
TIMING-DRIVEN CHIP DESIGN

Timing-driven chip design

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus, Prof.dr.ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 26 april 2004 om 15.30 uur

door

Dignus Johannes JONGENEEL

elektrotechnisch ingenieur
geboren te Dordrecht

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. R.H.J.M. Otten

Samenstelling promotiecommissie:
Rector Magnificus, voorzitter
Prof. dr. ir. R.H.J.M. Otten, Technische Universiteit Delft, promotor
Prof. dr. R.K.Brayton, University of California at Berkeley
Prof. dr. H. Corporaal, Technische Universiteit Eindhoven
Prof. dr. ir. P.M. Dewilde, Technische Universiteit Delft
Prof. dr. ir. P.R. Groeneveld, Technische Universiteit Eindhoven
Dr. ir. N.P. van der Meijs, Technische Universiteit Delft
Prof. dr. S. Vassiliadis, Technische Universiteit Delft

Copyright 2004 c©by Dirk-Jan Jongeneel. All rights reserved. No parts of this
book may be reproduced in any form or by any electronic or mechanical
means (including phothocopying, recording, or information storage or
retrieval) without prior permission in writing from the author.

contents

1 introduction 1
1.1 ic design complexity: chasing moore’s law 1
1.2 the ic design process . 4
1.3 refinement . 9
1.4 the anatomy of an ic design flow 11
1.5 constant delay design methodology 13
1.6 iteration free design . 15

2 wire planning 19
2.1 early timing analysis . 20
2.2 fixing delays . 22
2.3 sketches of a flow . 25
2.4 time budgeting . 38
2.5 hierarchical context . 41
2.6 algorithms . 47

3 time budgeting 49
3.1 the problem in a wire planning context 49
3.2 mathematical problem formulation 52
3.3 problem size reduction . 56
3.4 further tableau reductions 69
3.5 enhancing robustness . 74

4 constant delay mapping 77
4.1 technology mapping . 80
4.2 area control . 88
4.3 search space control . 97
4.4 experiments and conclusions 103

5 conclusions 109

vi CONTENTS

bibliography 112

summary 117

samenvatting 121

acknowledgements 127

biography 129

Chapter 1

introduction

1.1 ic design complexity: chasing moore’s law

Forty years ago technologists have produced the first silicon chip containing
more than one transistor. At that time, only very few realized the profound
significance of this ’birth’ of the first Integrated Circuit in a small Fairchild
laboratory in Palo Alto. Even fewer people could predict the profound influence
it would have on the world decades later. One of those few who did see the
significance of the birth of the digital semiconductors was Gordon Moore. In
1963 he predicted that integration density on silicon will quadruple every 3
years. This has proven to be one of the most reliable predictions in the history
of industry.

Today, after 40 years of uninterrupted exponential growth in integration
density, designs have over 100 million transistors. They pack a kilometer of
interconnect wire that is only 1

100th as thin as a human hair. Devices of such
complexity are unprecedented in human history. It is also unique compared to
other disciplines in engineering. A Boeing 747 airplane, for instance, only has
a 5 million components. Moreover, its basic design did not change much in the
35 years since its inception. In contrast, a state of the art PC, is completely
outdated after just 3 years. Technologically, microelectronics is driving a new
industrial revolution that is affecting all aspects of life.

To be more precise, Moore’s law states a doubling of the number of transis-
tors on a chip every 18 month. The Semiconductor Industry Association (SIA)
tracks this development and also extrapolates a forward outlook for this de-

2 introduction

velopment. It regularly presents a document known as the SIA roadmap. The
key technical data of the latest (2003) update of the Semiconductor Industry
Association (SIA) roadmap[36] is shown in table 1.1.

Year 2003 2005 2007 2009 2012 2015
Channel length [nm] 65 45 35 28 20 14
uP Transistors [106] 153 243 386 614 773 2454
Global Clock [MHz] 2000 3125 4883 7629 14901 29103
Local Clock [MHz] 2976 5204 9285 12369 20065 33403
Local wire length [km/cm2] 0.57 0.97 1.11 1.55 2.21 3.54
ASIC Package Pins 2400 3400 4100 4600 4810 6402

Table 1.1: 2003 SIA Roadmap for key parameters

In consumer electronics (which represents one of the most competitive
markets for semiconductors) a linear perceived increase in utility is obtained
by investing an exponential increase in the transistor count. This is referred
to as the “law of observed functionality” [8]. Therefore, Moore’s law is merely
enabling a linear increase in product functionality. Without such functionality
increase there is less incentive for consumers to replace existing equipment. As
an example, consider the automotive industry. The transistor count in a car has
indeed increased exponentially, mainly to control features such as fuel injection,
abs, esp, airbags, satellite navigation, etc. To the consumer, these features
appear as regular (linear) progress, providing incremental improvements. The
design cost of such incremental features must be kept under control.

The times that IC’s are designed manually have long gone. Electronic
Design Automation (EDA) tools are software programs that design and verify
an integrated circuits. If the design cost is to be kept constant, the IC design
productivity must increase with the same exponential rate as the processing
technology. To design a circuit in the same amount of man-months, EDA
software tool capacity must increase exponentially as well. The entire increase
in productivity must come from the EDA tools and the methodology, since the
capabilities of the human brain has been virtually constant.

1.1 ic design complexity: chasing moore’s law 3

In a nutshell, productivity increase of the design automation tools must keep
up with the complexity increase of IC technology (that is driven by Moore’s
law). The design productivity of IC’s is particularly affected by the following
issues:

• System complexity: issues that rise from handling the sheer size of the
SoC. Algorithms may not be able to handle design steps in reasonable run
times. This necessitates a hierarchical design methodology and IP inte-
gration with reuse. System complexity scales exponentially with Moore’s
law.

• Silicon complexity: the issues related to silicon manufacturing technology
such as device and interconnect parasitics, geometrical and electrical
design rules, device reliability and process variability. In a way, silicon
complexity is the result of the underlaying physics that enable system
complexity. In a design flow, silicon complexity increases the number of
steps.

Both system and silicon complexity are increasing, leading to a superex-
ponential increase in overall design complexity. Will it remain possible for a
small group of humans to design a system of such huge complexity in reason-
able amount of time? Based on the historic evidence over the past decades,
the answer could be a cautious ’yes’. Despite continuous sceptism, Electronic
Design Automation (EDA) tools have kept up with the exponentially increas-
ing transistor count until now. But there is growing evidence that the ’design
productivity gap’ is widening.

To verify how the design productivity increase performed until now, lets
consider the historical data in table 1.2. This shows the key data for the design
of a popular family of graphics processors, as presented by Chris Malachovski in
2002 [27]. Graphics processors are representative for the asic design style where
the logic is mapped onto a standard cell layout. The design time (measured as
the number of months from design inception to tape-out) has remained fairly
constant at approximately 12 to 18 months.

