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SMLR-Type Blind Deconvolution of Sparse
Pulse Sequences Under a Minimum

Temporal Distance Constraint
Georg Kail, Member, IEEE, Franz Hlawatsch, Fellow, IEEE, and Clemens Novak

Abstract—We consider Bayesian blind deconvolution (BD) of an
unknown sparse sequence convolved with an unknown pulse. Our
goal is to detect the positions where the sparse input sequence is
nonzero and to estimate the corresponding amplitudes as well as
the pulse shape. For this task, we propose a novel evolution of the
single most likely replacement (SMLR) algorithm. Ourmethod uses
a modified Bernoulli-Gaussian prior that incorporates a minimum
temporal distance constraint. This prior simultaneously induces
sparsity and enforces a prescribed minimum distance between the
pulse centers. The minimum distance constraint provides an ef-
fective way to avoid overfitting (i.e., spurious detected pulses) and
improve resolution. The proposed BD method overcomes certain
weaknesses of the traditional SMLR-based BD method, which is
verified experimentally to result in improved detection/estimation
performance and reduced computational complexity. Our simula-
tion results also demonstrate performance and complexity advan-
tages relative to the iterated window maximization (IWM) algo-
rithm and a recently proposed partially collapsed Gibbs sampler
method.
Index Terms—Bayesian blind deconvolution, Bernoulli-

Gaussian prior, iterated window maximization (IWM) algorithm,
single most likely replacement (SMLR) algorithm, sparse decon-
volution.

I. INTRODUCTION

T HE problem of blind deconvolution (BD) arises in var-
ious fields including digital communications [1]–[5],

seismology [6]–[9], biomedical signal processing [10]–[13],
and astronomy [14], [15]. Because the result of BD is inher-
ently nonunique, additional assumptions or constraints—such
as monotonicity [16], positivity [17]–[19], and sparsity
[20]–[23]—are typically used. In this paper, we study BD
under a combined sparsity and minimum distance constraint
as introduced recently in [24]. In the setting considered, a
sparse random sequence is convolved with a pulse of unknown

Manuscript received July 15, 2014; revised December 11, 2014 and April
13, 2015; accepted April 18, 2015. Date of publication June 09, 2015; date of
current version August 13, 2015. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Adel Belouchrani.
This work was supported by the Austrian Science Fund (FWF) under grants
S10603, J3495, and P27370. This work was done while C. Novak was with the
Institute of Telecommunications, Vienna University of Technology.
G. Kail and F. Hlawatsch are with Institute of Telecommunications, Vienna

University of Technology, A-1040 Vienna, Austria (e-mail: gkail@nt.tuwien.
ac.at; fhlawats@nt.tuwien.ac.at).
C. Novak is with Frequentis AG, A-1100 Vienna, Austria (e-mail: clemens.

novak@frequentis.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2442951

shape. The (few) nonzero entries of the sparse sequence thus
mark the positions and weights (amplitudes) of potentially
overlapping replicas of the pulse in the observed sequence.
The temporal distances between these positions are constrained
to be not smaller than some prescribed minimum distance.
This minimum distance may be smaller than the (effective)
pulse length, thus allowing for overlap between successive
pulses. Such a minimum distance constraint is physically
relevant and appropriate in many applications, including layer
detection [12], medical imaging [10], [13], seismology [8],
and multipath parameter estimation [25], [26]. For example,
various biomedical signals, such as in electrocardiography
and electromyography, contain pulses whose centers cannot
have arbitrarily small time separation. In scenarios where the
pulses correspond to reflections from layer boundaries, such
as in seismology or optical coherence tomography, there may
be a lower limit on the thickness of layers. Typically, signals
that satisfy a minimum distance constraint are also sparse. A
minimum distance constraint was considered in our previous
work on BD [24]. For nonblind deconvolution, theoretical
implications of a minimum distance were studied in [27].
Our goal is to detect the positions where the sparse input se-

quence is nonzero and to estimate the corresponding amplitudes
as well as the pulse shape. For this task, we adopt a Bayesian
setting because of the resulting ease of performing calculations
(both formally and algorithmically) and the possibility of in-
troducing prior information and constraints via the choice of
a prior distribution [28]. More specifically, we use a modified
Bernoulli-Gaussian prior incorporating the minimum distance
constraint. The basic Bernoulli-Gaussian model is well estab-
lished as a convenient means to model sparsity [7], [8], [20],
[23], [29]–[31]. It yields an intuitive relation between the spar-
sity of a sequence and its prior probability and at the same
time often helps make computations tractable. As previously
observed in [24], augmenting the Bernoulli-Gaussian model by
a minimum distance constraint provides an effective way to
avoid overfitting and improve resolution. Whereas a partially
collapsed Gibbs sampler [32] based method was used in [24]
for detection/estimation, here we propose a different method
that is inspired by the single most likely replacement (SMLR)
algorithm [29]. As we will demonstrate, the proposed method
can outperform the method of [24] with respect to both perfor-
mance and computational efficiency.
The SMLR algorithm is an iterative technique that is com-

putationally efficient but may converge to a local maximum of
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the posterior distribution rather than the global one. In its orig-
inal form [29], it is suited for nonblind Bayesian deconvolution,
i.e., the pulse shape is supposed known. Various modifications,
extensions, and applications of the SMLR algorithm have been
presented in [31], [33]–[40]; however, none of them considers
a minimum distance constraint. In particular, the SMLR algo-
rithm was used for BD in [33] (for seismic signals) and in [34]
(for discrete-valued sparse signals). A powerful generalization
of the SMLR algorithm is given by the iterated window max-
imization (IWM) algorithm [36]. The performance and com-
plexity of the IWM algorithm strongly depend on the choice
of hypothesis sets and of a tuning parameter that influences the
sparsity of the deconvolution result. In contrast to this tuning pa-
rameter, the hyperparameters of the method proposed here have
an intuitive interpretation, which may make it easier to choose
them appropriately.
The proposed method is different from existing methods

in that it is tailored to the minimum distance constraint. In
contrast to classical SMLR, which often fails in the presence
of such a constraint, it exploits the constraint to achieve good
performance, computational efficiency, and sparse results.
Computational efficiency is further enhanced by choosing
the order of the algorithmic steps differently from existing
SMLR-type methods. Finally, our method allows for prior
assumptions about the time and frequency localization of the
unknown pulse shape, which leads to improved performance.
To make such assumptions possible, the method includes the
explicit determination of an optimal amplitude scale and time
shift.
This paper is organized as follows. In Section II, we present

the signal model, our choice of prior distributions, and the re-
sulting posterior distribution. In Section III, we propose a mod-
ified SMLR algorithm that incorporates the minimum distance
constraint. Section IV describes an efficient implementation of
this algorithm following [30], [31]. Section V presents a BD
method that uses the modified SMLR algorithm. Simulation re-
sults assessing the performance and complexity of the proposed
BD method are presented in Section VI.

