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ABSTRACT
Existing methods for smart data reduction are typically sen-
sitive to outlier data that do not follow postulated data mod-
els. We propose robust censoring as a joint approach unifying
the concepts of robust learning and data censoring. We fo-
cus on linear inverse problems and formulate robust censoring
through a sparse sensing operator, which is a non-convex bi-
linear problem. We propose two solvers, one using alternating
descent and the other using Metropolis-Hastings sampling.
Although the latter is based on the concept of Bayesian sam-
pling, we avoid confining the outliers to a specific model. Nu-
merical results show that the proposed Metropolis-Hastings
sampler outperforms state-of-the-art robust estimators.
Index Terms— Robustness, censoring, sparse sensing,

big data.

1. INTRODUCTION

Pervasive sensors, the Internet, and social networks generate
massive volumes of data. Such datasets often include redun-
dant and less informative data. Smartly exploiting such re-
dundancy leads to a significant reduction in the data process-
ing costs, since it greatly simplifies solving problems like pre-
diction, estimation, tracking, or classification, to list a few.
Thus, the task of extracting the most informative data for
further analysis, learning, and inference is of crucial impor-
tance. In addition to the data that follow postulated models,
the available dataset often includes outliers that do not obey
them. The presence of such outliers makes data processing
tasks significantly more difficult, requiring methods with in-
creased robustness.

Data reduction can be performed before or after acquir-
ing the data, termed model-driven or data-driven design, re-
spectively. Sensor selection [1, 2] determines the most infor-
mative data based on a known model before acquiring the
data. The best subset of the candidate data is chosen such
that a desired ensemble performance is achieved. However,
model-driven sensing design schemes inherently lack the abil-
ity to reject outliers, as the sensing scheme is agnostic to the
data. In data censoring [3, 4], less informative data are dis-
carded online. Here, a designed censoring interval determines
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how informative the data are. However, despite being data-
driven, most data censoring schemes are also not designed to
be robust to outliers. On the other hand, robust alternatives
to least-squares based estimators such as M-estimators [5],
least-trimmed-squared (LTS) [6], random sample consensus
(RANSAC) [7], or sparsity-controlling outlier rejection [8]
are not devised specifically for data censoring.

To this end, we introduce a unifying framework of robust
censoring for joint robust learning and data censoring. We
focus on large-scale linear inverse problems and propose two
solvers for the resulting non-convex bilinear problem. The
first solver is based on the alternating descentmethod, a stan-
dard tool in convex optimization that has low complexity,
but yields suboptimal results. The second solver is based on
Metropolis-Hastings sampling [9], which is here formulated
without specifying any prior knowledge about the outliers.
Metropolis-Hastings sampling has proven to be an effective
method for a wide variety of highly complex estimation prob-
lems, especially due to the large flexibility in its formulation.
This flexibility, however, requires careful design of the algo-
rithmic steps to ensure convergence within a moderate num-
ber of iterations.

2. PROBLEM STATEMENT

Consider a linear regression setup, where an unknown vector
θ ∈ RN is to be estimated from the output data {xm}Dm=1
possibly contaminated with up to o outliers. The output data
are collected in the vector x = [x1, x2, . . . , xD]T ∈ RD ,
where T denotes transposition. We assume that the acquired
data vector x contains uninformative and/or outlying ele-
ments, where we interpret informative data as data that has
a large likelihood. The dimensionality of the data is re-
duced to d " D through a linear compression operator
diagr(w) ∈ {0, 1}d×D to obtain

xw = diagr(w)x,

where diagr(·) represents a diagonal matrix with the argu-
ment on its diagonal, but with the all-zero rows removed.
Here, wm = 0 indicates that xm is considered outlying or
is censored, and w = [w1, w2, . . . , wD]T. The reduced-
dimension data vector xw is subsequently used to solve the
inference or learning problem. The robust censoring problem
is stated as follows.
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Problem (Robust Censoring). Given the data vector x ∈ RD

that is related to the unknown θ ∈ RN through a known data
model but possibly contaminated with up to o outliers: (a)
design the Boolean vector w ∈ {0, 1}D that chooses d ≤
D− o data samples discarding possible outliers as well as
censoring less-informative samples and (b) use this data to
compute an estimate of θ.