Looking at table 1.2, there is clear evidence that design productivity has
increased significantly in 9 years. The latest chip required 5 times as many
front-end designers and 9 times a many back-end designers than the 1993
chip. Meanwhile the transistor count went up by over 3 orders of magnitude

4 introduction

Design Techn. Trans. System Staff
start node count compl- front- back-

[M] exity end end
1993 0.50µ 0.75 1x 1.0x 1.0x
1995 0.50µ 1.25 1.5x 1.2x 3.0x
1996 0.35µ 4.0 4x 1.6x 3.0x
1997 0.31µ 7.5 7x 1.7x 4.0x
1998 0.25µ 9.0 10x 1.5x 4.0x
1998 0.22µ 22.0 20x 2.5x 5.0x
1999 0.18µ 25.0 22x 1.5x 4.0x
1999 0.15µ 57.0 30x 3.5x 6.0x
2000 0.15µ 60.0 35x 1.5x 7.0x
2000 0.15µ 63.0 40x 3.0x 7.0x
2001 0.13µ 120.0 50x 5.0x 9.0x

Table 1.2: Design Scale and complexity of a graphics processor chip family
over the past 9 years (Source: Nvidia [27]).

in the same period. Ideally, however, it would have been desirable to be able
to design the latest chip with no additional engineers. A productivity gap is
widening, but it widens slowly. Will this pace accelerate in the near future?

Another observation that can be derived from the data is that the produc-
tivity gap for back-end layout design is widening faster than at the front-end
logical design. Apparently physical design is getting tougher than frontend
design.

1.2 the ic design process

Before going into more detail about the design process steps and automation
and optimization it is necessary to draw the big picture for chip design. At the
top level, the design enineers start out with a general idea about the function
of the chip. An additional set of requirements for performance, cost and design
time is also given. In the process of refining these requirements, the designers
gradually add additional detail. The design progresses along various levels of
abstraction, eventually ending up at the detailed transistor and mask level for

1.2 the ic design process 5

mass production. The process of refinement in represented in figure 1.1 as
finding the right way down a triangle.

detailing

few variables few alternatives

abstraction

many alternativesmany variables

Figure 1.1: Circuit design: going from abstract to high detail

The top the triangle represents the initial situation with only a few vari-
ables and objectives. The narrowness represents the small number of possible
alternatives. The bottom of the triangle represents much more detail, such as
information about sizes and locations of transistors, routes and sizes of wires,
etc. But this level allows also for many different alternatives. The aim is to
achieve an optimal design by starting from the top ending up at the right spot
on the bottom of the triangle. The final design must fulfill the requirements
started with at the top.

The transformation from a conceptual level to the detailed transistor level
is not possible in one step. Instead, a long chain of smaller steps is performed,
gradually stepping from a high level of abstraction to the lowest level. Each
levels of abstractions are used to obtain manageable tasks going from one level
of abstraction to another.

We can distinguish multiple levels of abstraction in this design process, each
with its own set of EDA tools (figure 1.2). And each has a different degree of
automation. At the bottom level elementary logic gates are designed as layout
mask patterns. Each cell contains just a hand full of transistors. A library

6 introduction

of gates is designed for each process technology. This ’gate-level’ abstraction
already hides a significant amount of process-specific detail.

The gate level network is an interconnected set of instantiations of spe-
cific gates in the library. Automatic routing algorithms generate the pattern
that interconnects the gates. Other programs automatically place hundreds of
thousands of gate instances on the chip surface. This process of placement
and routing is called the physical design (or layout synthesis) of the IC.

Technology mapping is performed on a higher level of abstraction to con-
vert an optimized logical network of boolean function nodes into a gate level
network. At this point physical detail is introduced using the already abstracted
information from the gate library of a process.

At the next abstraction level logical synthesis programs generate and opti-
mize a net list of boolean function netwerk nodes from functional RTL descrip-
tion in a hardware description language. Higher levels of design abstraction
(behavioral and architectural synthesis) have also been automated. Not every
transition of abstraction level is successfully automated. Especially the higher
levels synthesis are difficult to automate, but efforts are there. Design space
exploration systems are used to evaluate different architectures and languages,
like SystemC, are developed to do high level modeling and simulation.

In this thesis we will focus on design automation methodologies at the
boundary of the logical and physical domain.

The direction of the vertical arrows in figure 1.2 indicate the design syn-
thesis and analysis paths along the levels of abstraction. Analysis tools verify
the result of the synthesis tools. It can be seen as propagating information up
the levels of hierarchy. In some cases it is straightforward bookkeeping, such
as propagating size information up. In other cases it is detailed simulation to
verify whether the circuit is within the required design limits. Analysis is in
general straightforward easy, and the results are precise.

Synthesis is the process of moving down in an widening tree of possible
implementations. It is in general more difficult and often computationally
intensive. During synthesis decisions have to be made based on information
that is available at the time. This information can be incorrect or imprecise,
which adds a significant amount of uncertainty.

1.2 the ic design process 7

logic synthesis

technology mapping

layout synthesis

behavioral synthesis

architecture synthesis

conceptual design

functional blocks

RTL description

logic network

layout

analysis

synthesis

gate level network

Figure 1.2: Different levels of abstraction used in circuit design

The main problem in the automation for the synthesis of higher levels of
abstraction is to obtain valid abstract models to operate on. The higher the
level of abstraction the harder it gets to model all aspects of the underlying
levels in only a few parameters. Only very regular structures like memory or
counters or pre-designed IP blocks are a little easier. But still only a small
fraction of a complex system on a chip.

Automation of the lower levels of design abstraction has been more suc-
cessful. This is in part because more accurate models are available at the lower
abstraction levels and in part because layout design automation research has
a longer tradition.

Accurate design metrics to populate the model are needed to guide the syn-
thesis process along its way from a conceptual design level down to a physical
implementation level. Typically, a synthesis tool explores a number of possible
ways to go down the design tree. Each time it evaluates the design metrics
that represent the quality of the configuration. Based on the outcome it will
take a decision.

The final design must trade-off various conflicting design objectives. The
most relevant objectives in the context of this thesis are delay (which equates
to speed) and area (which equates to production cost). At every abstraction
level there is some notion of their value. Typically the most promising solution

8 introduction

is chosen to continue the synthesis process. Since the decision is based on
incomplete or imprecise information, it is not unlikely that an abstraction layer
analysis step will detect errors or infeasible design constraints.

Algorithms are typically not well equipped to make a trade-offs between
delay and area. The objects are as different as apples and peaches. Therefore
only one objective is dealt with at a time. This results in a sub-optimal overall
solution.

M3

A=1 D=5

A=2.25 D=3

M1 M2

A=12 D=20 A=3.75 D=6

A=20 D=10 A=8 D=4

A library showing two implementations for

each module

M1

M1

M2

M3

M3

Circuit to create a layout for

M1

M2

M1

A=50 Areq=117
D=21 Dreq=35

A=32.25 Areq=117
D=27 Dreq=35

M1

M1M3

M3

M3

M3
M2

Two valid layouts meeting required area and delay

Figure 1.3: The minimized solution is not always required

To illustrate this, lets consider the example in figure 1.3. The figure on
the top left shows a set of 6 modules that make up the functionality of the
chip with a circuit as on the top right. For each such logical module, different
layouts can be produced. They can in area, shape and speed. The bottom
part shows two valid chip implementations that both meet the initial design
requirements for are and delay.