II. SIGNAL MODEL AND PARAMETER PRIORS
The signal model and prior distributions are essentially as

in [24]; we briefly describe them here for the sake of a self-
contained exposition.

A. Signal Model
The observed sequence is given by

(1)

where , is an unknown sparse complex se-
quence of length , is an unknown complex pulse (defined
to be zero outside , where typically ), and

is independent and identically distributed (iid) circularly
symmetric complex Gaussian noise with unknown variance

. Using , ,

, and , the
signal model (1) can be written as1

(2)

where denotes the Toeplitz matrix
that has as its first column and

as its first row.
Following [29]–[31], [41], we use a binary indicator sequence

that is 0 if is zero and 1 if is nonzero. We
define the indicator vector , and
denote by the number of nonzero (equivalently, nonzero
); note that . We can write

(2) as
(3)

where is obtained from by removing all columns
such that and contains the corresponding
, i.e., the nonzero entries of . The minimum distance con-

straint postulates that , where is the set of
all length- binary sequences such that the temporal distance
of any two nonzero entries and (equivalently,
of any ) satisfies , for a given .
Thereby, the set of admissible sequences is significantly re-
duced ( rather than ).
As a parsimonious parametric model for the pulse shape

vector , we use the basis expansion

(4)

Here, the basis vectors
are suitably time-scaled versions of the first Hermite func-
tions [12], [42], [43], which are sampled, truncated, and cen-
tered at the th entry; is a random co-
efficient vector; and . Typically, .
Using (4), the signal model in (2) can be written as

(5)

where is the Toeplitz matrix that has
as its first column and

as its first row.

B. Parameter Priors
Within the Bayesian framework, we have to specify prior

probability density functions (pdfs) for the unknown quanti-
ties , , and to be estimated. For , we adopt a modified
Bernoulli-Gaussian prior that incorporates the minimum dis-
tance constraint [24]. Following [30], [31], [41], we specify the
prior pdf by specifying and . We set

(6)

with (note that implies )

.
(7)

1Our choice to define and such that they have the same length is ar-
bitrary and not critical for our method. Depending on the application, it may be
more suitable to define such that its length is, e.g., either smaller or larger than
that of by 2 .
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Here, denotes the Dirac delta function, is a fixed hyper-
parameter, and denotes the circularly symmetric
complex Gaussian pdf with mean and variance . From (6)
and (7), we obtain the following conditional prior of :

(8)

where denotes the multivariate circularly sym-
metric complex Gaussian pdf with mean and covariance
matrix . Note that depends on (and, in (8), is conditioned
on ) due to the fact that its dimension is . Regarding
the choice of , the classical Bernoulli-Gaussian model
[7], [8], [20], [23], [29]–[31] would be obtained by using

, where denotes an iid Bernoulli
probability mass function (pmf) with “1-probability” . To
incorporate the minimum distance constraint, we replace this
unconstrained Bernoulli prior by

(9)

where means “proportional to,” denotes the indicator
function of the minimum distance constraint set (i.e.,
is 1 if and 0 otherwise), and is considered as a fixed
hyperparameter. Together, and determine2 ,
i.e., the a priori mean rate of 1’s in . For (i.e., no
minimum distance constraint), the priors (6)–(9) simplify to the
classical Bernoulli-Gaussian model.
The prior of is chosen (differently from [24]) as indepen-

dent circularly symmetric complex Gaussian, i.e.,

(10)

where with fixed variances . Here,
decreases with increasing ; because of the time-frequency

localization of the Hermite functions [44], [45, p. 26], this im-
plies that the pulse shape is likely to be strongly concentrated
around the time and frequency origins. This is more plausible
and realistic than the pulse shapes obtained for a prior with iid

(as in [24]). Fig. 1(a) illustrates this time-frequency con-
centration by comparing two examples of the expected squared
magnitude of the pulse shape, ,
for decreasing and for constant coefficient variances . Some
realizations of are shown in Fig. 1(b), demonstrating that the
proposed prior using decreasing is general enough to allow
a wide variety of pulse shapes.
The noise variance is treated as a random hyperparameter

whose prior is chosen as an inverse gamma pdf, i.e.,

(11)

where is the gamma function, is the unit step func-
tion, and and are fixed hyperparameters. This is a conjugate
prior [28, p. 152] of the Gaussian likelihood function to be pre-
sented in (12). The same is true for the Gaussian priors
in (8) and in (10).

2In fact, it can be shown that
, where is the positive real solution of the equation

.

Fig. 1. Construction of the pulse shape : (a) for decreasing
(solid line) and for constant (dashed line). (b) Four realizations of for
the corresponding to the solid line in (a) (the real part is shown).

C. Posterior Distribution

Bayesian detection/estimation relies on the posterior distribu-
tion of the quantities of interest, i.e., of (or, equivalently, and
), , and . The posterior distribution depends on the likeli-

hood function and the priors [28, p. 9]. The likelihood function
of our model is, according to (3), (5), and the iid Gaussian prior
for the ,

(12)
Assuming that , , and are a priori independent, the joint
posterior distribution of , , , and is obtained from the
likelihood function and priors as [24]

(13)
where the factors on the right hand side are given in (8)–(12).
This joint posterior will be used in Section V.
In Section III, we will use the joint posterior with the ampli-

tudes marginalized out, i.e.,

Inserting (12) and (8) and dropping factors that are constant with
respect to , , and , we obtain

where the superscript denotes conjugate transposition. Letting

(14)
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we obtain further

(15)

where denotes the determinant of .

