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Abstract—Compressive covariance sampling (CCS) methods
that estimate the correlation function from compressive mea-
surements have achieved great compression rates lately. In
stationary autoregressive (AR) processes, the power spectrum
is fully determined by the AR parameters, and vice versa.
Therefore, compressive estimation of AR parameters amounts to
CCS for such signals. However, previous CCS methods typically
do not fully exploit the structure of AR power spectra. On the
other hand, traditional AR parameter estimation methods cannot
be used when only a compressed version of the AR signal is
observed. We propose a Bayesian algorithm for estimating AR
parameters from compressed observations, using a Metropolis-
Hastings sampler. Simulation results confirm the promising
performance of the proposed method.

Index Terms—Autoregressive process, power spectrum esti-
mation, compressive sampling, Bayesian sampling, Metropolis-
Hastings sampler

I. INTRODUCTION

We consider the problem of estimating the parameters of

a stationary autoregressive (AR) process when the observed

signal is not the AR signal itself but a compressed version

of it. Due to compression, the covariance matrix of the

observed signal loses its Toeplitz structure. Classical methods

of AR coefficient estimation, e.g. [1], are not designed for

compressive observations. The same is true for most methods

in the closely related field of AR model fitting [2]–[4], where

a non-AR signal is approximated by an AR process.

Since the power spectrum of stationary AR processes is

fully determined by the AR parameters, the present problem is

equivalent to compressive power spectrum estimation or com-

pressive covariance sensing (CCS) [5]–[7] for such signals.

It amounts to structured CCS accounting for the particular

parametric structure of AR processes. For other classes of

signals, CCS methods maintain good performance even at low

compression rates. However, they typically do not exploit the

particular structure of AR power spectra.

In nonlinear parametric estimation problems, Markov chain

Monte Carlo (MCMC) methods [8] are often used (e.g., [9],

[10]). The method proposed here belongs to this family,

employing Metropolis-Hastings (MH) within Gibbs sam-

pling [11]. The performance of this iterative algorithm (for

a limited number of iterations) critically depends on the

appropriate design of proposal distributions that govern the

innovation in each iteration.

Previous Work. Generalizations of the AR covariance and

inverse covariance matrices are considered in [12], [13], where

different block structures corresponding to 2D time-varying

AR models are discussed. In contrast to 2D time-varying

AR models, however, the compressive AR model leads to

blocks that are not banded. In AR model fitting, compressive

observations are considered in [3], where the vector of AR

coefficients is forced to be sparse. The present paper, on

the other hand, makes no sparsity assumptions. In [4], AR

model fitting is performed using irregularly sampled data,

which could in principle be reinterpreted as compressive

observations. However, the method discards large parts of the

irregularly sampled data in a way that makes it unsuited for

compressive AR parameter estimation. In signal segmentation,

MCMC methods have been used for AR model fitting [9],

[14]. These methods rely on uncompressed observations. In

CCS, linear methods have been used successfully both for

nonparametric covariance sensing [5], [6] and for particular

linear parametric models [7]. The specific nonlinear parametric

model of AR processes has not been considered in this context.

Contributions. The main contributions of this paper are the

following. First, the gap between AR parameter estimation

and CCS is closed by formulating compressive AR parameter

estimation as a problem of structured CCS. Second, for

solving this problem, we propose a method that is substantially

different from previous CCS methods due to the nonlinearity

of the problem. As simulation results confirm, the proposal

distributions we design for this MH within Gibbs sampling

method achieve high performance within moderate processing

time even for low compression rates.

This paper is organized as follows. Section II describes

the compressed AR signal model. The proposed estimation

method is presented in Section III. Numerical results assessing

the performance of the proposed method are discussed in

Section IV.

II. SIGNAL MODEL

Observation Model. We consider an unobserved complex

signal of interest xn that is modeled as a stationary AR process

of order p:

xn =

p∑

i=1

ai xn−i + en .