The right implementation was produced by a tool that minimizes area.
Since delay was not (much) an objective, the speed of the circuit is slower.
The left implementation was produced by a tool that only minimizes delay,
while disregarding area. As a result, its area is indeed much larger.

1.3 refinement 9

Since both circuits are meeting the design requirements, each has spent
unnecessary effort in optimizing a single objective: one is too small, the other
too fast. Suppose we tighten the design constraints to Areq < 40 and Deq =
25. In this case neither implementation would have been feasible. A better
trade-off between area and power could have found such a feasible solution.

The main problem remains that a general optimization towards a single
objective disregards the other objectives. In many cases it is much better to
only optimize a few critical components, while leaving some ’slack’ for all other
components. A subsequent optimization towards another objective can pick
up this slack, leading to a better trade-off between conflicting objectives. This
is one of the main thrusts of this thesis that we will work out in more detail in
the remainer of this thesis.

1.3 refinement

The process of detailing a design from concept to layout can be seen as a
stepwise refinement process [41]. At each abstraction level a synthesis step
is performed that refines the design solution. The objective of a refinement
step is to fix a single parameter, while postponing decisions on all other design
parameters to an as late as possible stage. The problem that is fixed at a step
must remain unchanged during subsequent refinement steps. One a decision
is taken, the following steps have to take the result as a constraint. This is
the blueprint of a non-iterative paradigm that we’ll use throughout this thesis.

Poor modelling of the design metrics will not only result in sub optimal
results, it might also result in over constrained sub problems. Modelling errors
at higher levels are unavoidable, however. The goal is to conceive a design flow
that can deal with the errors. In this way, the task of the subsequent steps is
to adapt the reality to the model (rather than vice-versa).

As parameters are fixed and not changed afterwards their order of fixation
is important. The predictions can still be impreciese when we really have to
make a decision, but this is not as bad as neglegting them in the first place. We
will see this to be a major problem of current design flows causing itterations
trying to recover.

10 introduction

perfect and optimal design failing design sufficient design

Figure 1.4: When roundness of wheels is taken into account early a non failing
sufficient design might exist which need not to be perfect

The prediction can be off-target, but in a stepwise refinement paradigm its
result should not be completely wrong. Looking for example at a car (figure
1.4), square wheels are very unlikely to be satisfactory and if some roundness
was required from the beginning this would not have occurred although they
still might not be perfectly round. But at least we do have a somewhat
driveable car. If we negleged roundness of wheels in the design process we
have to start over again and, with better knowledge now, assume wheels with
some roundness. This leads to an unguaranteed number of itteration trying to
converge to the somewhat more or less driveable car.

design needs improvement hard to fully optimize tires easy refinement of exterieur

Figure 1.5: Refining the parts which are the worst costs less than fully optimize
an already good enough part

In case the constraints are tighter than expected, stepwise refinement will
still fail on certain aspects. Taking a car as an example again the wheels might
not have been chosen to be perfectly round which would be ideal (figure 1.5).
If moving the car at some speed at some energy cost is now not meeting our
requirements the iteration approach could start to make the wheels rounder,
or even perfect round, like an optimal designed and hand crafted car. This
might give a solution but could cost a considerable amount of effort. In fact
this aspect of the design can be overconstrained. Stepwise refinement would
just go on with the best we can get and start refine other aspects. There is
also room for improvement with a different more aerodynamic exterior design
which would be able to make the car move fast enough with the non perfect
wheels and would require much less effort to accomplish.

1.4 the anatomy of an ic design flow 11

1.4 the anatomy of an ic design flow

Lets consider a generic design flow in more detail. Figure 1.6 shows the major
steps in the IC design flow:

1. Behavioral synthesis results in an Register Transfer Level (RTL) de-
scription of the circuit. In most cases this is a manual process.

2. Logic synthesis tools produces a technology-independent net list of
modules gates that implement the desired functionality. The optimiza-
tions in the stages are performed without taking into account the delay
or area characteristics of the IC fabrication process. The main aim is
boolean optimization.

3. Technology mapping is the process of converting the above description
in a net list of gates in a specific technology. The tools attempts to
fulfill delay constraints while minimizing the total area. The output is a
interconnected net list in which the gates have a specific size, based on
the statistical wire load model.

4. Layout Synthesis consists of 2 major steps:

• Placement of the gates. The primary objective of the placer is
to ensure that the gates are not overlapping and the total wire
length is minimized. Issues such as minimizing the length of the
most timing critical paths are only taken as secondary objectives.
The large number of critical path is often over-constraining the
algorithm.

• Routing of the wires to interconnect the gates. This generates the
topology and layer of the wires, and with that it sets the parasitic
wire capacitances. Some wires will need to detour around obstacles,
resulting in a higher than expected parasitic load.

The major problem that we are dealing with lies in step 3, where the optimiza-
tion algorithms are unaware of the actual parasitic delays of the wires. This
is becuase at that stage, the wires have not yet been laid down. The wire
delays are only known as result of the last step. In most cases it is not possible
to place the gates such that the timing of the entire circuit is feasible. To

12 introduction

alleviate the timing problem designers are running steps 3 and 4 a number of
times in an iterative fashion. Each time the latest parasitic data is fed back
into the optimization algorithm of step 3, and each time the circuit is placed
again from scratch. This iterative process is not only slow, it is also not guar-
anteed to converge, especially in the latest processing technologies. If it does
not converge, the designer is required to iterate back to steps 1 and 2.

The cause of the problem in the above iterative approach is that the syn-
thesis tool in step 3 made a premature decision on the size of the logic gates.
At a later stage, it was not possible to recover from the likely mistakes in this
decision.

technology

footprint

synthesis
layout

mapping
technology

timing
optimizationtiming

analysis

design synthesis
behavioral

synthesis
logic

library

conceptual

Figure 1.6: A circuit design methodology with possible iterations as dashed
arcs

The tighter the constraints become and the more dependencies appear the
harder it gets and more iterations are needed with no guaranteed convergence.
This leads to an undesired increase and unpredictability of design time. This
can not be solved by using more engineers too, especially if dependencies
increase. Designing in parallel becomes useless if one part has large influence
on an other part.

1.5 constant delay design methodology 13

The key cause of the problems in the above flow is the parasitic capacitance
of the metal interconnect. Below 0.25µm interconnect starts to dominate the
gate delay on a path delay [9]. Therefore the wire parasitics it can no longer
be ignored as they were in the time when the flow was conceived.

The delay of a simple unbuffered wire grows quadratically with its length.
Therefore it is the small fraction of long wires that cause the timing closure
problems in IC design. At the higher levels of abstraction (steps 1, 2 and 3) it
is not possible to predict which wires will be long.

It has been shown that the delay of a long wire (larger than 1 mm) can
be made to increase linearly with the length using appropriate gate sizing
and buffering[32][31]. We will use this effect since it simplifies the model
considerably.