III. MODIFIED SMLR ALGORITHM

In this section, we present the core of the proposed detec-
tion/estimationmethod, which is amodification of the SMLR al-
gorithm introduced in [29]. For now, our goal is to detect the bi-
nary indicator sequence and estimate the amplitudes while
all other parameters are considered fixed and known, i.e., the
deconvolution is nonblind. In Section V, we will present an it-
erative BD method that uses the proposed modified SMLR al-
gorithm.
A straightforward approach to finding and would be

joint maximum a posteriori (MAP) detection and estimation,
i.e., maximizing the posterior pmf (see (13)),
where and denote some fixed estimates. However, [29] dis-
courages joint optimization of and because it often leads to
the detection of spurious nonzero indicators with very small
amplitudes . As explained in [29], this problem is avoided by
first detecting based on (15), which is (13) with marginal-
ized out, and then estimating by maximizing expression (13)
in which the detected is inserted. The actual computation is
very similar to that of joint MAP optimization of and ,
which is reobtained by simply removing the factor in (15).
In the remainder of this section, we will discuss only the detec-
tion of , while the estimation of is considered in Section V.
We first provide a brief review of the original SMLR algo-

rithm [29]. Our presentation is slightly different from that in
[29] because in our signal model (as presented in Section II),
satisfies the minimum distance constraint, has finite length

and is represented by a basis expansion, and , , and are
complex. We note that using a finite-length pulse (as proposed
in [35]) rather than the ARMA pulse model used in [29] has
been common in recent SMLR-type methods because it leads
to simpler algorithms and lower complexity.

A. Review of the SMLR Algorithm

SMLR [29] is an efficient algorithm for detecting binary se-
quences . The guiding principle is MAP detection,
which finds the maximizing the posterior pmf
(see (15)). The MAP sequence detector

Fig. 2. Flow chart of the classical SMLR detector [29].

is optimal in that it minimizes the probability of a sequence
error, [46]. However, it generally amounts to an ex-
haustive search, requiring the evaluation of for all
the possible hypotheses [29]. As an efficient
suboptimal alternative, the SMLR detector iteratively computes
a corresponding to a local maximum of the posterior pmf

.
The algorithm is stated in Fig. 2. The initialization (choice

of ) will be discussed in the context of BD in Section V.
One iteration corresponds to one execution of the loop in Fig. 2.
Within each iteration, a reference sequence ob-
tained from the previous iteration is used to generate hy-
potheses

(16)

where denotes elementwise modulo-2 addition and is the
binary sequence of length that is 1 at position and zero
otherwise. Thus, differs from exactly in the th entry.
For each of the hypotheses , the posterior pmf is calculated
(up to some normalization factor ):

(17)

Let , and consider the corresponding
hypothesis, , and its posterior pmf, . The latter is compared
to

(18)

If , the SMLR algorithm proceeds to the next iteration,
now using as the reference sequence . Otherwise, is
a local maximum of , and therefore it is returned
as the detected sequence . We will also denote the result
of the SMLR algorithm as .
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Fig. 3. Flow chart of the proposed MSMLR detector.

B. The Proposed Modified SMLR Algorithm
The proposed modified SMLR (MSMLR) algorithm is pre-

sented in Fig. 3. It differs from the original SMLR algorithm
in two aspects, which concern the generation of the hypotheses

and the scheduling of different steps within the algorithm.
In what follows, we will discuss these two modifications of the
SMLR algorithm.
1) First Modification: The first modification is motivated by

the minimum distance constraint . Differently from [29],
our posterior probability enforces the minimum
distance constraint through the factor in (15). Thus,
for any . If the hypotheses were generated according to
(16), we would obtain many hypotheses —namely, all

where a new 1 is added within a distance of less than
from some 1 in (note that ). More specifically,
with denoting the positions of the 1-entries in ,
we would have for all such that

, for any . Rather than generating such
useless hypotheses, we propose to replace each of them by a
hypothesis that satisfies the minimum distance constraint. This
is achieved by modifying (16) such that every new 1 has at least

zeros on each side, i.e., by generating the th hypothesis
using the following rule (cf. the second box in Fig. 3) instead

of (16):

(19)

Here, denotes the elementwise vector product and is a
length- binary “mask vector” with zeros to the left
of and zeros to the right of , i.e.,

else,

for . An example comparing the hypotheses gen-
erated according to (19) (MSMLR) and (16) (SMLR) is shown
in Fig. 4.
For a closer analysis of the new hypothesis generation rule

(19), let denote the set of all positions within a two-sided
interval of length around where is one, i.e.,

.
Due to our minimum distance constraint, can only have zero,
one, or two elements, and if it has two elements, one is strictly
smaller than and the other is strictly larger than . Depending
on , we can distinguish four complementary cases, in which
(19) simplifies in a specific manner. These four cases and cor-
responding simplifications of (19) are as follows:

Here, in Cases 2 and 3, and are any elements of
except . In Fig. 4(b), for example,

, , and correspond to Case 1; , , and correspond
to Case 2; corresponds to Case 3; and corresponds to
Case 4. We note that the results of (19) and (16) differ only
in Cases 2 and 3. In these cases, simply adding a 1 at position
according to (16) violates the minimum distance constraint.

The MSMLR rule (19), on the other hand, not only adds a 1 at
position but also removes the 1 at position (Case 2) or the 1’s
at positions and (Case 3). This can be interpreted as shifting
the 1(’s) from position(s) (or and ) to . In fact, inspection
of the set for a given shows that this set
contains all possible hypotheses that can be obtained by shifting
the 1 at one position to anywhere within

. In Fig. 4(b), for example, the 1 at
is shifted left in and right in , the 1 at is shifted
left in and right in , and the 1 at is shifted left
in . This resolves a known weakness of the classical SMLR
algorithm, namely the absence of hypotheses with shifted 1’s
(cf. [36], [37]).
The importance of hypotheses with shifted 1’s can be illus-

trated as follows. Suppose that contains a 1 at position ,
but the posterior would be larger if instead con-
tained a 1 at position , with . (This
scenario often occurs in practice.) Now recall that, using (16),
each iteration in classical SMLR may change only one entry of

. Therefore, the “desirable” hypothesis with the larger pos-
terior can only be reached in at least two steps, by first adding
a 1 at and then removing the 1 at or by first removing the
1 at and then adding a 1 at . In either case, there is at least
one intermediate hypothesis with 1’s at both and or nei-
ther nor . Such intermediate hypotheses often have a lower
posterior than the original , which prevents
the algorithm from ever reaching the “desirable” hypothesis.
With the minimum distance constraint, this problem is aggra-
vated considerably, since the intermediate hypothesis with 1’s
at both and has zero probability. In [36] and [37], shifting
is included through additional hypotheses or additional itera-
tions. In our MSMLR algorithm, the hypotheses with shifted
1’s replace those that are useless due to the minimum distance
constraint.
To summarize, the MSMLR hypothesis generation rule (19)

preserves all hypotheses generated according to (16) that
comply with the minimum distance constraint, and replaces all
others by hypotheses with suitably shifted 1’s. If satis-
fies the minimum distance constraint, then the constraint is also
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Fig. 4. Hypotheses generated from the same according to (a) the SMLR hypothesis generation rule (16) and (b) the MSMLR hypothesis generation rule
(19), for and (i.e., there must be at least one 0 between any two 1’s). White (black) nodes depict zero (nonzero) indicators. In each SMLR
hypothesis , a gray box highlights the th entry, which is the only entry where differs from . In each MSMLR hypothesis , a gray box highlights
the entries such that , i.e., as well as the surrounding entries that are zero regardless of the corresponding entries in . All
MSMLR hypotheses satisfy the minimum distance constraint. Among the SMLR hypotheses, only , , , and satisfy the minimum distance constraint.
These hypotheses appear also among the MSMLR hypotheses, as indicated by the arrows.

