed by “local” inspection
or modification of the mesh, which is of course important for
efficiency.

For every node in the mesh, a unique node-object is created
which stores the respectivex, y, z coordinates. Other objects,
when referring to a particular node, contain a pointer to the
corresponding node-object. Node-objects in the 3d DT and
2d DT’s are shared. The address of a node-object is used
as its “perturbative-index” in the SoS scheme [5] (in our
implementation, the address of an object remains fixed after
it has been created).

A subsegment-object contains two pointers to node-objects.
During execution, a subsegmentg is “attached” to a subfacet
s if and only if s contains both nodes ofg. Every subsegment-
object has associated with it an (arbitrarily large) set of
subfacets to which it is attached (these subfacets are called
its “wings.”) Furthermore, each subsegmentg, when it lies in
a facetf but is not attached to a subfacet off records a pointer
to a subfacet inf which is topologically “close” tog.

A subfacet-object contains three pointers to node-objects.
Furthermore, it contains three pointers to its neighbors (a
pointer is simplynull if there is no neighbor at a certain
edge of the subfacet). As a local optimization, each subfacet
also stores the ordinal number of the abutting edge of each
of its neighbors. During execution, a subfacets is “attached”
to a tetrahedront if and only if t contains all nodes ofs.
Every subfacet-object records a set of (at most two) pointers
to abutting tetrahedra. Every subfacet also records a topolog-
ically “close” tetrahedron, when not attached. Furthermore, a
subfacet contains pointers to attached subsegments (detached
subsegments are not recorded).

Each tetrahedron contains four pointers to node-objects,
and potentially four pointers to its neighbors. As a local
optimization, each tetrahedron also stores the ordinal of the
abutting face of each of its neighbors, as well as the orienta-
tions of those faces. Furthermore, the tetrahedron stores up to
six pointers to subsegments which are attached to it (during
execution, a subsegmentg will be attached to a tetrahedront
if and only if t contains both nodes ofg).

Attaching and detaching subfacets to or from their sub-
segments is done when a point is inserted into the corre-
sponding 2d DT. First, all attachments between subsegments
and triangles in the Bowyer-Watson insertion-polygon are
broken. Detached subsegments are stored in a (global) table,
implemented as a hash-table. Then, each edge of each triangle
created by the insertion is searched in the table, and if
found, the corresponding subsegment is (re)attached. After the
procedure, detached subsegments may remain in the table, and
they will be eventually attached during insertion of some other
point.

Attaching and detaching tetrahedra to or from their sub-
facets is done similarly; as is attaching and detaching tetrahe-
dra to or from their subsegments.

VI. ENCROACHEDELEMENTS

As Figure 1 shows, the algorithm needs to query the
currently encroached subsegments and subfacets. Furthermore,
it needs to query whether a given pointc, which is not (yet)
in the mesh, encroaches upon a subsegment or subfacet. Both
operations are quite different. Recall that a subsegments is
encroached upon by some nodec iff c lies in the diametral
sphere ofs (i.e., the smallest sphere containings); similarly,
a subfacetf is encroached upon by some nodec iff c lies in
the equatorial sphere off (the smallest sphere containingf).

First consider the case in which we need to pick any
encroached subsegment currently in the mesh (atSTEP 1 of
the algorithm). To implement this operation efficiently, we
keep a list of “possibly encroached subsegments.” Each time
a new node is inserted into the 3d DT, we determine the
subsegments which are possibly encroached by this node and
insert them into the list (by pointer). Fortunately, we can
simply add all subsegments to the list which become detached
by the insertion (but note that consequent attaching will not
automatically remove them from the list). Thus effectively,
we consider only those subsegments which are attached to
tetrahedra in the insertion-polyhedron. Now, when looking for
anyencroached subsegment, we take one subsegment from the
list and see if it is still encroached (this test can be performed
by inspecting only the tetrahedra which share both nodes of
the subsegment); if it is not encroached, we discard it and
move to the next element in the list, and so on. Note that the
delay in testing whether a subsegment is actually encroached
improves efficiency, since a subsegment can disappear before
it is tested for encroachment (by aSPLIT1 operation).

Consider the case in which we need to pick any encroached
subfacet in the mesh (atSTEP 2). This case is handled
similarly to the previous case, i.e., we keep a list of “possibly
encroached subfacets.” Maintaining and querying this list is
essentially similar.