Here, ai ∈ R for i = 1, . . . , p denotes the AR coefficients, and

en is zero-mean white circularly symmetric complex Gaussian

noise with variance σ2. The AR coefficients a = (a1 · · · ap)
T,



where T denotes transposition, and the noise variance σ2 are

the parameters which we will aim to estimate. We assume that

the model order p is fixed and known. The observed signal yn
is obtained from xn through periodic compressive sampling,

i.e.,

y[k] = Φx[k], (1)

with the length-M vector y[k] = (y(k−1)M+1 · · · ykM )T and

the length-N vector x[k] = (x(k−1)N+1 · · ·xkN )T. The di-

mensions of the M × N compression matrix Φ determine

the compression rate, which is M/N . Suitable choices for

the elements of Φ have been studied, e.g., in [15]. In our

experiments, we use complex Gaussian elements. Let K
denote the number of blocks y[k] that we observe. Then (1)

for k = 1, . . . ,K can be expressed as

y = Φ̃ x, (2)

with y = (yT[1] · · ·yT[K])T and x = (xT[1] · · ·xT[K])T. The

KM ×KN matrix Φ̃ is defined as Φ̃ = IK ⊗Φ, where IK
is the K × K identity matrix and ⊗ denotes the Kronecker

product.

Our goal is to estimate a and σ2 based on y. However,

rather than estimating a directly, it will be convenient to

first estimate the reflection coefficients ρ = (ρ1 · · · ρp)
T of

the corresponding lattice filter [16, p. 223] (cf. pp. 226,

233, and 236 for the following statements). For a given ρ,

the corresponding a is obtained by repeating the following

calculations (the Levinson-Durbin recursion) for i = 1, . . . , p:

a
(i)
i = ρi ,

a
(i)
j = a

(i−1)
j − ρi a

(i−1)
i−j for j = 1, . . . , i− 1 .

(3)

The vector a =
(
a
(p)
1 · · · a

(p)
p

)T
is then the a corresponding to

ρ. The advantage of estimating ρ is its relation to stability [1],

[4], [17]: an AR process with a ∈ R
p is stable if and only

if ρ ∈ R
p and |ρi| < 1 for i = 1, . . . , p. Therefore, we can

guarantee stability of the estimated AR process by estimating

ρ within the domain (−1, 1)p.

Likelihood Function. Our estimates of ρ and σ2 from

y will be based on the likelihood function p(y|ρ, σ2). We

start our derivation of p(y|ρ, σ2) by assessing the statistical

properties of xn. For zero-mean circularly symmetric complex

Gaussian noise en, stationary AR processes xn are also

zero-mean circularly symmetric complex Gaussian distributed.

Therefore, p(x|ρ, σ2) is fully specified by the autocorrelation

matrix Rx = E{xxH|ρ, σ2}, where H denotes conjugate

transposition. Due to stationarity, Rx is a Toeplitz matrix with

first column (r0 · · · rKN )T and first row (r0 · · · r−KN ), where

rn = E{xn′x∗n′+n}. The autocorrelation function rn is related

to a and σ2 through the system of p+1 equations known as

the Yule-Walker equations [16, p. 194]:

rn =

p∑

i=1

ai rn−i + σ2δn , (4)

for n = 0, . . . , p, where δn denotes the unit sample. Using

the symmetry r−n = r∗n and solving the above equations with

respect to r = (r0 · · · rp)
T yields

r = σ2(AΛ)−1δ1 . (5)

Here, A is a Hankel matrix of size (p+1)×(2p+1) with the first

column (0 · · · 0 1)T and the last row (1 −a1 · · · −ap 0 · · · 0).
The matrix Λ is composed of the last p+1 columns of the (2p+
1)× (2p+1) matrix whose diagonal and antidiagonal elements

are 1 and whose other elements are 0. Finally, δ1 is the unit

vector of p+1 elements whose first element is 1. Note that due

to (5) r is real. With r given, rn can be calculated for arbitrary

n using (4) and r−n = rn. This allows us to construct Rx.

Since according to (4) and (5) the autocorrelation rn is fully

determined by a and σ2 (or, equivalently, ρ and σ2), estimation

of these parameters is equivalent to parametric power spectrum

estimation for AR signals.

It follows from (5) that rn, and therefore also Rx, is

proportional to σ2. For later computations, it will be useful

to define r̃n, r̃, and R̃x by dividing rn, r, and Rx by σ2.