satisfied by all , and, hence, by the next . Therefore,
choosing an initial vector ensures that the final re-
sult of the MSMLR algorithm, , is in .
2) Second Modification: Our second modification, ab-

breviated M2 in the following, concerns the scheduling of
the different calculation steps and yields large computational
savings. As shown in Fig. 3, each time a hypothesis is
constructed according to (19), we calculate its posterior prob-
ability and immediately compare it to . If ,
the hypothesis instantly replaces , i.e., before the next
hypothesis is constructed. Thus, whenever ,
generating according to (19) amounts to calculating

. We repeat the two steps of
generating a hypothesis and calculating (with cycling
through ) until a local maximum of the posterior
probability is found. When has reached a
local maximum of , successively generated
hypotheses fail to increase the posterior probability, i.e., these
hypotheses do not replace . This marks the end of the algo-
rithm, because applying (19) to one fixed cannot produce
more than different new hypotheses. Let denote the po-
sition where was changed most recently, i.e., the previous

was replaced by . If the next hypotheses with
fail to replace

, i.e., (cf. the first case distinction in Fig. 3), then
corresponds to a local maximum of the posterior, and it is

thus our detected sequence . The MSMLR algorithm
checks whether the most recently generated hypotheses
failed to replace through the second case distinction in
Fig. 3, i.e., by checking whether equals .
The effects of M2 on the estimation accuracy and on the

computational complexity are not immediately obvious. Re-
garding estimation accuracy, we note that the detected sequence

obtained with M2 may evidently be different from

that obtained without M2. Without M2, each update of is
obtained by maximizing over hypotheses. Starting from
the same , the update with M2 is obtained by maximizing

only over a subset of these hypotheses. Let
and denote the respective probabilities after the up-
date. It follows from the above that ,
i.e., the update step with M2 increases not more—but
typically less—than the update step without M2. It is impor-
tant to note that, even with these smaller update steps, the
algorithm may still converge to a higher local maximum than
with the larger steps. However, the algorithm without M2 at
least avoids all local maxima that are smaller than ,
which is an advantage over the algorithm with M2 because

. Therefore, the problem of the
multimodality of becomes more serious when
M2 is used.
The solution to this problem is provided by the proposed

modified hypothesis generation rule (19), i.e., by a new def-
inition of “neighbor” sequences. Indeed, hypotheses with
shifted 1’s are not “neighbors” of in the SMLR sense,
because they differ from in more than one entry. Since
the MSMLR hypothesis generation rule (19) contains such
hypotheses instead of the hypotheses with zero probability,
each has more neighbors in the MSMLR sense with nonzero
probability than it has neighbors in the SMLR sense with
nonzero probability. This increase in the number of neighbors
with nonzero probability significantly reduces the number
of local maxima of compared to SMLR. The
relaxation of the multimodality problem through (19) is, in
many cases, an effective means to overcome the theoretical
disadvantage of M2 mentioned above, i.e., the smaller update
steps. Extensive simulations (cf. Section VI-C) show that the
performance of MSMLR with and without M2 is effectively
the same. The only—trivial—exception is the case
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(i.e., no constraint), since the MSMLR hypotheses here do
not contain shifted 1’s. Furthermore, simulations show that
combining SMLR with M2 leads to very bad performance,
again due to the lack of hypotheses with shifted 1’s.
Regarding computational complexity, we recall that, without

M2, MSMLR generates hypotheses before it makes one up-
date (which, according to Section III-B1, may change up to three
entries within an interval of length ). With M2, on the
other hand, generating hypotheses typically comes with sev-
eral updates. The number of these updates is between 1 and
(assuming that is not a local maximum itself). Some of the
updates may be ineffective because they are overwritten by the
subsequent update (e.g., if an update places a 1 at position and
the subsequent update shifts this 1 to position , leading
to a configuration that could also have been reached without
the first update). Some of the updates may even be counterpro-
ductive in the sense that they lead to a bad configuration which
can only be changed after several subsequent updates. Clearly,
these effects increase the complexity of the algorithm. On the
other hand, some of the updates typically anticipate updates
which would be chosen by the algorithm without M2 only in
later iterations, i.e., after generating more sets of hypotheses.
This effect greatly reduces the complexity. Simulations confirm
that the latter effect clearly outweighs the former two on av-
erage, making MSMLR with M2 even more efficient than other
SMLR-based methods (cf. Sections VI-B and VI-C).

IV. EFFICIENT IMPLEMENTATION

Next, we present an efficient implementation of the MSMLR
algorithm. This implementation combines results of [30] with
the Cholesky factor approach of [31], using some adaptations
to accommodate the MSMLR hypothesis generation rule (19)
and our signal model.
The central step of each iteration is to check if (cf.

Fig. 3). According to (17) and (18), this amounts to deciding if
, or, equivalently, if

(20)

Here, can be obtained, up to a normalization, from
(15) by dropping all factors that do not depend on , i.e.,

(21)

As shown in [31], equation (20) can be reformulated such that
we can avoid calculating directly and instead ex-
ploit the relation between and for improved efficiency.
To this end, it is helpful to define (cf. (14))

(22)

(23)

and

where denotes the lower triangular Cholesky factor [47,
p. 500], i.e., . We can then write (21) as

Using the Cholesky factor in this context was also proposed in
[40] and [30]. Inserting (9) and dropping some constant factors
yields

We can also drop the factor because for all hy-
potheses used in our algorithm. Furthermore, it will be conve-
nient to subtract the constant from the exponent in the
last factor. We thus obtain

Following [29], we perform the comparison step (20) in the log-
arithmic domain, which helps avoid numerical problems with
very large or small (unnormalized) probabilities. Thus, (20) is
reformulated as