Now, we shift our focus to the case in which we need
to find a subsegment encroached by a given pointc, as in
lines06 and12. In this case, we compute the Bowyer-Watson
insertion-polyhedron ofc (but note thatc is not inserted).
Again, the edges of the tetrahedra in the insertion-polyhedron
may correspond to subsegments encroached byc, so any

288

attached subsegment is candidate. No other subsegments need
to be considered; one can see this from the fact that at lines
06 and 12, all subsegments are present in the 3d DT (and
thus attached) sinceSTEP 1 is complete, and a subsegment
encroached byc must be attached to a tetrahedron havingc

in its circumsphere. Thus, in any case, we may safely neglect
the list of “possibly encroached subsegments”.

The case in which we need to find a subfacet encroached
by a given pointc, as in line14, is handled similarly to the
previous case.

VII. B OOKKEEPING OFZONES

For each tetrahedron, we keep the “zone” in which it resides;
the zone of a tetrahedron is eitherinside, when the tetrahedron
is in the domain to be meshed, oroutside, when the tetrahedron
is outside the domain. We need zone-information at line10 of
the algorithm, because we only need to split skinny tetrahedra
which are actually inside the domain (doing otherwise would
be wasteful).

Note that, because we need the zone-information atSTEP3,
we are certain that all subsegments and subfacets are part of
the mesh and thus the zone of tetrahedron is in fact properly
defined (no tetrahedron can “pierce” through a facet so that
it is in two different zones simultaneously). Therefore, when
we reachSTEP3 for the first time, we mark each tetrahedron
with its proper zone.

Of course, when points are subsequently inserted into the
mesh, the well-definedness property of the zone-information
is potentially lost. However, tetrahedra which are untouched
by a point-insertion can clearly keep their zone-information.
Also, when inserting a point into the 3d DT, and all tetrahedra
in the Bowyer-Watson insertion-polyhedron are in the same
zone, we can keep the zone information. However, when these
tetrahedra are in a different zone, we mark the tetrahedra
created by the insertion to have an “unknown” zone.

When querying for the zone of a tetrahedront at STEP3, we
thus have to consider the case of ending up with an “unknown”
zone. Again, we know that the zone we are querying is well-
defined (since we query it atSTEP3). Also, other tetrahedra
aroundt may carry correct zone-information. The approach
is to walk from t towards a point at infinity. We will then
eventually run into a tetrahedronu which has known zone-
information, or we run into the boundary of the 3d DT. In
either case, we can reconstruct the zone oft by monitoring
the number of subfacets we crossed during the walk. Once we
have found the zone oft, we recursively reconstruct the zone
information of other tetrahedra aroundt (until we run into
a boundary or a tetrahedron with known zone-information).
This last step is necessary to ensure the efficiency of future
queries. Note that, when following this approach, the number
of tetrahedra visited during zone-reconstruction is actually at
most the number of tetrahedra visited during point-insertion,
and hence the efficiency of the method is not fundamentally
altered by these zone-bookkeeping procedures.

VIII. P OINT-LOCATION

An operation which was not discussed yet, but is essential
in the algorithm is that of point-location, i.e., finding the
tetrahedront in which a given pointp lies (we consider here
the 3d case).

Point-location can be performed by starting with some
random tetrahedronu and “walking” through the DT towards
the pointp (this is called a linear walk [10]). In essence we
may consider each facef of u, and in case the apex of the
face (the node ofu not in f) is on the opposite side off w.r.t.
p, we replaceu by the tetrahedron abutting it atf . Eventually
we will find a tetrahedron containingp (this can be seen from
the acyclicity theorem in [3]).

Of course, to maintain efficiency, it is essential that the
initial tetrahedronu is chosen to be (topologically) as close
as possible to the tetrahedront of interest, i.e., the number
of steps issued by a linear walk should be kept minimal. One
might consider to takeu in each search to be equal to the
tetrahedront in the previous search. However, the insertions
into the mesh (and therefore point-locations) happen in a quite
non-local manner, as for example, missing subfacets may be
repaired simultaneously at two completely opposite areas of
the domain.

From the above, we see that it is important, that for any
operation on the mesh, we keep track of an appropriate
tetrahedron which is topologically close to the area of interest.
Consider for example the case of inserting (into the 3d DT)
the circumcenterc of an encroached subfacetf . We can find a
tetrahedron close tof by considering the tetrahedra attached
to f , but f might not always be attached to a tetrahedron.
Therefore, we explicitly store with each subfacet a tetrahedron
which is topologically “close” to it.