From (5) and (4), we then obtain

r̃ = (AΛ)−1δ1 and r̃n =

p∑

i=1

ai r̃n−i + δn . (6)

To emphasize that R̃x (for given K) is fully determined by

ρ through (3) and (6), we will denote it as R̃x(ρ) in the

following.

Since x for given ρ and σ2 is zero-mean circularly sym-

metric complex Gaussian distributed, it follows from (2) that

y for given ρ and σ2 is also zero-mean circularly symmetric

complex Gaussian distributed with the autocorrelation matrix

Ry = E{yyH} = Φ̃RxΦ̃
H. In analogy to R̃x(ρ), we define

R̃y(ρ) = Φ̃R̃x(ρ)Φ̃
H, which (for given K and Φ, which we

assume) is fully determined by ρ through (3) and (6). Finally,

we obtain the likelihood function

p(y|ρ, σ2) =
1

πKM |Ry|
exp

(
− yH R−1

y y
)

=
1

(πσ2)KM |R̃y(ρ)|
exp

(
−

yH
(
R̃y(ρ)

)
−1

y

σ2

)
. (7)

Parameter Priors and Joint Posterior. The Bayesian esti-

mation methodology, which was chosen here, involves assign-

ing prior probability distributions to the parameters of interest,

i.e., ρ and σ2. The absence of prior assumptions about the

parameters is reflected by noninformative priors. We adopt

this approach and choose uniform priors for the reflection

coefficients as well as the noise variance:

p(ρ) = 1/2p , p(σ2) = 1 , (8)

for ρ ∈ (−1, 1)p and σ2 > 0. In the case of ρ, the uniform

distribution is in fact the maximum entropy distribution, since

the support of ρ is finite and no further prior assumptions

were made. Recall that the domain of ρ was chosen to be

(−1, 1)p because this corresponds to the set of all stable AR

processes with a ∈ R
p. In the case of σ2, the uniform prior is

an improper prior, since the support of σ2 is infinite. However,



we will see in (11) that the resulting posterior distribution is

a proper distribution. Using (7) and (8), we obtain the joint

posterior distribution of ρ and σ2:

p(ρ, σ2|y) ∝ p(y|ρ, σ2) p(ρ) p(σ2) ∝ p(y|ρ, σ2) , (9)

for (ρ, σ2) ∈ (−1, 1)p× (0,∞). Here, we dropped factors

that are constant with respect to ρ and σ2. The normalization

constant of p(ρ, σ2|y) will not be relevant for our estimation

method.

III. ESTIMATION METHOD

Sample-Based Bayesian Estimation. Our goal is to esti-

mate ρ and σ2 from y by maximizing their joint posterior

distribution p(ρ, σ2|y), i.e., maximum a-posteriori (MAP)

estimation. Due to the uniform priors chosen in (8), the MAP

estimator coincides with the maximum likelihood (ML) esti-

mator. Since the maximization of p(ρ, σ2|y) is too complex

to calculate directly, we resort to an approximate solution.

Following the concept of Bayesian sampling [8], we gen-

erate a large population of realizations
(
ρ(j), (σ2)(j)

)
from

p(ρ, σ2|y). As the number of realizations increases, the pop-

ulation becomes denser, thus reducing the minimum distance

between the true MAP estimate and its nearest neighboring re-

alizations. Since p(ρ, σ2|y) is continuous within the domain of

ρ and σ2, it follows that maxj p
(
ρ(j), (σ2)(j)

∣∣y
)

approaches

maxρ,σ2 p(ρ, σ2|y) as the population grows. Therefore, by

calculating p
(
ρ(j), (σ2)(j)

∣∣y
)

for all j and picking the maxi-

mum, i.e.,

ρ̂ = ρ(jmax)

σ̂2 = (σ2)(jmax)

}
with jmax= argmax

j

p
(
ρ(j), (σ2)(j)

∣∣y
)
,

(10)

we obtain approximate MAP estimates. The efficiency of this

procedure stems from the fact that, since the realizations(
ρ(j), (σ2)(j)

)
are generated from p(ρ, σ2|y), the density

of realizations in the population is especially high near the

maximum of p(ρ, σ2|y). Note also that it is not necessary

to store the entire population to obtain the global maxi-

mum; at each iteration, we can simply compare the new

realization
(
ρ(j), (σ2)(j)

)
to the realization that previously

maximized p
(
ρ, σ2

∣∣y
)
. If the new realization achieves a larger

p
(
ρ, σ2

∣∣y
)
, it replaces the previous maximum, otherwise is

can be discarded. Thus, throughout the entire process, only

one realization needs to be stored.