Differently from classical outlier rejection, d may be cho-
sen much smaller than the number of apparently outlier-free
data samples. Choosing a smaller d and working only with
d-dimensional subvectors of x often leads to significant re-
ductions of the computational cost. For large D and small d,
the postulated o ≤ D−d amounts to a very weak assumption
about the actual number of outliers. No further assumptions
about the outliers are made.

We consider a linear regression problemwhere the uncon-
taminated data sample x̄m is related to the unknown regres-
sion coefficients θ = [θ1, θ2, . . . , θN ]T ∈ RN through the
following linear model

x̄m = a
T
mθ + nm, m = 1, 2, . . . , D , (1)

where the regressors {am}Dm=1 collected in the matrix A =
[aT1 , a

T
2 , . . . , a

T
D]T ∈ RD×N are assumed to be known and the

noise nm is Gaussian distributed. To ensure identifiability,
we assume that d ≥ N and that anyN rows ofA are linearly
independent, i.e.,Aw = diagr(w)A has full column rank for
anyw such that ‖w‖0 ≥ N .

Given A and the contaminated data vector x that poten-
tially contains o outliers, a robust estimator for θ with respect
to the outliers is the well-known LTS estimator

θ̂LTS = argmin
θ

D−o∑

m=1

r2[m](θ), (2)

with the residuals rm(θ) defined as rm(θ) = xm − aTmθ

and r2[m](θ) denoting the squared residuals in ascending order.
Furthermore,D−o determines the breakdown point of the LTS
as o residuals are not present in (2). The optimization prob-
lem (2) incurs combinatorial complexity, where an exhaustive
search would include choosing θ̂LTS with the smallest cost
among all the

(
D

D−o

)
candidate least-squares estimators. For

d = D − o, the sensing operator w allows us to recast LTS
in (2) as the following optimization problem

(θ̂, ŵ) = argmin
(θ,w) ∈ RN×W

D∑

m=1

wm(xm − a
T
mθ)2 , (3)

where W = {w ∈ {0, 1}D | ‖w‖0 = d}. The above opti-
mization is non-convex in w and θ due to the bilinear term,
cardinality constraint, and the Boolean constraint on w. The
formulation in (3) naturally extends to censoring with d <
D − o. Various different criteria have been proposed for data
censoring, e.g., [4]. For a fixed d, the approach proposed here

yields a solution to data censoring that is optimal in the max-
imum likelihood sense.

We emphasize that while (3) is equivalent to (2) here, the
formulation in (3) generalizes to more complicated likelihood
functions (e.g., non-Gaussian, non-additive noise models) and
observations in correlated noise. Furthermore, the formula-
tion in (3) allows for an extension to hybrid model-and-data-
driven designs. These are subjects of ongoing work.

3. PROPOSED SOLVERS

In this section, we derive two solvers for the robust censoring
problem. The method presented in Subsection 3.1 is based on
classical optimization theory, more specifically the alternating
descent technique. This solver is presented here to illustrate
the highly multimodal structure of the problem, since its esti-
mates, which correspond to local minima of the cost function,
turn out to be frequently incorrect, as shown by numerical re-
sults in Section 4. The solver proposed in Subsections 3.2–
3.3, which is based on Metropolis-Hastings sampling, on the
other hand, does not suffer from this deficiency.