When pointing to a tetrahedront which is “close” to some
point or area of interest, we have to take into account that
the tetrahedron may actually be removed when inserting new
points into the mesh. Therefore, we try to re-use tetrahedron-
objects as much as possible when emptying and re-populating
the insertion-polyhedron during point-insertion. Following this
approach, tetrahedron-objects remain close to their original
geometric location, and this is experimentally verified.

Note that when an insertion leads to a decrease in tetrahedra
(which is not the common case), we cannot reuse some of the
tetrahedron-objects. In such situations we let those remaining
objects point to objects which do end up in the mesh.

Figure 2 shows the point-location walk-lengths throughout
the execution of the algorithm, when meshing the sample PLC
of Figure 5. We observe that initially, walk-lengths are large,
but this is simply because initially the “topologically close”
tetrahedra are not known yet (it turns out that this has only a
marginal effect on runtime). Figure 3 shows the same graph
for a mesh which is about 10 times larger. We see about
the same trend, although the outliers in the second graph are
larger (which we can expect, since the topological distances
between elements in the mesh are supposedly also larger). We
note that forboth meshes, point-location immediately finds

289

 0

 10

 20

 30

 40

 50

 60

 70

 0 10000 20000 30000 40000 50000 60000 70000

le
ng

th
 o

f w
al

k

invocation

Fig. 2. Walk-lengths for three-dimensional point-locationoperations when
refining a sample mesh.

 0

 50

 100

 150

 200

 250

 0 100000 200000 300000 400000 500000 600000 700000

le
ng

th
 o

f w
al

k

invocation

Fig. 3. Walk-lengths for three-dimensional point-locationoperations when
refining a mesh of approx. 10 times the complexity of Figure 2.

the desired tetrahedron (i.e.,0 steps are required) in about
82% of the invocations, and less than5 steps are required in
about98% of the invocations. Since tests with other (larger)
meshes show the same trend, we conclude that point-location
using our strategy for the initial guess can be considered a
constant-time operation in practice.

Point-location is also necessary in two dimensions, i.e.,
one sometimes needs to find the subfacets which contains
a given pointp (for example whenp is to be inserted into the
corresponding 2d DT). The 2d operation is almost completely
similar to the three-dimensional variant described above. How-
ever recall from Section IV that we remove subfacets which
lie outside the facet. This means that a linear walk may
prematurely end at a subfacetq at the boundary of some
concave part of the domain. Fortunately, we may assume
that our initial guess is already topologically close to the
subfacet of interest, and thus we can, without significant loss
of efficiency, complete the query by performing a breadth-first
search through the 2d DT, starting atq.

IX. REPRESENTATION OFFACETS

As mentioned above, besides the 3d DT for the overall
mesh, we keep a separate 2d DT for each of the facets.
Note however, that it would be cumbersome to manipulate
these DT’s using two-dimensional primitives, since they are
embedded in a 3d space. A proper implementation then would
probably require explicit rotation and projection operations,
which are of course undesired since they are prone to round-
off errors.

Therefore, we manipulate each 2d DT by using three-
dimensional predicates. In essence, for each facetf , we create
an external node, which is located at a distance from the plane
of the facet. This node is called theapexof the facet, and is
denoted here byaf . The distance from the plane of the facet
is chosen such that the apex is unlikely to encroach upon any
of the subfacets, for reasonably shaped subfacets.

Now, let us formulate the equivalent of a 2d-orientation test
on the three nodes of a subfacets and some pointp (thus
a decision on whetherp is “inside” s or not). We denote the
three nodes ofs by n1, n2 andn3 and assume they are ordered
counterclockwise when viewed fromaf . Assume also that the
tetrahedron(af , n1, n2, n3) is “properly” oriented. Then we
define that “p is insides” when the tetrahedra(af , p, n2, n3),
(af , n1, p, n3) and (af , n1, n2, p) are properly oriented (thus
we use the ORIENT3D predicate three times in this case).

For the (2d) incircle-test, we use the INSPHERE predicate,
by taking theaf node into account. Thus given the three nodes
of a subfacets, namedn1, n2, andn3, and a test-pointp, we
test whether the pointp lies inside the circumsphere of the
four pointsaf , n1, n2, andn3.