Metropolis-Hastings Sampling. For generating the pop-

ulation of realizations
(
ρ(j), (σ2)(j)

)
, we adopt the MCMC

approach [8], more specifically the MH algorithm. Formulated

in brief for a generic parameter vector θ and a distribution of

interest p(θ), each iteration of this algorithm, indexed by j,
produces a new realization θ(j) drawn from p(θ). This is done

in two steps. In the first step, a proposal θ̃ is generated from a

proposal distribution qj
(
θ̃
∣∣θ(j−1)

)
, which is some distribution

that is convenient for sampling and introduces some variation

based on the previous realization θ(j−1). In the second step,

the new realization θ(j) is chosen as

θ(j) =

{
θ̃ with probability αj
θ(j−1) with probability 1−αj ,

where the acceptance probability αj is given as

αj = min

{
p
(
θ̃
)
qj
(
θ(j−1)

∣∣θ̃
)

p
(
θ(j−1)

)
qj
(
θ̃
∣∣θ(j−1)

) , 1
}
.

After a certain number of iterations, the subsequent realiza-

tions θ(j) are distributed according to p(θ), independently of

the initial realization θ(0). In contrast to estimation methods

that involve averaging or counting some of the realizations

θ(j), the estimator in (10) can use all realizations including

those from the first iterations. For terminating the iterative pro-

cess, different strategies have been proposed, such as assessing

whether the distribution of the realizations has converged to

a stationary distribution [18]. In our experiments, we chose a

simple solution with a fixed number of iterations J , which can

be determined based on previous (training) results.

The MH algorithm was chosen here because its general

formulation makes it possible to generate a population from

almost any distribution. However, the number of iterations that

are needed critically depends on the design of the proposal

distributions qj
(
θ̃
∣∣θ(j−1)

)
. If the dependence of θ̃ on θ(j−1)

is either too strong or too weak, or if qj
(
θ̃
∣∣θ(j−1)

)
produces

many proposals for which αj is low, the algorithm may not

yield useful results within a tolerable number of iterations. In

our estimation problem, the distribution of interest p(θ) corre-

sponds to p(ρ, σ2|y). The proposal distributions qj
(
θ̃
∣∣θ(j−1)

)

are chosen such that they alternately produce a new ρ̃ or

σ̃2, while the respective other stays the same as its previous

realization:

qj
(
ρ̃, σ̃2

∣∣ρ(j−1), (σ2)(j−1)
)
=





qρ
(
ρ̃
∣∣ρ(j−1), (σ2)(j−1)

)
δ
(
σ̃2 − (σ2)(j−1)

)
for even j

qσ2

(
σ̃2
∣∣ρ(j−1), (σ2)(j−1)

)
δ
(
ρ̃− ρ(j−1)

)
for odd j .

Here, δ(·) denotes the Dirac delta function. This alter-

nating pattern in the proposal distributions is well-known

from an important special case of MH sampling, the

Gibbs sampler [8]. Gibbs sampling corresponds to a par-

ticular choice of proposal distributions, which in our case

would be qρ
(
ρ̃
∣∣ρ(j−1), (σ2)(j−1)

)
= p

(
ρ̃
∣∣(σ2)(j−1),y

)
and

qσ2

(
σ̃2
∣∣ρ(j−1), (σ2)(j−1)

)
= p

(
σ̃2
∣∣ρ(j−1),y

)
. The conve-

nient consequence is that αj = 1 for all j, as is easily

shown. This is particularly useful for fast convergence of

the estimator in (10), because the estimate does not improve

when θ(j) = θ(j−1). However, this solution requires that

realizations of ρ and σ2 can be generated directly from the

posterior distributions p(ρ|σ2,y) and p(σ2|ρ,y), which are

proportional to p(ρ, σ2|y) and normalized with regard to ρ

and σ2, respectively. Inspection of (7) shows that p(σ2|ρ,y)
is in fact a distribution from which we can easily generate

realizations, as will be discussed shortly. However, the same

is not true for p(ρ|σ2,y), which precludes Gibbs sampling for



the given problem. By using p(σ2|ρ,y) to propose σ̃2 in odd-

numbered iterations and defining a different type of proposal

distribution for ρ̃ in even-numbered distributions, we employ

MH within Gibbs sampling [11].