3.1. Alternating descent

The optimization problem (3) can be solved using alternating
descent, i.e., alternating minimization with respect to θ and
w. Givenw, the cost in (3) is simply a reduced-ordered least-
squares problem in the unknown θ, which admits a closed
form solution; while given θ, it reduces to a Boolean linear
programming problem, which admits an analytical solution
with respect to w. These observations suggest an iterative
block coordinate descent algorithm yielding successive es-
timates of θ with fixed w, and alternately of w with fixed
θ. More specifically, with the iterate of w given per itera-
tion i ≥ 0, i.e., w[i], we solve for θ[i] using reduced-ordered
least-squares as

θ[i] = θmin(w[i]) , (4)
with

θmin(w) = argmin
θ ∈ RN

∥∥diagr(w)(x −Aθ)
∥∥2

=
(
Aw

T
Aw

)−1
Aw

T
xw . (5)

With θ[i] available,w[i+1] is obtained as

w[i+1] = argmin
w∈W

D∑

m=1

wmr2m(θ[i]) .

Even though the above linear programming problem has
non-convex Boolean and cardinality constraints, there exists
a simple analytical solution for w[i+1] based on ordering
the squared residuals {r2m(θ[i])}. Specifically, the solution
w[i+1] will have entries equal to 1 at indices corresponding
to the d smallest squared residuals and zeros otherwise.

The iterations are initialized at i = 0 by randomly gener-
atingw[0] from a uniform distribution overW . Note that the
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alternating descent algorithm converges only to a stationary
point of the robust censoring problem (3), and it suffers from
the choice of the initial estimate.

3.2. Sample-based estimation

For our formulation of the second proposed solver, let us first
rewrite (3) as

ŵ = argmin
w ∈ W

∥∥∥diagr(w)
(
x−Aθmin(w)

)∥∥∥
2

(6)

θ̂ = θmin(ŵ) , (7)

with θmin(w) as defined in (5). Note that ŵ and θ̂ according
to (6) and (7) are still the same as in (3), not approximations
as in Subsection 3.1. Inserting (5) into (6) yields

ŵ = argmin
w ∈ W

∥∥x̃(w)
∥∥2

, (8)

with

x̃(w) =
(
I−Aw

(
Aw

T
Aw

)−1
Aw

T
)
xw .

In the following, we focus on finding ŵ according to (8),
while θ̂ is simply obtained using (7) and (5).

To overcome the problem of non-convexity of the cost
function, we propose to follow theMarkov chainMonte Carlo
(MCMC) approach [9]. MCMC methods are often employed
to find the maximum of some probability distribution, the so-
called target distribution, which may often be known only up
to a normalization constant. Any finite-valued non-negative
function of w ∈ W can be interpreted as a non-normalized
distribution of w; we can thus use the cost function from (8)
as the target distribution p(w) (up to an unknown normaliza-
tion constant), with slight modifications to turn the minimum
into a maximum while preserving non-negativity:

p(w) ∝ exp
(
−
∥∥x̃(w)

∥∥2
)
.

We can now write (8) as

ŵ = argmax
w ∈ W

p(w) . (9)

In accordance with the MCMC concept, we generate a
large population of realizations w(j) from the target distri-
bution p(w) within the domain W . As the number of real-
izations increases, we can approximate p(w) more and more
closely by the sample-based approximation pS(w), which is
defined as the number of realizations w(j) that are equal to
the respective value of w, normalized by the total number of
realizations. The sample-based approximation of (9) is then
given by ŵS = argmax

w ∈ W pS(w). However, for moder-
ate sample sizes this approximation has certain known weak-
nesses (see, e.g., [10, 11] for a more detailed discussion and

some alternatives). Instead, we resort to the following widely-
used approach (cf. [12]):

ŵeval = w
(jmax) with jmax= argmax

j
p
(
w

(j)
)
, (10)

i.e., we evaluate p
(
w(j)

)
for all j and pick the maximum.

This approach is advantageous because it does not require
storing the entire population to obtain the global maximum;
instead, we can simply compare each new realizationw(j) to
the realization that previously maximized p(w). If the new
realization achieves a larger p(w), it replaces the previous
maximum, otherwise it can be discarded. Thus, throughout
the entire process, only one realization needs to be stored.
Furthermore, p(w(j)) is already calculated in the process of
generating w(j) and is thus readily available for the compar-
ison. Also note that, in contrast to ŵS , ŵeval can use all re-
alizations including those from the earliest iterations, since
transient effects of the initialization do not cause a degrada-
tion here.