With some basic assumptions, it is not difficult to see that
both tests should work in practice. However, the nodes which
are part of a facet may not lie exactly in a common plane, due
to roundoff errors. We have not (yet) looked into this issue,
and certainly, in order to find tests which work as expected
under any circumstances, more work is necessary.

X. FRONT-END FOR MESHING VLSI STRUCTURES

Although our mesh-generator is suitable for an extended
range of applications, we specifically designed it for the pur-
pose of analyzing parasitics in VLSI interconnect structures.
To be able to read descriptions of physical VLSI layout and
mesh them, we added a front-end to the mesh-generator, which
is described in this section.

The front-end consists of two stages. The task of the first
stage is to read a GDSII file, which decribes the lateral geom-
etry of the VLSI interconnect structures [11]. Using external
technology data, the polygons in the GDSII file are extended
into the third dimension, and a so-called “overlapping PLC” is
created. An overlapping PLC is similar to a PLC, except that
nodes, segments and facets may (partially) overlap (however,
the interiors of any two facets may not overlap). The task of the
second stage is to convert the overlapping PLC into a regular
PLC, by removing overlapping features. The second stage also
removes features which unnecessarily reduce the local feature

290

Fig. 4. Original input describing the layout of a cmos-inverter. In the input,
faces, segments and nodes are (partially) overlapping.

Fig. 5. The original input of Figure 4 converted to a proper piecewise linear
complex.

Fig. 6. Mesh for the piecewise linear complex of Figure 5. Note that the
whole domain is contained in a rectangular box, which is fully meshed (some
tetrahedra have been removed to reveal the contained structure).

size ([3]) in certain areas of the PLC, which is important in
order to keep the resulting mesh as small as possible.

We implemented the first stage of the front-end by extending
the SPACE layout-to-circuit-extractor [12]. SPACE is able to
read GDSII data, and has its own format for technology data.
The GDSII data basically describes a set of masks, where each
mask is represented by a set of two-dimensional polygons.
Internally, SPACE uses a scanline-algorithm to break the layout
data into trapezoids, where each trapezoid describes a (two di-
mensional) region over which the layout consists of a fixed set
of masks [13]. For every combination of masks, the technology
description is used to generate a corresponding set of three-
dimensional prisms, related to chunks of conductors. Every
prism is basically the z-extended form of a trapezoid, and it
is output as a set of six facets in the overlapping PLC (when
one of the sides of the trapezoid has zero length, the trapezoid
reduces to a triangle, and naturally, the corresponding prism
will be output as five facets instead of six).

The above approach has the advantage that it is quite
flexible: for every combination of masks, we can determine
which conductors should exist, and at what z-coordinates they
should lie. On the other hand, many overlapping facets will be
generated, as well as many unnecessary nodes and segments.
This deficiency is overcome by the next stage.

The second stage of the front-end, i.e., that which converts
an overlapping PLC into a regular PLC, is logically divided
into a number of steps, which we will briefly describe now.

• (STEP 1) For any two segments which intersect in their
interior, a node is created at their point of intersection
(if the interiors overlap at more than a single point, no
action is taken).

• (STEP2) Any node which lies at the interior of a segment
will split that segment into two pieces.

• (STEP 3) Any duplicate segments are deleted.
• (STEP 4) If a chain of segments divides a facet into two

or more separate regions, then the facet is split along this
chain, and two or more facets result. This is done for all
facets, and it is repeated until no more facets can be split.

• (STEP 5) For any pair of facets, if the two facets have
an equal boundary, then either both facets are removed,
or only one facet is removed (this depends on the type
of material of which the facets form the boundary).

• (STEP 6) Two facets which lie in a common plane, and
which share one or more boundary segments, are merged
into a single facet (the boundary segments will become
interior segments of the new facet). This is repeated for
all pairs of facets, until no more facets can be merged.

• (STEP 7) Any segment which lies in the interior of one
facet, and is not part of any other facet, is deleted.

• (STEP 8) Any node which joins exactly two segments
which lie on a common line is removed, and the segments
are joined into a single segment.

• (STEP 9) Any node which is no endpoint of a segment
is deleted.

Note that, due to the approximative nature of floating-point
numbers, most of the geometric tests are performed while

291

keeping a certain margin. For example, in STEP2, we consider
a node to lie in the interior of a segment if it lies sufficiently
“close” to the segment, but not “close” to one of its endpoints.
Thus, the second stage is not robust against all kinds of
overlapping PLC’s, but it will be able to handle them in most
practical cases. If the overlapping PLC’s are generated from
VLSI data (as in our case), robustness is no practical issue,
since VLSI data generally has to obey design rules which are
much stricter than the rules we need to impose for robustness.