Proposal and Decision Steps for σ2. As mentioned above,

σ̃2 is generated from p(σ̃2|ρ(j−1),y) (in odd-numbered it-

erations). This can be done because—as inspection of (7)

shows—for fixed ρ and y, p(ρ, σ2|y) is an inverse gamma

distribution of σ2, up to a normalization constant. We thus

obtain

qσ2

(
σ̃2
∣∣ρ(j−1), (σ2)(j−1)

)
= p(σ̃2|ρ(j−1),y)

=

(
γ
(
ρ(j−1)

))ψ

Γ(ψ)

1

(σ̃2)ψ+1
exp

(
−
γ
(
ρ(j−1)

)

σ̃2

)
, (11)

for σ̃2 > 0, where Γ(·) denotes the gamma function and

ψ = KM − 1 , γ(ρ) = yH
(
R̃y(ρ)

)
−1

y . (12)

We recall that this choice of qσ2

(
σ̃2
∣∣ρ(j−1), (σ2)(j−1)

)
is

advantageous because it ensures that αj = 1 for all odd j.

Proposal and Decision Steps for ρ. For the proposal distri-

bution qρ
(
ρ̃
∣∣ρ(j−1), (σ2)(j−1)

)
, we choose a beta distribution

on the interval (−1, 1), independently for each element ρ̃i:

qρ
(
ρ̃
∣∣ρ(j−1), (σ2)(j−1)

)
=

p∏

i=1

qρ,i
(
ρ̃i
∣∣ρ(j−1)
i

)
,

with

qρ,i
(
ρ̃i
∣∣ρ(j−1)
i

)
=

1

2B
(
η
(
ρ
(j−1)
i

)
, ξ
(
ρ
(j−1)
i

))

×

(
1 + ρ̃i

2

)η(ρ(j−1)
i

)−1(
1− ρ̃i

2

)ξ(ρ(j−1)
i

)−1

. (13)

Here, B(·, ·) denotes the beta function and

η(ρi)=
2 (1 + ρi)

1− |ρi|
, ξ(ρi)=

2 (1− ρi)

1− |ρi|
.

This particular distribution is chosen for the following reasons.

First, it is nonzero on the entire domain (−1, 1) but con-

centrated around its mean, which is ρ
(j−1)
i . As experiments

confirm, this ensures a good balance between large enough

variation to quickly become independent from the initialization

and small enough variation for a fairly steady improvement of

the estimate. Second, this distribution converges towards zero

as |ρ̃i
∣∣ approaches 1, which is important because proposals

that are extremely close to 1 may lead to numerical problems

in the calculation of p
(
ρ̃, (σ2)(j−1)

∣∣y
)
. For the acceptance

probability αj in iterations with even j, we thus obtain

αj =

min

{
p
(
ρ̃, (σ2)(j−1)

∣∣y
)
qρ
(
ρ(j−1)

∣∣ρ̃, (σ2)(j−1)
)

p
(
ρ(j−1), (σ2)(j−1)

∣∣y
)
qρ
(
ρ̃
∣∣ρ(j−1), (σ2)(j−1)

) , 1
}

= min

{
p
(
y
∣∣ρ̃, (σ2)(j−1)

)

p
(
y
∣∣ρ(j−1), (σ2)(j−1)

)
p∏

i=1

qρ,i
(
ρ
(j−1)
i

∣∣ρ̃i
)

qρ,i
(
ρ̃i
∣∣ρ(j−1)
i

) , 1
}
.

(14)

In the last step, we used (9). Note that even though the

proposal distribution qρ
(
ρ̃
∣∣ρ(j−1), (σ2)(j−1)

)
does not depend

on y directly, ρ(j) still depends on y because of (14).