In principle, (10) would not require that the realizations
are generated from p(w). However, generating them from
p(w) increases the probability that even a moderate-sized set
of realizations contains the maximizer of p(w) within the do-
mainW , which is ŵ according to (9).

3.3. Metropolis-Hastings sampling

For generating the realizations w(j), we propose to apply
Metropolis-Hastings sampling. Each iteration of this algo-
rithm generates—if we ignore for the transient influence of
the initialization—a new realizationw(j) from the target dis-
tribution p(w). To do this, we first generate a proposal w̃
from some proposal distribution q

(
w̃
∣∣w(j−1)

)
, whose shape

depends on the realization from the previous iteration, i.e.,
w(j−1). Then, the new realizationw(j) is chosen as

w
(j) =

{
w̃ with probability αj

w(j−1) with probability 1−αj ,
(11)

where

αj = min

{
p
(
w̃
)
q
(
w(j−1)

∣∣w̃
)

p
(
w(j−1)

)
q
(
w̃
∣∣w(j−1)

) , 1

}

. (12)

There are various ways to determine when to terminate the
iterative process, e.g., by examining the distribution of the re-
alizations and judgingwhether it has converged to a stationary
distribution [13]. A simpler approach is to predetermine the
number of iterations J based on training.

The proposal distribution q(·|·) is not determined by the
Metropolis-Hastings concept but can be chosen freely, under
some mild conditions. The choice of q(·|·) is crucial in the
sense that it critically determines the rate at which the es-
timators improve with increasing numbers of iterations. If
q
(
w̃
∣∣w(j−1)

)
is concentrated aroundw(j−1) too strongly, for

example, the estimators typically improve steadily but very
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slowly, and the algorithm may spend excessive numbers of
iterations around local maxima of the target distribution. On
the other hand, if q

(
w̃
∣∣w(j−1)

)
is completely independent of

w(j−1), it typically produces excessive numbers of proposals
that correspond to small values of αj and thus fail to improve
the estimators because of (11).

Our choice of the proposal procedure and the resulting
proposal distribution is as follows. We use two different
types of proposals, which we call “small-step” proposals and
“large-step” proposals. In each sampler iteration, we de-
cide to make either, with some fixed small probability ρ, a
“large-step” proposal or, with probability 1−ρ, a “small-step”
proposal. In our simulations, we set ρ = 1/(20D). We can
express q

(
w̃
∣∣w(j−1)

)
as

q
(
w̃
∣∣w(j−1)

)
= ρ q large

(
w̃
∣∣w(j−1)

)

+ (1− ρ) qsmall
(
w̃
∣∣w(j−1)

)
.

For generating a “small-step” proposal w̃, we randomly
choose two elements fromw(j−1) and flip them. More specif-
ically, w̃ is obtained from w(j−1) by changing the m(add)-th
element from 0 to 1 and the m(rem)-th element from 1 to 0.
The index m(add) is chosen using a uniform distribution over
all the zero elements ofw(j−1):

padd
(
m

∣∣w(j−1)
)
=

1

D − d
, (13)

for m ∈ {1, . . . , D} such that w(j−1)
m = 0. For choosing

the index m(rem), we assign higher probabilities to indices
that correspond to a large entry in the residual x̃(w), because
removing such indices from the support of w potentially re-
duces the cost most (cf. (8)). This choice is based on the same
rationale that also underlies the alternating descent algorithm
described in Subsection 3.1. The distribution ofm(rem) is de-
fined as:

prem
(
m

∣∣w(j−1)
)
=

∣∣ x̃m(w(j−1))
∣∣2

∥∥ x̃(w(j−1))
∥∥2

, (14)

for m ∈ {1, . . . , D} such that w(j−1)
m = 1. The probability

of obtaining some w̃ fromw(j−1) in a “small-step” proposal
is thus

qsmall(w̃|w(j−1)) =padd
(
m(add) ∣∣w(j−1)

)

× prem
(
m(rem) ∣∣w(j−1)

)
,

for all w̃ that differ fromw(j−1) in exactly one nonzero entry
and one zero entry, and 0 for all other w̃.