(24)

where

(25)

with . Note that in (24), typically, only
needs to be calculated anew in each iteration, whereas (and,
thus, ) usually stays the same for many iterations.
Let , , , and denote the respective

quantities etc. evaluated for . Furthermore, we
denote by , , , and the respective quanti-
ties evaluated for (possibly up to a permutation of
the columns, entries, or columns/rows, as indicated below).
Then, as was shown in [30] and [31], we can calculate
efficiently by using the relations existing between and

and between and . We obtain and
from and in different ways corresponding to the
four complementary cases of how may be related to .
(We recall that these cases were listed in Section III-B1.)
Subsequently, we calculate by inserting , , and

for , , and in (25). The four cases
are discussed in the following.
Case 1: . Here, is with the column

corresponding to removed. Similarly, (cf. (22)) is ob-
tained from by removing the entry corresponding to ,
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and (cf. (23)) is obtained from by removing the cor-
responding column and row.
Case 2: . In analogy to Case 1, we

form , , and by removing the column of ,
entry of , and column and row of , respectively, that
correspond to . Then, and are defined as

(26)

where denotes the th column of , , and
. Note that and are permuted versions of, re-

spectively, (22) and (23) evaluated for . Here, for the
sake of a simpler notation, we exploit the fact that consistently
permuting the entries of and the columns/rows of has
no effect on .
Case 3: . Similarly to Case 2,

we first remove the entries of and the columns/rows of
that correspond to and and then add an entry and a

column/row calculated as in (26).
Case 4: . Here, as an alternative to calculating
, , and as in the other three cases, we can pursue

a more efficient approach. Namely, as shown in [30] and [31],
one can use the relations (presented without proof)

with

to obtain from (25)

As proposed in [36], the calculation of (26)—i.e., of the
quantities , , and —can be significantly simplified as
follows. Let denote the position corresponding to the th
column of . Then , which
simplifies to

(where the superscript denotes complex conjugation), unless
and are both smaller than or both larger than .

To verify this, recall that the length- vector contains cen-
tered around the th element, padded with zeros and sometimes
truncated, namely if or . Analogous
considerations apply to . The inner product of two shifted
copies of equals the autocorrelation function of . If one
of the two copies has its entire support within (i.e.,
it is not truncated), then it is irrelevant whether the other copy
is truncated. However, if both copies are truncated, the simpli-
fication does not apply and must be calculated directly.

Fig. 5. Flow chart of classical SMLR-based BD [33].

Similar considerations show that in the additional diag-
onal entry of (see (26)) is given by

.

It follows from that and
for most and . Finally, calculating amounts

to convolving with , i.e., for
.

Note that , , and have to be calculated only at
the start of the algorithm (for , for

, and for , respectively), because is
fixed throughout the nonblind MSMLR algorithm. Whenever

is updated, we also update and calculate and
. Finally, to calculate in each iteration, we calculate
(in Case 4) or (in Cases 1–3) and (in Cases 2 and 3).

V. BD BASED ON MODIFIED SMLR
In this section, we present a BDmethod that uses theMSMLR

algorithm proposed in Sections III-B and IV.

A. Review of SMLR-Based BD
We start by briefly reviewing the classical SMLR-based BD

method of [33]. The signal model of [33] equals that of [29],
i.e., it differs from ours in the aspects listed at the beginning of
Section III. We will present the SMLR-based BD method with
the simplifications suggested in [38] (i.e., without the ARMA
model of the pulse and the estimation of additional parameters)
and with slight adaptations to fit our signal model.
The method detects and estimates and , while the noise

variance is assumed fixed at some value . As shown in
Fig. 5, in the th iteration of the algorithm, the indicator vector

is generated using the classical SMLR algorithm (reviewed
in Section III-A) with initial value and pulse coefficients

, i.e.,

(27)
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Then, and are calculated as the MAP estimators maxi-
mizing the joint posterior in (13), i.e.,

(28)

(29)

Using (13) with (12) and (8) yields

(30)

Similarly, using (13) with (12) and (10) yields

(31)

When evaluating (30), (the number of 1-entries in ) and
must first be derived from the arguments and . Hence, for
calculating (28), and is formed using and

. Similarly, for calculating (29), is formed using
and .
The steps (27)–(29) are iterated until (27) fails to change

, which indicates that a local maximum has been found
at . This method can be seen as an approxima-
tion of the iterated conditional mode (ICM) strategy [48], which
cyclically updates all parameters using MAP estimators. In par-
ticular, the detection step yielding in (27) approximates the
MAP detector (in which has been marginalized out).
The above formulation of the algorithm can also be used for

the signal model of [33], with minor modifications because [33]
does not use a basis expansion for the pulse shape , i.e., is
directly estimated rather than a coefficient vector (this can be
easily accounted for by using the basis matrix , so that

), and and are assumed real.

B. Proposed MSMLR-Based BD Method

The proposed BD method is stated in Fig. 6 and described in
the following. It differs from the classical method reviewed in
Section V-A in three respects: (i) it is based on the MSMLR al-
gorithm presented in Sections III-B and IV, (ii) it determines an
optimal scale and shift of and , and (iii) it includes estimation
of the noise variance using the prior in (11).
1) Amplitude Scale and Time Shift: Temporarily assuming

an infinite -domain of the sequences , , and , we have

(32)

Fig. 6. Flow chart of the proposed MSMLR-based BD method.

where denotes convolution, is an arbitrary ampli-
tude scale factor, and is an arbitrary time shift. We can
rewrite (32) as (cf. (5)) , where (cf. (4)) .
Assuming that some exists such that

(33)

(equivalently, ), we can finally express relation (32)
as . In view of (5), we conclude that different
parameter combinations and lead to the same ob-
servation . This ambiguity inherent to BD is usually not a
problem, since the true amplitude scale and time shift are often
irrelevant.
However, while we cannot find the true amplitude scale and

time shift, we propose to determine the amplitude scale and
time shift that are optimal in terms of maximizing the poste-
rior probability . Indeed, despite the ambiguity
described above, is not invariant to amplitude
scalings and time shifts, for the following three reasons:
1. Amplitude scalings affect the priors of both and , and

time shifts affect the prior of (because has a different
prior than , as illustrated in Fig. 1(a)). Because of (13),
the priors directly influence .

2. The assumption of an infinite temporal domain of , ,
and is not satisfied. Therefore, some time shifts cause
certain values or to be shifted outside their respective
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temporal domain, which leads to a change of
(and also of the priors) and, thus, of .