Without a good estimate for the parasitic wire delay, logic synthesis is fo-
cussing its timing optimization effort on the wrong paths. The actual parasitics
of a wire between gates is only known after the circuit has been put through
a number of physical design stages. In order to get to these stages a feasible
gate-level net list must be available. On its turn, a proper gate net list depends
on the expected parasitics. This chicken-and-egg loop was generally fixed by
iteration or manual intervention.

1.5 constant delay design methodology

The lengths of these long wires seem hard to predict and model in advance
but have a huge impact on performance and design time. If they are disre-
garded as usually is done, the consume modules already all available delay and
therefore the total design including wires will not meet all requirements. Lots
of tweaking and iterations are needed to try to get to a feasible design as the
size of the modules impact their locations which in turn influences the wire
lengths between them. It is even very unlikely to get to a solution unless most
constraints are far from tight.

The initial solution for dealing with interconnect parasitics was the so-called
”wire load model”that models wire parasitics to be dependent on design size
and the number of fan-outs on a wire. Statistically, this model is correct, but
the variations on individual wires can be off by hundreds of percents. Since

14 introduction

system timing is determined by the worst case timing path out of millions
of paths, this variation is unacceptable. Ivan Sutherland [39] introduced the
concept of logical effort that elegantly captures the first-order relationship
between gate size, speed and delay. Larger gates have bigger transistors that
can charge the capacitance of a wire quicker, making the path faster. During
the placement process the wire length between a gate output and the inputs
it drives can be estimated. This translates into an estimated wire capacitance
that, on its turn, corresponds to a certain gate size. Adapting the gate size
to the parasitic load can keep the path delay constant over a certain range.
Meanwhile, downsizing gates that are less timing-critical saves area and reduces
power consumption.

Gates with a larger drive strength will also impose a larger parasitic load
on their input pins. The larger internal transistor will have a bigger active gate
area. In conventional static cmos circuits this relationship is approximately
linear: doubling the drive strength of a gate will double the parasitic load of
its input pins. This means that this gate will have to be driven by a gate with
a larger drive strength. Sizing down a gate will have the opposite effect: a
smaller drive strength will be needed to drive its input at a given speed.

In Sutherland’s model the gate delay is solely dependent on the ratio of
the output load Cload over the input capacitance Cin. The ratio Cload

Cin
is called

the gain. Keeping the gain constant during a design flow will keep delay
constant [30].

This ’gain based synthesis’ technology has been implemented in certain
modern layout synthesis systems, e.g. [3]. The guiding concept in gain based
layout synthesis is to pick delays beforehand, and keep them fixed throughout
the design steps. As the parasitic load Cload varies as a result of the actual
placement and routing. Keeping the gain constant means varying the input
capacitance by the same amount. The latter implies gate sizing.

Gain-based gate sizing is the first ’line of defence’ in maintaining timing
correctness. Other techniques, such as buffering, cloning, logic restructuring,
and useful skew clock synthesis are also applied fulfill the timing constraints.
The net list at the input of such system is quite different from the one that
actually ends up in copper wires and silicon gates on the chip.

New delay modeling [20] [38] [16] [17] and usually together with new ap-
proaches at certain stages [31] [32] [23] [22] in the design process leads to

1.6 iteration free design 15

synthesis
behavioral

technology

footprint

area

design

library

sizing

delay assinging

mapping
technology

synthesis
logic

synthesis
layout

area

conceptual

optimization
(buffering)

budgetting

wire planning
delay

Figure 1.7: A circuit design methodology which keeps delays constant by area
adjustments

a design flow keeping the delay constant early in the flow (figure 1.7). Still
iteration is needed or desired to change area. Decisions are taken early on in
the flow and might be off, and there might be a better structure or architecture
with a lower area at the same delay. But at least the delay is given early and
area is less restrictive often and merely results in savings if less area is used.

1.6 iteration free design

The ideal iteration free design style follows the stepwise refinement paradigm
without any iterations. (figure 1.8). For a chip design flow this implies that
the delay of long global wires should not be neglected at the beginning. It
also requires a recovery mechanism for mismatches between predictions and
reality. This process is improved by using better predictions and by deferring
some decisions. The a-priori planning of wires can avoid ’surprises’ later on in
a flow.

16 introduction

synthesis
behavioral

technology

footprint

design

library

area sizing

area sizing
mapping
technology

logic
synthesis

area sizing

wire planning

budgetting
routing estimation
initial floorplan

architecture

refined floorplan
global routing

function units

initial placement
refined routing
logic gates

final placement
detailed routing

transistors

delay

area
optimization

(buffering)
verification
delay

delay assinging

layout
synthesis

conceptual

Figure 1.8: The refinement approach does an early guess of wiring, function and
placement and refines this each step more and does not falsification previous
taken decisions by iteration

At first sight, avoiding iteration at any price might seem too costly. Yet we
have to keep in mind that optimization of certain design metrics are more for
the purpose of automation and ordering of alternatives than a requirement. Of
course saving some area might result in a little more profit, but the decision
to do the design was based on the requirements set at the top level. As long
as those are met, the avoidance of iteration and thus increase in design time
is worth a lot too.

Although no iteration and altering of previous decisions is allowed, the stick-
ing to estimated values is not completely true. In fact they are immediately
neglected when the estimated values have been refined and the total result has
to be presented to a higher level of the design (figure 1.9). Using some estima-
tions some placement is calculated with some area estimations and from that
the lower levels of the design have been designed with the given parameters. If
now the resulting placement is required, not the previous estimated values and
placement is returned, but a new calculated placement with the real values.
If the estimation was close to the real values, the same answer would result,
but if some differences occur, possibly some being better and some worse, a
new placement can be calculated which will consume gracefully the errors and
represent still the same footprint to the upper level.

1.6 iteration free design 17

�
�
�
�

�� ����

����

�
�
�
�

��
��
��
��

��

�
�
�
�

����

��
��
��
�� ����

��
��
��
��

��

�
�
�
�

����

��
��
��
��

��
��
��
��

��

�
�
�
�

����

�
�
�
�

��
��
��
��

����

��
��
��
��

��
����

����
������

�
�
�
�

������

�
�
�
�

����

��
��

��
����

����
��

����

��
��
��
��

�
�
�
�

����

��
��
��
��

����

����
��
��
��
��

����
��

����
����������

����
����

��
����
����

��
��
��
��

������
�
�
�
�

��
����

�
�
�
�

��
��

��

�
�
�
�
��
��
��
��

����

��
��
��
��
��
��
��
��

���� ������

�
�
�
�

������

�
�
�
�

��
��������

����
��
��
��
��

�
�
�
�

��

��
��
��
��

��
��
��
��

����
��

����

��
��

��

����

��
��

����

����

����

��

����

��

����

��
��
��
��

�
�
�
�

��
��
��
��

����

����

����

����

��
��
��
��

����
��

�
�
�
�

����
��

�
�
�
�

��

����

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

����

��
��
��
��

����

��
��
��
��

�
�
�
�

��

��
��
��
��

����

���� ����

�
�
�
���
��
��
��

����
��

��
��
��
��

�
�
�
�

IDEA IMPLEMENTATION

F F

library of basic elements

requirements

synthesis

given

process

requirements

synthesis

requirements

extracted

process

extracted

analysed

merging

analysed

merging

results

results

process

results

process

from library

T<Treq <Tresult Treq

Figure 1.9: The refinement from top to bottom sets new local constraints for
lower levels. The final implementation is the result of successive substitution
from the leave

Another big advantage of refinement is the possibility to divide a design
in independent modules with specified design metric like area and delay which
will not influence each other. Therefore they can be independently designed
in parallel by several teams. This can avoid the design time increase or even
reduce it while the systems become larger and larger. Also reusable components
fit in this picture of absence of dependencies very nicely.