“Large-step” proposals are intended to further reduce the
risk of finding only a local maximumof the target distribution.
Here, the proposal w̃ is chosen from a uniform distribution
overW , independently ofw(j−1) or x:

qlarge(w̃|w(j−1)) =
1

(
D
d

) . (15)

Algorithm 1 MH sampler for robust censoring

1: Initialize with anyw(0) fromW , ŵeval ← w(0)

2: Iterate for j = 1, . . . , J :
3: With probability ρ:
4: Generate w̃ from (15) (“large-step”)
5: In the converse case:
6: Generate m(add) from (13) and m(rem) from (14)

and calculate w̃ (“small-step”)
7: Calculate αj according to (12)
8: With probability αj : w(j) ← w̃

9: In the converse case: w(j) ← w(j−1)

10: If p
(
w(j)

)
> p

(
ŵeval

)
: ŵeval ← w(j)

The algorithm is summarized in Algorithm 1. For d > N ,
the complexity per iteration is dominated by O(Nd2) flops.
Note that, in “small-step” iterations, which constitute the vast
majority of all iterations, all computations of matrix inverses
can be replaced by low-complexity rank-2 updates, since only
two elements of w are changed. This is particularly advanta-
geous for large-scale problems.

4. NUMERICAL EXPERIMENTS

To assess the performance of the proposed method, we gener-
ated several thousand data vectors according to (1). We study
a setting whose dimensions allow us to perform an exhaus-
tive search, with D = 16 and N = 5. For each data vector,
the elements ofA, θ, and n were individually generated from
zero-mean Gaussian distributions with variances 1/N , 1, and
10−4, respectively. Each row of A was normalized such that
‖am‖ = 1. In each data vector, o=4 out of the D=16 ele-
ments were contaminated with outliers, by adding zero-mean
Gaussian noise with variance σ2

out. In different experiments,
σ2
out and d were varied to study the behavior of the method in
different settings.

For each data vector, θ and w were calculated according
to Algorithm 1 with J = 4000 iterations. The correspond-
ing curves are labeled as MH. As a performance benchmark,
we performed an exhaustive search overW to find ŵ accord-
ing to (6). Furthermore, we compare the proposed method
with the sparsity-controlling outlier rejection [8], which we
solve using SeDuMi [14]; we label the corresponding curves
as SCOR. The results of the alternating descent method de-
scribed in Subsection 3.1 are also shown, illustrating its de-
ficiency due to local minima of the cost function. Existing
data censoring schemes such as [4, 15] censor measurements
with smaller residuals, that is, they do not censor outliers.
As a result, the presence of outliers would lead to very poor
quality estimates, and thus, we do not compare our results
with [4, 15].

Fig. 1(a) shows the average of
∥∥x̃(ŵ)

∥∥2, i.e., the cost
according to (8) that is achieved by the estimate ŵ, using
d = 12 and different values of σ2

out. We can see that the
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Fig. 1: Estimation performance for different values of σ2

out and d/D: (a) Cost according to (8) achieved by the estimates ŵ, for
d/D=0.75 and varying σ2

out; (b) The same, for σ2
out=10 and varying d/D; (c) Empirical NMSE of θ̂, for σ2

out=10 and varying
d/D; note that our exhaustive search minimizes ‖x̃(ŵ)‖2 rather than the NMSE of θ̂ and is thus not a lower bound in this plot.
The shown results are averages over 10 000 experiments.
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Fig. 2: Empirical cdf of ‖θ̂ − θ‖2/‖θ‖2 from 10 000 experi-
ments, with d/D=0.75 and σ2

out=10.