3. A satisfying (33) exactly typically does not exist, as the
shifted vector generally does not lie in the subspace of

spanned by the columns of and thus cannot be
expressed as . Therefore, time shifts generally re-
quire an approximation of , thus changing
(and also the priors) and, consequently, .

In previous BD methods such as [33], [38], such dependen-
cies of the posterior probability on the scale and shift of or
can usually be ignored. Indeed, due to their simpler prior of ,
the first reason for the dependency applies only to amplitude
scalings but not to time shifts, and the third reason does not
apply at all. In our signal model, on the other hand, due to the
dependency of on via the basis representation of , time
shifts have a significant influence on . Our sim-
ulations have shown that the proposed basis representation of ,
combined with an optimization of the amplitude scale and time
shift, yields substantial performance gains relative to [38].
2) Determination of the Optimal Scale and Shift: The algo-

rithmic approach of BD methods such as [33], [38] is not suited
to finding the optimal amplitude scale and time shift. Namely,
if we fix or each time we maximize with
respect to the other parameters (cf. Fig. 5), then the amplitude
scale and time shift are always largely determined by the respec-
tive fixed parameter. More specifically, the scale changes only
slightly in each maximization and thus approaches its optimal
value very slowly, and the time shift, due to its discrete nature,
typically does not improve at all.
To resolve this problem, within each iteration of our algo-

rithm, we fix the sequence up to a time shift and a scale
factor and maximize with respect to , , and
. Thus, the th iteration now consists of the following steps (cf.

Fig. 6): First, is generated by means of MSMLR, i.e.,

Then, the maximizing the joint posterior is calculated (see
(28) and (30)):

Next, using and , vectors , , and are calcu-
lated for each as follows.
1) The entries of and are shifted by :

else

else.

2) The maximizing the joint posterior is calculated (see (29)
and (31)):

3) The vectors and are scaled, i.e.,

where the scale factor maximizes the joint poste-
rior in (13). (We use because (13) is invariant to
the phase of .) Thus,

where is evaluated at
and , and is evaluated at

. Inserting (8) and (10) yields

(34)

with .

Finally, the shift for which the vectors
, , and maximize the joint posterior is determined:

The corresponding vectors , , and are the result of
the proposed method for scale and shift determination; they are
hereafter denoted simply by , , and .
3) Estimation of the Noise Variance: The noise variance

is estimated at the end of each iteration. The estimate is
obtained by maximizing the joint posterior in (13), i.e.,

Using (11) and (12) in (13), we obtain

(35)

where is formed using and .

C. Initialization
We propose the following procedure for obtaining initial

values for , , and (i.e., for ). First, the noise
variance is initialized with its prior mean:

Next, we initialize the pulse shape by fitting it around
. More specifically, we set

and find by maximizing
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Fig. 7. Results of detection/estimation: (a) Signal , (b) detected/estimated amplitude sequence , (c) estimated pulse shape . The vertical lines in (b) indicate
the true . Real parts are shown. We note that the mismatch of the scales visible in part (b) is a consequence of the minimization of (mentioned at the
end of Section VI-A) and not a shortcoming of the considered BD methods. In fact, some of the detected pulse locations that visually appear correct in (b) are
slightly incorrect. For example, SMLR and OMP detect a large peak at instead of the true (detected correctly by the other methods). Through
our minimization of , such location errors and other false detections lead to a smaller scale of .

with , , and inserted for , , and ,
respectively. (Note that because , we have
and thus reduces to a scalar.) Using (31), we obtain

where denotes truncated to the entries for
and de-

notes truncated to the rows corresponding to for
(cf. (4)).

The simple initialization is possible because, as
shown by simulations, the initialization of is less critical
than that of , as long as .

VI. NUMERICAL STUDY
We compare the performance of the proposedMSMLR-based

BD method with that of the classical SMLR-based BD method
reviewed in Sections III-A and V-A. These methods will be
briefly referred to as MSMLR and SMLR, respectively. As
further performance benchmarks, we also consider orthogonal
matching pursuit (OMP) [49], the IWM algorithm proposed in
[38], and the partially collapsed Gibbs sampler method pro-
posed in [24] (abbreviated PCGS).We note that IWM according
to [38] can be implemented in a wide variety of ways. We used
the configurations and parameter values suggested in [38], but
did not perform any training or tuning of parameters. Because
all these methods use the joint posterior to some extent, their
results are influenced by the minimum distance constraint.
However, only MSMLR and PCGS exploit the constraint at the
algorithmic level.

A. Simulation Setup
We generated several hundred realizations of using dif-

ferent values of and of the signal-to-noise ratio (SNR)
. The random parameters were drawn from the

priors specified in Section II-B, with , ,
, , , and . For each realization

of and , the noise was scaled such that a given SNR was
achieved. The hyperparameter (used by the MSMLR and

PCGS) was chosen such that the prior mean of equals the
approximate mean noise power corresponding to the respec-
tive SNR, i.e., equals

(note that was defined
in Footnote 2 in Section II-B). In the OMP, IWM, and SMLR
methods, which do not include estimation of , the approx-
imate mean noise power was used for . The orthonormal
Hermite basis functions used for representing the pulse
shape according to (4) were time-scaled such that the max-
imum entry of was 0.31. For the prior variances of the pulse
coefficients , we used .
While this particular choice is largely arbitrary, the key charac-
teristic is that the decrease with increasing , as explained
in Section II-B. The resulting expected squared magnitude of
the pulse shape, , was shown in
Fig. 1(a) (solid line), and some realizations of used in the
simulations were shown in Fig. 1(b). Note that the pulses
are well concentrated around the time and frequency origins.
For each realization of , we performed BD using the

MSMLR, SMLR, OMP, IWM, and PCGS methods. As men-
tioned in Section V-B, the time shift and amplitude scale of
the estimate are arbitrary and typically irrelevant. Therefore,
for a performance assessment, we matched the time shift and
amplitude scale of each estimate and to the true and , i.e.,
we calculated the shifted and scaled version of minimizing

, and the analogously shifted/scaled .

B. Performance Evaluation
As an example, Fig. 7 shows the results of one simulation run

corresponding to a single realization of with and
. A segment of and of length 400 is displayed.

Since , pulses may overlap. It can be concluded
from Fig. 7(b) that the detected/estimated sequences are rea-
sonably accurate for all methods. However, OMP, SMLR, and
PCGS produce some false detections, and IWM misses some
nonzero positions in (within the displayed segment). There-
fore, the result of the proposed MSMLR is clearly the best.
Fig. 7(c) shows that all methods estimate the main peak of the
pulse shape quite accurately, whereas some of the smaller
peaks are estimated accurately only by MSMLR, PCGS, and
IWM.
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Fig. 8. Average error : (a) versus SNR, for ; (b) versus , for ; (c) versus , for .