Avoiding iterations by refinement and sticking to its decisions and gracefully
consume mismatches results in a more predictable design time and an early
performance expectation. This expectation is important for exploring different
alternatives for a particular design on high levels and thus for an early check
point for a feasibility decision. The more predictable design time is good for
economic reasons as time to market is better known, but also for the design
effort itself as endless and possible non convergent design cycles are avoided.

18 introduction

A good example of this approach is found in floor planning and place-
ment. A floor plan results from a point placement based on interconnection
distance metrics. This results in relative locations for a placement based on
that floorplan with now area rectangles in stead of points. At that moment
the locations in the point placement or floorplan do not count any more but
the refined places of the placement. If the floorplan is made using a slicing
structure, it has been shown to be able to consume possible errors gracefully.
A similar approach will be demonstrated for the global wires which will need to
be account for for next generation designs. This procedure will be called wire
planning. Another example will show that a different refinement strategy for
the transition using technology mapping from a logic network to a gate level
network can result in a better optimization. To put it in other words delaying
some of the decisions can result in a better match between predictions and
results.

Chapter 2

wire planning

The interplay between placement and routing is the classical chicken-and-egg
problem of layout synthesis. It was obvious that the quality achievable in
routing was largely determined by placement. Yet it was difficult to guide
placement by those quality criteria. The almost invariably used objective was
an estimated total wire length. The wire length in each net was estimated by
half the perimeter of the rectangular hull of all pins to be connected by that
net. Adding these estimates, whether or not weighted, yields the score of a
candidate placement.

When the complexity of the circuits to be integrated reached a level at
which automation was a necessity much research went into improving place-
ment results with respect to the real objectives. Global routing served, beside
lowering the complexity of the detailed routing task, also as a means to ob-
tain early indications of routing quality. It could be applied on intermediate,
rather topological than geometrical, placement data. Besides, it was an aid in
avoiding iterations and supporting stepwise refinement.

It was acceptable as long as the main objective was to keep chips small,
although routability soon became an issue. It was actually the latter that
caused the term wire planning to enter the field. It was a way to preserve
regularity in interconnection structures over the various layout stages down to
the final masks. In the early nineties area and routability were no longer the
sole objectives of placement. Performance became an issue as well, now that
wire delay became an important component in the overall speed.

20 wire planning

2.1 early timing analysis

The first reactions to the new situation were ever more detailed analyses of
preliminary results, thus introducing global iterations in the design flow (sec-
tion 1.4).

size assignment

placement

routing

timing verification
fix timing

modulewireT T

placement

routing

wire

esti-
mation

timing verification

size assignment

fix timing

update

reduce area
with updated
wire estimation

modulewireT T

Figure 2.1: Initially the effect of wires was neglected. As its impact became
more profound wire estimation techniques were introduced while placement
and routing were more tightly coupled.

Again, common sense dictated that both a placement and a routing are
needed before wire delay can be calculated. For wire geometry was indispens-
able for such analysis! Modifications in the placement and soon in the higher
levels of the design were based on extraction results. But these modifications
changed the basis of the extractions as objects had to be moved, sized or
resynthesized. The new data might show, beside insufficient improvement on
the uncovered weak spots, completely new detrimental aspects requiring ad-
justments. Even more than with routability and chip size, convergence became
an issue and a problem.

2.1 early timing analysis 21

Many of the decisions that make a design incur too long delays are taken
very early in the trajectory. Iterations cycles therefore became longer and
longer, going back to stages before logic synthesis and even architecture levels.
Lack of adequate analysis tools closer to where these decisions are taken caused
numerous runs through the whole cycle without any assurance that the feasible
points in the design space were found. In the meantime integration technology
developed further, enabling more complex and faster designs possible. At the
same time cycles got longer and extraction more difficult, in the sense that more
parasitic effects had to be taken into account. These development disabled
global iterations with timing analysis at the bottom even more.

More refinement was therefore introduced in the basic trajectory mainly
to avoid long wires where they could not be tolerated. Very basic estimates
used in placements are based on the partitioning approaches [19] and are often
guided by counting of connections between different modules. If there are lots
of connections the modules have to be grouped to have them end up close
together. This is assumed to make most wires short and thus their delay effect
low. However, a consequence could be that some wires become extremely long
between two very loosely connected modules separated by a cluster of densely
connected modules.

A more advanced method is to try to minimize the total wire length of
a chip based on better estimates. Instead of half the perimeter of the rect-
angular hull of all pins in the net, more sophisticated approximations of their
steiner tree were tried. Other mathematical programming based solutions like
force directed methods [11] [28] minimizing the total sum or of manhattan
or quadratic pin-to-pin distances were further refined, and extended to use
dynamic weighting schemes.

Although these developments postponed the break-down of the traditional
methods for some time, the essential problem was not tackled by them. This
problem was to identify critical nets and effectively “protect” them from getting
too long. Repeated complete analysis to determine criticality is out of the
question because too costly and pertinent to a previous situation.

Prospects of iterating through long cycles on the basis of analysis are not
good for high performance chip design. Timing as an almost accidental result
of optimization with other objectives such as a weighted sum of wire lengths,
is not really acceptable for designs at the edge of what is possible in today’s
technologies. That industry is in need of methodologies that can guarantee
the required performance (or report infeasibility). Only a complete shift in
paradigm can enable such a methodology.

22 wire planning

2.2 fixing delays

A shift from an analysis-based modifying approach to one were delays are
postulated right from the beginning and every step in the design preserves
whenever possible those postulates would be close to what is needed. The
developments described in section 1.5 come to mind when such a shift is con-
sidered. It demonstrated the potential of keeping the delay of a gate constant
by adapting its size to the load. The elaboration of that thought led to a sys-
tem of equations which can be efficiently and robustly solved [32]. However,
the load was purely capacitive in that theory. Resistance in wires was totally
neglected. For longer wires this unrealistic. To complement that approach, a
method to control wire delay, or rather to keep them fixed from an early stage
in the design, is needed (figure 2.2).

wire planning

delay budgeting

timing verification
overconstrained

routing

placement

size assigment to
meet delay budgets

modulewireT T

Figure 2.2: The proposed wireplanning technique is capable to deal with wire
delays much better especially when their influence becomes high compared to
convential approaches as used today(figure 2.1

Such a methodology fits into a philosophy that wants to avoid global itera-
tions in the design(section 1.3). For once a delay gets fixed it is not supposed
to change anymore. If the constant delay paradigm could be adapted to fit
into this scheme by trading area for any desirable performance we may have
the key ingredients of an approach that can be aptly called wire planning. It

2.2 fixing delays 23

would once more be an approach in which decisions are postponed until the
maximum amount of information pertinent to that decision is available. This
to avoid cutting off parts of the design space that later on might turn out to
be badly needed.