proposed method achieves a significantly lower cost than the
other methods, even attaining the optimal results found by
exhaustive search for some values of σ2

out. Fig. 1(b) and (c)
show results from experiments where σ2

out is fixed at 10 and d
is varied between 7 and 12, leading to different compression
rates d/D. Fig. 1(b) again shows the average cost accord-
ing to (8), whereas Fig. 1(c) shows the empirical NMSE of
θ̂. As in Fig. 1(a), the proposed method clearly outperforms
the other methods in terms of both cost and error. For a more
detailed analysis beyond average performance, Fig. 2 shows
the empirical cdf of ‖θ̂− θ‖2/‖θ‖2, using the data from Fig.
1(c) at d = 12. We can see that the typical performance of
all methods is much better than the average one, but some ex-
periments show an exceptionally large error. In the proposed
method, however, this effect is less pronounced than in the
other methods. Furthermore, its typical performance is bet-
ter than that of the reference methods, with a cdf that largely
coincides with that of exhaustive search.

5. REFERENCES

[1] S. Joshi and S. Boyd, “Sensor selection via convex optimiza-
tion,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451–462,
Feb. 2009.

[2] S. P. Chepuri and G. Leus, “Sparsity-promoting sensor selec-

tion for non-linear measurement models,” IEEE Trans. Signal
Process., vol. 63, no. 3, pp. 684–698, Feb. 2015.

[3] C. Rago, P. Willett, and Y. Bar-Shalom, “Censoring sensors:
A low-communication-rate scheme for distributed detection,”
IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 2, pp. 554–
568, 1996.

[4] E. J. Msechu and G. B. Giannakis, “Sensor-centric data reduc-
tion for estimation withWSNs via censoring and quantization,”
IEEE Trans. Signal Process., vol. 60, no. 1, pp. 400–414, Jan.
2012.

[5] P. J. Huber, Robust statistics, Springer, 2011.
[6] P. J. Rousseeuw and A. M. Leroy, Robust regression and out-

lier detection, vol. 589, John Wiley & Sons, 2005.
[7] M. A. Fischler and R. C. Bolles, “Random sample consensus: a

paradigm for model fitting with applications to image analysis
and automated cartography,” Communications of the ACM, vol.
24, no. 6, pp. 381–395, 1981.

[8] J.-J. Fuchs, “An inverse problem approach to robust regres-
sion,” in Proc. IEEE ICASSP-1999, Phoenix, AZ, USA, March
1999, pp. 1809–1812.

[9] C. P. Robert and G. Casella, Monte Carlo Statistical Methods,
Springer, New York, NY, USA, 2004.

[10] G. Kail, F. Hlawatsch, and C. Novak, “Efficient Bayesian
detection of multiple events with a minimum-distance con-
straint,” in Proc. IEEE SSP-2009, Cardiff, Wales, UK, Aug.–
Sep. 2009, pp. 73–76.

[11] G. Kail, J.-Y. Tourneret, F. Hlawatsch, and N. Dobigeon,
“Blind deconvolution of sparse pulse sequences under a min-
imum distance constraint: A partially collapsed Gibbs sam-
pler method,” IEEE Trans. Signal Process., vol. 60, no. 6, pp.
2727–2743, June 2012.

[12] N. Dobigeon and J.-Y. Tourneret, “Bayesian orthogonal com-
ponent analysis for sparse representation,” IEEE Trans. Signal
Process., vol. 58, no. 5, pp. 2675–2685, May 2010.

[13] A. Gelman and D. B. Rubin, “Inference from iterative simula-
tion using multiple sequences,” Statist. Science, vol. 7, no. 4,
pp. 457–472, Nov. 1992.

[14] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for op-
timization over symmetric cones,” Optimization methods and
software, vol. 11, no. 1-4, pp. 625–653, 1999.

[15] G. Wang, D. K. Berberidis, V. Kekatos, and G. B. Giannakis,
“Online reconstruction from big data via compressive censor-
ing,” in Proc. GlobalSIP-2014, Atlanta, GA, USA, Dec. 2014.

2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

499