Our simulations have shown that the most critical task in the
considered BD methods is the detection of , i.e., of the po-
sitions of the nonzero entries in the sparse sequence. If these
positions are detected correctly, the other parameters are usu-
ally estimated with high accuracy. If the detected is grossly
wrong, the estimate of may still be good, but the estimate of
becomes meaningless. Therefore, our performance analysis will
focus on the accuracy of . To quantify the difference between
and the true sequence , we compare the set of

the positions of the detected nonzero entries contained in with
the set of the positions of the true nonzero entries
contained in . Let denote a permutation of the larger of the
two sets (or either one of them if ). Furthermore, we de-
fine

if

if ,

and we consider the set of all such that , with
some fixed (in our simulations, we chose ). Then, for
a given permutation , the cardinality is the
number of true positions that are detected “almost correctly”
(i.e., with position error at most ), whereas

can be considered as the number of true positions that
are missed by the detector and can be
considered as the number of false detections. An error measure
that takes into account the deviations for and adds
penalty terms for missed positions and false detections using the
“best” permutation can then be defined as

If is close to or above , the detection of can be considered
as failed. For example, a degenerate detector that produces only
zeros achieves . However, if is large (i.e., is not
sparse), can be much larger than . We note that is similar
to a simple special case of the optimal subpattern assignment
(OSPA) metric [50].
For and different SNRs, Fig. 8(a) shows the error
averaged over 500 realizations. It can be seen that MSMLR

performs consistently better than all the reference methods. It
is followed by PCGS, with an average that is larger than that
of MSMLR by a factor of 3.4 at . The average

of SMLR is larger than that of MSMLR by a factor of 4.6
at . The performance gain of MSMLR grows
with the SNR. The fact that the errors of SMLR and IWM are
larger for high SNR can be explained by increased overfitting:
at lower noise levels, the algorithms may more often try to com-
pensate slightly misplaced 1’s (or other estimation inaccura-
cies) from previous iterations by adding more 1’s, and the re-
sulting decrease in sparsity leads to a higher . Compared to
SMLR, MSMLR avoids this problem since its modified hy-
potheses often allow it to correct misplaced 1’s more effectively.
Figs. 8(b) and (c) show the average at an SNR of 3 dB and
12 dB, respectively, for different values of . In view of the
fixed pulse length , the range of consid-
ered in Figs. 8(b) and (c) corresponds to different maximum
overlap of the pulses in the observed signal, from negligible
overlap at to massive overlap at . It can
be observed in Figs. 8(b) and (c) that MSMLR performs consis-
tently better than all the reference methods except for the case
of small and high SNR. We can conclude that overfitting
also occurs in MSMLR when is very small. The perfor-
mance gain of MSMLR over SMLR is largest when is
larger than 10 but still small enough to allow for strong overlap
of the pulses. The superior performance of MSMLR compared
to the other SMLR-type methods (SMLR and IWM) demon-
strates that MSMLR is able to cope with and even exploit the
minimum distance constraint.
Normalized root mean square (RMS) values of the estima-

tion errors and are shown for
and different SNRs in Fig. 9(a) and (b), respectively. As men-
tioned before, the estimation of and is not as critical for the
considered BD methods as the detection of . The results are
qualitatively similar to those of Fig. 8(a). MSMLR again per-
forms consistently better than all the reference methods.
Fig. 10 studies a particularly difficult scenario where the true

pulse has only one peak and is much broader than would be typ-
ical for our pulse model (which is assumed by all methods). The
results resemble those of Fig. 8(c), but the -axis roughly
scales with the pulse width, and the estimation errors are gen-
erally increased. MSMLR outperforms the other methods for

larger than 16; for smaller , all methods produce very
large errors (often even larger than ). Fig. 10 also shows
that two pulses separated by a time distance of 20 (or less) can
no longer be resolved visually.
For a rough assessment and comparison of the computational

complexities of the five methods, we report the computation
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Fig. 9. Normalized RMS value of (a) the amplitude estimation error
and (b) the pulse shape estimation error versus SNR, for .

Fig. 10. Left plot: Average error versus at , for the case
where the true pulse is Gaussian-shaped with a half-height width of 30 whereas
all methods assume the original pulse model. Right plot: Two such pulses shifted
relatively to each other by 20 (solid lines) and their superposition (dashed line).

times for one BD task required by nonoptimized MATLAB
R2011b 64-bit implementations on a 2.8 GHz Intel Core i7
processor. For and , we obtained 1.98
s for MSMLR, 5.00 s for SMLR, 11.68 s for IWM, 0.54 s for
OMP, and 4.48 s for PCGS. Hence, within the implementations
used, MSMLR is less complex than all the reference methods
except OMP.

C. Numerical Validation of M2

The algorithmic modification M2 proposed in Section
III-B2 was motivated by a reduction of complexity: on average,
M2 reduced the computation time of MSMLR by a factor of
about 3.5 in our simulations. To examine how M2 affects the
estimation performance, we compare MSMLR (including M2)
and SMLR with the two alternative methods given by SMLR
with M2 andMSMLR without M2, using the same data that were
used for Fig. 8. Fig. 11 shows the error averaged over 500
realizations at and at , for different
values of . For MSMLR, we can see that the results with

Fig. 11. Average error versus , forMSMLR/SMLRwith and withoutM2
and at two different SNRs (3 dB and 12 dB). SMLR with M2 at
is not shown because its error is consistently larger than 5.