Delay consists of wire delay and module delay, and the two are not always
clearly separable. If set separately they have to be maintainable separately.
Then we can allocate time budgets to each of the contributions, and make
sure that they will be realized in the end. If the total budget is too tight this
may be signaled at an early stage.

A problem however seems to be that something should be known about
lengths of wires in order to assign a certain amount of delay to them. Also
placement and routing, following the wire planning, should be able to proceed
while respecting the now already fixed wire delays. This means that an apriori
known relation between wire delay and wire lengths is needed.

The scenario so far foresees an early setting of the wire and module delays
to fixed values from which they are not to deviate in the equal. The basis for
wire delay allocation has to be some assumptions on the geometry, such as pin
distances. What ever is left after subtracting that wire delay from the windows
derived from a timing specification, is available for modules. The effect of
loading is supposed to be absorbed in the later decisions. As suggested above,
relying on the constant delay methodology to keep the delay of a module in
which wire resistance is neglectable seems to be most promising. The price for
this is in area, which might be less predictable since it is no longer a matter
of taking patterns from a library based on function or specification. Rather
the timing specification is generated by the procedure itself, and in such a way
that it fits into the available budget.

Of course timing specification can be too tight. That means that not
enough area can be made available between the pins to which the specification
applies. From a different angle: increasing module size to gain in speeds forces
pin-to-pin distances to increase leaving even less time budget to the modules.
An early indication of this situation is important.

The trade-off between area and delay, alluded to in the above, is captured
in a set of area-delay combinations, pairs of numbers that can be entered into
a quadrant of positive coordinates (figure 2.3). If there are several equally fast
implementations with different area usage only the one with minimum area at
a certain delay is interesting. Those kind of points are pareto points. A general
rule is that faster pareto realizations require larger area.

24 wire planning

D=3+7=10 D=5+5=10 D=7+3=10

M2

M1

M2M2
M1

M1

M1 M2Pareto points

other points

trade-off
curve

10

4

1

3 5 7

area

delay

5
3
2

3 5 7 delay

area

A=4+3=7A=10+2=12 A=1+5=6

Figure 2.3: Different modules will have different area-delay points. Only the
Pareto points are of interest and span up an area-delay trade-off curve for the
module. Combining two modules several areas are possible at equal delay.

As these area-delay relations are not equal for all modules it can be attrac-
tive to assign one module more delay than another such that the total area
becomes lower at an equal total delay (figure 2.3). As a result of this effect
budgeting can result in a range of total area-delay solutions. Some will be
unfeasible because they result in too high total delay. Others can be rejected
as an equally fast solution exists at lower area usage. Also solutions which are
faster than required and cost more area can be rejected.

So, in fact we are looking for a solution which just meets the timing without
using more area than necessary. Keeping in mind the remark that constant
delay modeling can change sizes to keep delays fixed it is not a bad idea
to minimize the total amount of area used or at least keep it rather low.
Minimization under the area constraints has the additional advantage of being
conclusive about feasibility when the available space (the “footprint”) is given.
It may also of course leave some space open, which is later on available for
adjustments to fixed loading or to allocate wires.

2.3 sketches of a flow 25

Choosing time budgets for the modules does require the capability in syn-
thesis to deliver an instantiation with the required delay. In general in a top
down flow it cannot be assumed that all functionally equivalent implementa-
tions of a module are available. Working with a trade-off curve that interpolates
between pareto points or is fitted through them, can produce such unavailable
area-delay combinations. In general a point close to that result will be taken,
causing some deviation (for whose resolution the extra open space may be
welcome). We will look into more details of the aspects of constant delay and
synthesis later in this thesis after showing how these delay budgets of modules
can be calculated in a wire planning stage. Changes in the synthesis process
are then presented to optimize it for delivering solutions with exactly required
delay.

In conclusion, wire planning accounts for wire delays and sets module delays
before place and route is even started, and is organized to assure that they will
not need to be changed afterwards. It will need some notion about area-delay
trade-offs of modules, not necessarily exact, since we rely on the self-fulfilling
properties of stepwise refinement. In this way we want to (re-)establish an
iteration-free flow and enable early abortion if the task is over-constrained.

2.3 sketches of a flow

Now considering the concept of wire planning as sketched in the previous
section how can this be turned into an working algorithm in a certain context.
First recall the fact that we started with the assumption that it would be a
refinement strategy based on the fact that timing requirements are early given.
Those can be derived from the system in which the design will be embedded
or a targeted speed based on commercial competition considerations.

The required arrival times and arrival times can usually easily be obtained
as the circuit will play a role in a total system and the timing at the inputs
and outputs can be derived from that. Even in cases of the faster the better
designs as in microprocessor competition there is a certain minimum to beat
speed and a projected speed area point which allows the design to go through
to expect profit. Therefore the delay requirements are assumed to be given in
the wire planning context.

26 wire planning

So the timing requirements limit the total circuit delay which is the sum
of wire and module delays. The wire delay through the circuit depends on
the length of the wire which is determined by the locations of the pins that it
connects. These locations again are the result of the placement of the modules
in a certain amount of space. The modules have also an area and the total area
should fit into the proposed space too. As can be seen a number of aspects
will have an impact on the context and the realization of wire planning and we
will discuss one after another in this section.

floorplan

Wire planning is proposed in the context that often a certain speed is
required for a design. Considering this as an external given fact the other main
limiting parameter is the total area to use. In general this should be as low as
possible as silicon costs money and reduces profits. At the same time the total
area usage is never to be allowed to be an arbitrary outcome of a completed
design process. Imagine many months of work resulting is a design costing to
much silicon to be a competitive product. Therefore before starting a design
process an idea about a reasonable total allowable area usage will exist based
on allowable costs. So we could also say that the total floorplan area and shape
is also fixed and given already before really starting off.

This area and shape is not an impossible thing to come up with. After
identifying globally what functionality is required then based on experience
some estimations can be done about total area. At the same time there are
often some discrete size steps to choose from as well as allowable shapes based
on how a die can be divided efficiently. This exercise could even be seen as the
result of doing already some steps into the refinement process of the design as
far as floorplanning is concerned by determining the shape and size of it.

Another approach would be to start with a guessed oversized floorplan and
perform an initial wire planning, place and route as a worst case guess. This will
result in required module areas at a given delay performance. Note also that for
smaller footprints delay will improve too as wires have to travel less distance
and thus resulting into less delay wasted on them. Therefore more delay is
available for the modules and the current areas can be seen as upper bounds
resulting into an upper bound on total area required. Even multiple area-delay
performance points could be created. Based on those and adding space for

2.3 sketches of a flow 27

wires and possibly some error correction a particular area and floorplan shape
can be chosen and set fixed for a desired delay choice. Now again a floorplan
shape and area is obtained and a non-iterative wire planning step can follow.