Figure 4 shows an overlapping PLC which was created from
the layout of a cmos inverter cell. Figure 5 shows the PLC
which resulted after the second stage of the front-end. Of
course, it is not possible to see which elements overlap in this
figure, but notice that many unnecessary features have been
removed. Figure 6 shows the final mesh of the layout.

XI. CONCLUSIONS ANDFUTURE WORK

We have given a detailed description of the design and
implementation of a Delaunay-based mesh generator.

Some issues remain open. One issue was given in Sec-
tion IX: the inherent roundoff in floating-point numbers results
in the nodes of a facet to not lie exactly in a common plane.
It is not clear how to adapt the geometric predicates such
that correct operation of the algorithm can be theoretically
guaranteed. Related problems exist. For example, when de-
termining whether a pointp encroaches upon a subsegment,
we need to determine the distance ofp to the center of
the subsegment. However, such distance can be computed
only to some accuracy. It is unclear whether we need to
resort to exact (or adaptive?) computations, or whether some
margin is warranted. As a final example, when computing
the circumcenter of a tetrahedron, some rounding error is
effectively made in general. It is of course important to know
whether this rounding error can be safely ignored (in fact,
we deliberately add some noise to the coordinates of nodes
to reduce the frequency of degeneracies, as was noted in
Section III, and it would be good to have a theoretical bound
on the amount of noise that is permitted).

Other issues are the restriction of the PLC to minimum an-
gles ofπ/2, and the existence of ‘slivers’ in the resulting mesh.
However, these issues are not important in all applications.

Despite the deficiencies mentioned above, our implemen-
tation works well in practice, and is capable of generating
about15.000 tetrahedra per second on a modern Intel-based
workstation. A copy of the implementation may be obtained
by contacting the authors.

REFERENCES

[1] W. Kao, C.-Y. Lo, M. Basel, and R. Singh, “Parasitic extraction:
current state of the art and future trends,”Proceedings of the
IEEE, vol. 89, no. 5, pp. 729–739, May 2001. [Online]. Available:
http://ieeexplore.ieee.org/iel5/5/20097/00929651.pdf

[2] Bern and Eppstein, “Mesh generation and optimal triangulation,” in
Computing in Euclidean Geometry, Edited by Ding-Zhu Du and Frank
Hwang, World Scientific, Lecture Notes Series on Computing – Vol. 1,
1992.

[3] H. Edelsbrunner,Geometry and Topology for Mesh Generation.Cam-
bridge University Press, 2001.

[4] J. R. Shewchuk, “Delaunay refinement mesh generation,” Ph.D. disser-
tation, School of Computer Science, Carnegie Mellon University, 1997.

[5] H. Edelsbrunner and E. P. M̈ucke, “Simulation of simplicity, a technique
to cope with degenerate cases in geometric computations,”ACM Trans.
Graphics, vol. 9, pp. 66–104, 1990.

[6] J. R. Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates,”Discrete & Computational Geometry,
vol. 18, no. 3, pp. 305–363, Oct. 1997.

[7] B. Delaunay, “Sur la sph̀ere vide,”Bull. Acad. Sci. USSR(VII), pp. 793–
800, 1934, classe Sci. Mat. Nat.

[8] A. Bowyer, “Computing Dirichlet tessellations,”Computer J., vol. 24,
pp. 162–166, 1981.

[9] D. F. Watson, “Computing then-dimensional Delaunay tessellation with
application to Voronoi polytopes,”Computer J., vol. 24, pp. 167–171,
1981.

[10] E. P. Mücke, I. Saias, and B. Zhu, “Fast randomized point location
without preprocessing in two- and three-dimensional delaunaytriangula-
tions,” in Proceedings of the 11th Annual Symposium on Computational
Geometry, 1996, pp. 274–283.

[11] Cadence Design Systems, Inc./Calma,GDSII Stream Format Manual,
Feb. 1987.

[12] A. J. van Genderen and N. P. van der Meijs, “VLSI modeling and
verification,” 1994–2006, home page of the modeling and verification
project, available at URLhttp://space.tudelft.nl.

[13] N. P. van der Meijs, “Accurate and efficient layout extraction,” Ph.D.
dissertation, Delft University of Technology, Delft, The Netherlands,
Jan. 1992.

292