Fig. 12. Empirical cdf of for MSMLR with and without M2.

and without M2 are nearly indistinguishable for all combina-
tions of SNR and , except for at high SNR. We
can conclude that the average performance of MSMLR is not
affected by M2 at all, as long as there is a minimum distance
constraint. On the other hand, SMLR with M2 fails completely.
These results corroborate the considerations in Section III-B2:
M2 requires that the hypothesis set contains hypotheses with
shifted 1’s, which is the case for MSMLR with but
not for SMLR or for MSMLR with .
For a more detailed analysis beyond average performance,

we also consider the empirical cumulative distribution function
(cdf) of calculated from 500 realizations, for given SNR and

. Fig. 12 shows three examples of these cdfs for MSMLR
with and without M2. We can see that the cdfs with and without
M2 are nearly identical. Furthermore, besides the error of
the estimate , we can also use the posterior probability of
as a quality measure. More specifically, we evaluated

, i.e., the posterior probability of
normalized by that of the true . Again, our simulations (not
shown) demonstrated that the distributions with and withoutM2
are nearly identical.
Finally, one may ask how often the estimates obtained

from MSMLR with and without M2 are not only statistically
equivalent with respect to performance but in fact identical.
Fig. 13 shows the empirical rate of identical estimates, i.e., the
number of realizations that yield identical estimates normalized
by the total number of realizations, calculated from 500 realiza-
tions, for different SNRs and minimum distances. We can see
that the estimates are generally identical when is large,
i.e., when pulses are not allowed to overlap significantly. For
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Fig. 13. Empirical rate of identical estimates for MSMLR with and without
M2.

Fig. 14. Average error for different mismatches of and , at
. Left plot: ; all methods erroneously assume that .

Right plot: ; all methods erroneously assume that .

small , the estimates are typically not identical although
their errors have the same distribution.

D. Robustness Evaluation

Fig. 14 analyzes the robustness of the BD methods to devia-
tions of the parameters and , which determine the spar-
sity of , from nominal values and as-
sumed by the BD methods. Not surprisingly, we can see that
the performance of all BD methods quickly deteriorates when
the true minimum distance is smaller than the nominal
value , i.e., when the BD methods assume a too
restrictive minimum distance constraint. On the other hand, it
may seem counterintuitive that in some methods—including
MSMLR—the error further decreases when the true in-
creases beyond the nominal value. Here, the positive effect of
higher sparsity (cf. Figs. 8(b) and (c)) outweighs the negative
effect of the mismatch. Within a reasonable range around the
nominal value, MSMLR outperforms the reference methods.
Regarding the parameter , we see that all methods are fairly
robust to deviations from the nominal value.
To further investigate the robustness of the BD methods,

we generated 500 realizations using a pulse originally used
in [38]. This pulse does not fit our pulse model parameters
of Section VI-A because the effective bandwidth of our basis
vectors is too small. The pulse and its projection onto
the subspace spanned by the are shown in Fig. 15(a). All
BD methods still assumed the parameter priors and values
of Section VI-A. Fig. 15(b) shows (upon comparison with
Fig. 8(a)) that this mismatch significantly degrades the per-
formance of all methods. However, MSMLR still tends to

Fig. 15. Pulse model mismatch: (a) Pulse from [38] and its projection
onto the subspace spanned by the basis vectors . (b) Average error versus
SNR for , for the case where the true pulse is whereas the estimate
of obtained by all methods may at best be the projection .

Fig. 16. Average error versus SNR for , for the case where the
true prior of is uniform whereas all methods assume a Gaussian prior. The
NG-MSMLR method is discussed in Section VI-E1.

outperform the reference methods, especially for SNR larger
than about 3 dB.
Finally, we consider a mismatch of the prior distribution of
. Fig. 16 shows the results of simulations where both the real

part and the imaginary part of are uniformly distributed on
, whereas the BD methods still assume

the Gaussian prior (8). A comparison with Fig. 8(a) shows that
all methods are fairly robust to this mismatch.

E. Further Aspects

1) Non-Gaussian BD: One advantage of the Gaussian prior
for is that it helps avoid numerical problems caused by a
badly conditioned matrix . However, a minimum distance
constraint tends to improve the conditioning of , so that
the assumption of a Gaussian prior for may no longer be nec-
essary. In fact, one can use a maximum-likelihood (ML)-like
approach in which the factor is removed from the
joint posteriors (13) and (15). The resulting MSMLR objective
function is given by (25) with replaced by 1 and
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replaced by . The maximizing the modified
joint posterior is then no longer in (30)
but . The expression of
in (34) does not have a natural counterpart in this case; we

replace it (somewhat arbitrarily) by .
Apart from these modifications, the algorithm stays the same.
The minimum distance constraint (with a sufficiently large

) then avoids a potential bad conditioning of .
This ML-like algorithm will be referred to as non-Gaussian
MSMLR or briefly NG-MSMLR. To assess its performance,
Fig. 16 shows its average error in simulations where the prior
of is in fact not Gaussian—more specifically, it is uniform
as described at the end of Section VI-D—but has the same
variance as that assumed by the BD methods (except by
NG-MSMLR, which does not require knowledge of ). We
can see that the performance of NG-MSMLR is similar to that
of MSMLR. At lower SNR, MSMLR obtains better results due
to its knowledge of .
2) Nonblind BD: Further simulations showed that MSMLR

outperforms the reference methods even in the nonblind case,
since the minimum distance constraint still helps avoid over-
fitting. However, in this simpler estimation problem, the perfor-
mance advantage ofMSMLR is smaller: for example, at

and , the average error is 0.68 for MSMLR,
0.86 for PCGS, and 1.00 for SMLR.

VII. CONCLUSION

We presented an SMLR-type algorithm for Bayesian blind
deconvolution of an unknown sparse sequence convolved with
an unknown pulse. The algorithm is based on an extended
Bernoulli-Gaussian prior that incorporates a hard minimum
distance constraint. This prior simultaneously induces sparsity
and enforces a prescribed minimum distance between any
two detected pulse locations, which is an effective means of
avoiding spurious detected pulses.
Compared to the classical SMLR approach to blind decon-

volution, the proposed algorithm introduces several modifica-
tions that overcome certain known weaknesses of SMLR and
result in improved performance and efficiency. Based on the
minimum distance constraint, the hypotheses assessed in each
iteration are chosen such that the risk of converging to a local
optimum is greatly reduced; this is achieved without increasing
the number of hypotheses. The minimum distance constraint is
also exploited for an efficient calculation of the probabilities as-
sociated with the hypotheses. The computational efficiency is
further increased through a novel scheduling of different steps
of the algorithm. Finally, the explicit determination of an op-
timal amplitude scale and time shift makes it possible to take
into account prior knowledge about the time-frequency concen-
tration of the unknown pulse shape via a basis expansion, which
results in improved estimation performance. Our simulation re-
sults demonstrated the advantages of the proposed method over
several state-of-the-art methods for Bayesian blind deconvolu-
tion, regarding both detection/estimation performance and com-
putational complexity.

Possible directions for future research include extensions of
the proposed method in which additional hyperparameters (be-
sides ) are estimated from the observed sequence . Esti-
mating , , , , and/or rather than using fixed values
can be expected to result in increased robustness and an easier
deployment of the method.
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