Those initial steps leading to a floorplan are very likely to be done as
based on those parameters the feasibility can already be evaluated and if they
are fulfilling the requirements and constraints the development process can
continue. So a footprint is likely the first thing to be obtained. Therefore for
the rest of our discussion the floorplan will also assumed to be given besides
the timing requirements.

pin placement and delay

Having obtained a floorplan and timing requirements another important
piece of information related to the external environment is missing. The de-
lay requirements can be seen as input pin to output pin delays or equivalent
arrival times at the inputs and required arrival times at the output pins. The
delays from pin-to-pin depend on the route between them through modules
and wires. As the delay in wires dependents on the distance traversed on the
chip also the distance between the pins is important. What is needed is an
pin placement within the floorplan such that the routing and thus wire delays
can be determined. Although the exact routing will determine the total length
of wires also the pin positions will have a significant impact although more
indirect.

worst case input output
wire length: half perimeter

worst case input output worst case input output
wire length: 2 x half perimeter wire length: half perimeter

Figure 2.4: For the first pin placement the module should be placed in the
center to make it a good pin assignment. But a much better pin assignment
exists which reduces the delay wasted in wires with a suitable placement.

28 wire planning

Determining the optimal placement of the pins is problematic and can have
a dramatic effect on minimum feasible timing (fig 2.4). If the inputs and the
outputs of a certain piece of logic function are evenly distributed all around
the edge of the floorplan the minimum wire length from an input to an output
varies from half the perimeter of the floorplan in case the module is in the
center to one times the perimeter of the floorplan in case the module is in a
corner. At the same time an optimal pin assignment which places the inputs
and outputs close together and close to the logic block which should be placed
close to the edge can have almost zero delay in the wires. So there is clearly
and optimality aspect in the pin assignment problem.

Note that the minimum length of a wire is at least equal to the manhat-
tan distance between the pins. Therefore the pins should be placed as close
together as possible. But most pins will have a relation with multiple other
pins and as they cannot be placed all on the same spot and the paths have
to go through modules with certain sizes they have to spread out. Often the
different paths will result in conflicting desired pin grouping. Therefore the
pin-to-pin distance should be made all about evenly short and with a minimum
total length.

other detour free paths paths with detours Manhattan distancedetour free paths

Figure 2.5: The first two figures show alternatives wire tours without detours
followed by one which has detours. All detour free paths have a total length
equal to the manhattan distance which is also the minimum length possible.

Not only the distances of the pins from each other, but also the route
from one to the other through the modules determines the total wire length
needed and thus delay (fig 2.5). In the ideal case a path makes no detour and
the total wire length is minimum given the pin positions. The pin positions
determine the minimum needed wire length which is equal to their manhattan
distance between the pins. Any route which is longer then that can be regarded
to be detouring. Achieving this situation should be the objective of all good
placement algorithms as they should minimize the total wire length in general.

2.3 sketches of a flow 29

So the possible locations of the modules and thus the placement have
an influence on the optimality of the wire lengths for a given pin assignment
and the other way around. Placements can be adjusted to take the given pin
positions into account to achieve this detour free case, but on the other hand
avoiding the need for detours should also be already the focus point for the
pin assignment process on forehand as its result can be regarded more optimal
if it allows this placement to be such that detours can be avoided.

Besides the question of optimality there is also a question of existence.
Note that the network structure plays a role here too as it could prevent the
existence of such optimal pin and module placement at all. Given all possible
pin assignments the network structure might be such that no placement is
possible without detours. Duplication of modules and restructuring of functions
and network might be needed to get to a feasible optimal pin and module
placement at all.

A

B D

C
A

B C

D

Figure 2.6: Two results of a common place and route with different pin place-
ments. Note that the pin placement of the second circuit results in longer
minimum wire length for A to D and C to B.

Optimal pin placement is obvious an unsolved problem where even current
design methodologies would immediately profit from (fig 2.6). Currently pins
are assigned positions more based on structure and embedding. The circuit
to be designed will be integrated within a larger design and thus the pins will
not be arbitrarily placed and ordered. More often there will be some address
or data busses whose signals are often preferably routed next to each other
and by that requiring the corresponding pins to be located together and in
a structured fashion. Other critical signals will have quite predetermined pin
locations. Power, ground and some left over signals do not likely pose nor
require some special order or location and therefore can be fixed on pins of the
circuit to be designed as seems appropriate in advance.

30 wire planning

This pin assignment will however not be optimal at all and very likely
will not allow the optimal placements with no detouring paths and minimum
total wire length. Then there in still also the existence problem that the
network is such that such a combination of pin assignment and placement is
not possible at all. Although some changes in network structure might still
result in a feasible placements, also the change of some pin positions could be
required. Some algebra or transformation techniques have to be developed for
this problem which is similar to the proposed methods for the case of keeping
such placement structure during synthesis and logic transformations[15].

For the remainder of the discussion a pin placement is assumed to be given
and that a corresponding good module placement which minimizes total wire
length can be found. In our specific case we expect the pins to be evenly
distributed along the sides of the given floorplan although this is not essential.

linear wire delay

Wire delay and wire length has been mentioned a lot already. For now
the essence was that a shorter wire in general has less delay. However the
explicit relation between length and delay was not jet mentioned. In general
this relation is quadratic. Wires twice as long causes 4 times more delay. This
effect is exactly what makes the increase of wire length for larger systems on
a chip so problematic.

Recently however it has been shown that wire delay can be made linear
in length by optimal buffering for “long” wires[32, 31]. It is using the new
delay modeling of constant delay as mentioned in the previous section needed
to achieve an iteration free design flow. Calculating the optimal number of
buffers and their sizes shows that the optimum segmentation length between
buffers and size of the buffer only depend on some process parameters. Long
is then defined as being one or more times the optimal segment length. For
shorter wires adding a buffer does reduce the wire delay quadratic but the
added delay of the buffer counters this effect and a net increase results.

It is important to note that those process parameters are different for
different layers of wiring of a integrated circuit but constant within a layer.
In the same publication is shown that the lower layers are much slower then
the higher layers. This means that knowing the wire distances would still
not give accurate wire delays. Therefore something like a layer assignment
algorithm would be required before wire planning can use wire delays based on
lengths of wires.

2.3 sketches of a flow 31

Although this is true some assumptions relieves the problem a little. The
lowest levels of wire layers will likely be used for local short wires even while
they are slower. Otherwise stacks of vias would be needed to go from gate to
wires and the other way around and those would block the wires being laid out
in the lower levels. Also from a speed point of view it is interesting to use the
higher and faster layers for long and otherwise time consuming wires.

wire planning is used for the “long” wires and thus only the higher layers
are of interest. Layers seem to have two by two pairwise very similar timing
characteristics. Therefore assuming wires to be on only the top two layers
would allow a wire planning to be applied even without a layer assignment
first. This is what will be assumed in this thesis.

1
2

1
2

2.5 1.5 2

10

1 10

11.25

10

10

21.1253.1254.50.5

2

2 2

2 2

2 2

2 2

2

3Twire=X

Twire=X

2

2

Twire= X

Twire= X

Figure 2.7: Changing the segmentation of a fixed total length of wire does
not change total delay for a linear model but does change the result of the
common used quadratic model.