Approximation of the Likelihood. Every other iteration

of the algorithm described above requires evaluating (7) for

the respective ρ̃, which involves calculating the corresponding

autocorrelation function r̃n for n = 0, . . . ,KN and inverting

the KM × KM matrix R̃y(ρ̃). For large enough values of

KN and M/N to ensure reliable estimation of the AR param-

eters, this leads to an unacceptable computational complexity.

We resolve this by using an approximation of (7) that was

proposed in [7] for arbitrary autocorrelation functions rn. We

start by observing that yH
(
R̃y(ρ)

)
−1

y in the exponent of

(7) is equal to Tr
((
R̃y(ρ)

)
−1

yyH
)

with the rank-1 sample

covariance matrix yyH. Second, we observe that R̃y(ρ) has

a block Toeplitz structure, where each M ×M block on the

kth block diagonal below the main block diagonal is given

by ΦE{x[k′ + k]xH[k′]}ΦH, for k = −K +1, . . . ,K − 1.

The likelihood function (7) can be closely approximated by

replacing yyH with a modified sample covariance matrix S

that has the same block Toeplitz structure as R̃y(ρ). The

blocks on the kth block diagonal below the main block

diagonal of S are given by

S[k] =
1

(K − k)

K−k∑

k′=1

y[k′+k]yH[k′] .

Due to their block Toeplitz structure, the matrices R̃y(ρ) and

S contain a large amount of redundant information. The useful

information is mainly concentrated around their main block

diagonal. Motivated by these two observations, [7] proposes

to crop the two matrices and use only their first L×L blocks of

size M×M , where L may be much smaller than K . Denoting

the cropped LM × LM matrices by R̃y,L(ρ) and SL, we

obtain the approximate likelihood

p(y|ρ, σ2) =
1

(πσ2)LM |R̃y,L(ρ)|

× exp

(
−

Tr
((
R̃y,L(ρ)

)
−1

SL
)

σ2

)
. (15)

Note that reducing the dimensions of R̃y(ρ) also implies that

r̃n needs to be calculated only for n = 0, . . . , LN whenever

p(y|ρ̃, σ2) is calculated (i.e., in every other iteration of the

algorithm). Further note that, since qσ2

(
σ̃2
∣∣ρ(j−1), (σ2)(j−1)

)

according to (11) is derived from p(y|ρ, σ2), we must also
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Fig. 1. Evaluation of p(y|ρ, σ2) according to (15), where y was generated using ρ1,true = −0.7, ρ2,true = −0.7, and σ2
true = 0.26. Light (dark) colors

represent large (small) values of p(y|ρ, σ2), which is shown as a function of ρ ∈ (−1, 1)2 for (a) σ2 = σ2
true, (b) σ2 = 3σ2

true, (c) σ2 = σ2
true/3.

Algorithm 1 MH Sampler for Compressive AR Modeling

1: Initialize with any ρ(0), (σ2)(0) from (−1, 1)p × (0,∞)

2: ρ̂← ρ(0), σ̂2 ← (σ2)(0)

3: Iterate for j = 1, . . . , J :

4: If j is even:

5: (σ2)(j) ← (σ2)(j−1)

6: Generate ρ̃i from (13) for i = 1, . . . , p
7: Calculate αj from (14) using (15) and (13)

8: With probability αj : ρ(j) ← ρ̃

9: In the converse case: ρ(j) ← ρ(j−1)

10: If j is odd:

11: ρ(j) ← ρ(j−1)

12: Generate (σ2)(j) from (11) using (16)

13: If p
(
ρ(j), (σ2)(j)

∣∣y
)
> p
(
ρ̂, σ̂2

∣∣y
)

14: ρ̂← ρ(j), σ̂2 ← (σ2)(j)

replace (12) by

ψ = LM − 1 , γ(ρ) = Tr
((

R̃y,L(ρ)
)
−1

SL

)
. (16)

The resulting algorithm is summarized in Algorithm 1.

IV. NUMERICAL RESULTS

To assess the performance of the proposed method, we

generated 2500 AR signals of length KN=240000 and order

p = 2, with different AR parameters. For ρ, we used the

25 elements of {−0.7,−0.4, 0, 0.2, 0.9}2, each for 100 AR

signals. For each ρ, we chose σ2 such that r0 = 1. Each AR

signal was compressed using an individual compression matrix

Φ, whose elements were randomly generated from a zero-

mean circularly symmetric complex Gaussian distribution with

variance 1. Different compression rates between 0.1 and 0.4
were achieved by usingM=10 andN ∈ {25, 30, 40, 60, 100},
where each combination of the different values ofN and ρ was

used for 20 signals. For one such signal y with M/N = 0.1,

Fig. 1 shows the distribution p(y|ρ, σ2) according to (15),

using L=1. The figure illustrates the potentially multimodal

shape of p(y|ρ, σ2). For higher model order p or for a smaller

amount of data (i.e., a smaller number of observed blocks K),

the potential number of local maxima increases.

For each AR signal, ρ and σ2 were estimated according to

Algorithm 1, using L=1. One such estimate with J=20000
iterations took about 11s in an unoptimized MATLAB R2011b

64-bit implementation on a 2.8-GHz Intel Core i7 processor.

From each estimate ρ̂, the corresponding AR coefficients â

were calculated according to (3). As a performance bench-

mark, we compared the proposed method (abbreviated PM

in the following) to the non-structured CSS method proposed

in [5] (referred to as RM in the following). This method

estimates rn from y using a least-squares approach, without

assuming a parametric model for rn. From this estimate r̂n,LS,

we calculated âRM and σ̂2
RM using the Yule-Walker equations

(4) for n = 0, . . . , p. As mentioned in [5], the RM requires

full column rank of some matrices of size M2 × N . For a

given M or N , this implies that the compression rate M/N
cannot be reduced below a certain minimum. Conversely, for

a given compression rate, this amounts to a minimum block

size (M,N). Such strong restrictions do not apply to the PM

(although the restrictions on (M,N) for the PM need to be

studied further). In particular, in our simulations (M,N) =
(10, 100) often led to failure of the RM because of the full rank

condition. Therefore, we used (M,N) = (12, 120) instead of

(M,N) = (10, 100) for the RM.

Fig. 2 shows the empirical normalized mean squared error

(NMSE) of â and σ̂2 of both the PM and the RM for different

compression rates M/N . Each NMSE value was obtained

from averaging over 500 AR signals. It can be seen that the

PM performs consistently better than the RM for the given

compression rates. In particular, the results show that the PM

is significantly more robust to low compression rates than the

RM.

Similar conclusions can be drawn from Fig. 3, which con-

siders the parametric estimate of the autocorrelation function

r̂n based on â and σ̂2. From the AR parameter estimates of

both the PM and the RM method, we calculated the respective

r̂36=(r̂−36, . . . , r̂36)
T. Fig. 3 compares the NMSE of the two

estimates for different compression rates M/N . Again, the
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Fig. 2. Empirical NMSE of â and σ̂2 for various compression rates M/N .
Solid lines correspond to results of the proposed method, dashed lines
correspond to results of the reference method. Each NMSE was obtained
using 500 different AR signals.
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Fig. 3. Empirical NMSE of r̂36 for various compression rates M/N ,
comparing the proposed method (solid line) and the reference method (dashed
line). Each NMSE was obtained using 500 different AR signals.

results confirm good performance of the PM and particularly

show its high robustness with respect to strong compression.

As an illustrative example, Fig. 4 shows the Fourier trans-

forms of r36 and r̂36, i.e., the power spectrum of one of the AR

signals, along with its estimates. Note that, since the NMSE

is invariant to multiplication of the parameter vector with a

Fourier matrix F, the NMSE shown in Fig. 3 is also the NMSE

of the estimated power spectrum ŝ36 = F r̂36.

V. CONCLUSION

We proposed a Bayesian algorithm for estimating AR

parameters from compressed observations, which can be seen

as a problem of structured CCS. Due to its nonlinearity,

this problem cannot be solved efficiently by previous CCS

methods. We presented an algorithm employing MH within

Gibbs sampling, which is a powerful methodology but requires

careful design of the iterative steps. Simulation results confirm

the promising performance of the chosen design even for low

compression rates.
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Fig. 4. Power spectrum sn of an AR signal and estimates ŝn obtained with the
proposed method (dash-dotted line) and the reference method (dashed line)
at a compression rate M/N = 0.17.
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