The reason why linear wire delay is important is not just for the ease of
calculation based on distance. The linear delay creates a property which will
turn out to be very attractive in our wire planning flow. When a long wire is
broken in segments by modules the total wire delay on that path will be equal
to the sum of the delays of those segments. Nothing spectacular until now.
But now change the segmentation of the wire by moving the models a little
such that the lengths of the segments are changed but the total length is still
the same (fig 2.7). Now the delay assuming linear wire delay is still equal to
the previous case as the sum of the wire segments lengths and thus delays are
still the same but in case of non linear delays this would not be true. In that
case the sum of two times half the distance is unequal to once the delay of the
total distance This linear delay observation is an important property used in
the wire planning approach when calculating wire delays for paths through the
circuit. Essential is to observe that the exact segmentation does not change
the delay of a path as long as the total length is equal.

32 wire planning

monotonic placement

In the discussion about pin placement the impact and interaction of place-
ment on the total wire length was already mentioned. A good router produces
the shortest possible connections between the modules thus without unneeded
detours. Still a path through a number of modules from input pin to output
pin could have a detour. This simply depends on the given placement and the
required connections as described by the network model of the design.

Given a certain pin placement and network model detours might not always
be possible to avoid. Still the objective of a good placement procedure is to
reduce the total used wire length. This total is minimum when the pin-to-pin
paths have a minimum length. As said before this is the case when the path
through the modules can be drawn without detouring. So the optimum place-
ment will at all times have no or when needed minimum amount of detours.

Paths which does not detour are also called monotonic. When a placement
is such that all the paths are monotonic it is called a monotonic placement[32,
31]. In a monotonic placement the coordinates of points or modules along a
path from input pin to output pin have a monotonic x and y sequence (fig 2.8).
Thus the coordinate values from point to point stay equal, or always increase
or decrease along the path. As a result of making no detours the total length
of the paths equal also the minimum lengths possible which is the manhattan
distances between the two pins of the paths.

monotonic paths monotonic paths Manhattan distancenon monotonic paths
(detour)

Figure 2.8: The first two instances show alternatives monotonic wire tours
followed by one which is not monotonic and thus contains some detour. All
monotonic paths have a total length equal to the manhattan distance.

Assuming that a monotonic placement will be possible still leaves the exact
placement of the modules free as there are often multiple monotonic place-
ments possible. Some theory about this has been developed [32, 31]. One
observation is that a bounding box can be identified wherein a specific module
has to reside to produce monotonic placements.

2.3 sketches of a flow 33

M1

M2

M3

M4

PO1 PO2

PI1

PI2

PO1 PO2

PI1

PI2

M4M1

M2

M3

Figure 2.9: Two equally valid monotonic placements with equal pin-to-pin path
delays which is minimum and equals the manhattan distance between the pins.

Recall that placement should try to minimize total wire length. This is
clearly the case when all paths are monotonic. But if they are all monotonic
the placement is also a monotonic placement. So before doing any place and
route it would not be unrealistic to assume already that it would most likely
become a monotonic placement or else a small deviation from it.

One may argue that not all given networks or pin placements will allow
this monoticity to be achieved based on some network structure. Although
this is true this can be seen as a limiting factor of current design flows. In
that case network transformations and restructuring of the network should be
incorporated in the flow to achieve this best possible result. Currently the
results of place and route are indeed limited by choices made at the network
structure level already.

A set of transformation or high level algebra should be developed for this
process. A trivial but impractical example would be to duplicate all logic in
the input cone of an output and concentrate it into a single point at the
output. The development of more practical transformations is still an open
problem. Although this might seem hard, some progress has been made on
something like this were monoticity is preserved and sought during a synthesis
optimization step[14].

Using the modeling of gain based delay shows that duplication of a node
does not cost extra area as both nodes now drive only a part of the load and
thus the area needed for those nodes can be equally smaller. The sum of the
load remains equal and therefore the sum of the areas too. A similar reasoning
show that splitting a multi output node into single output nodes would not

34 wire planning

cost area. This is unfortunately a simplification as the impact of routing wires
is not taken into account and the fact that gates will have minimum sizes and
thus duplication of such a minimum sized node will produce two minimum
sized nodes and thus double area.

For the rest of the current discussion we assume that placement will be
able to do a good job and give us a monotonic placement. In all the possible
monotonic placements it could produce all paths are monotonic. As a result
the total wire length on each path is equal to the manhattan distance of the
pins of the paths. As those pin locations are fixed the pin-to-pin path lengths
will be the same for all possible monotonic placements.

If all pin-to-pin paths can be considered long the linear wire delay model
could be applied for those paths. The total wire length of a path between two
pins is the same for a possible monotonic placements and equal equal to the
manhattan pin-to-pin distances. The exact locations of the modules due to a
specific placement only result into a specific segmentation of this path and wire
length. In the context of linear wire delay it was shown that this segmentation
is irrelevant as long as the total sum stays always the same. Therefore the total
delay in the wires on a path between to pins can be calculated based on the
manhattan distance between those pins. This distance has a fixed length and
thus delay for all possible placements This delay is also the minimum possible
and thus a maximum of the time budget remains for the modules on the path.

The result is that the total wire delay is known and even minimum too al-
ready before place and route has been done and will stay that way independent
of what the final placement and routing will be. This sound very interesting in
a wire planning refinement context based on fixing delay first. As the objective
is to do this procedure in an iteration and refinement way the placement and
routing should be such that it does not change the wire delay effects on the
time budgeting any more. Or to put it the other way around it should be
possible to account for wire delays in a manner not impacted by placement
and routing later.

wire planning has to assign delays to modules an wires such that their total
on all paths meet the given timing requirements between their pins. Normally
this would depend on the routing of the wires and therefore placement. Now
not any more and what is more even the total amount of delay in the wires is
known. So all that is left to do is to assign the remaining delay to the modules.

2.3 sketches of a flow 35

constant delay model

So the delay of wires is assumed fix and given and the remaining time from
the delay requirement can be budgeted over the modules. Note however that
wire planning was presented in an iteration free context. Fortunately the wire
delays will not change any more, but it also means that the module delays
once fixed are not allowed to change any more.

In traditional gate modeling delay is a result of chosen area and the loading
imposed on the output. This can be written as D = a ∗ Cload + b for a
given area A. The loads Cin seen at the inputs of the gate are also directly
related to this size. Usually a technology library of gates contains a number of
different sizes for every particular gate with the corresponding load depended
delay data. Doubling the area A doubles also the input loads Cin but halves
the factor a in the delay as the transistors can drive twice as much current and
therefore the larger gate is faster when driving a large load. Factor b, which is
the parasitic delay remains constant as the internal loads increases just as fast
as the transistors can drive more current. Note the linear relations between
delay and load for fixed sizes.

Originally the main objective of designs was to minimize the total area use
and accept what ever delay result would come out of that. The fact that the
delay of a gate was impacted by the size and thus load of another gates was of
minor concern. It was the change of importance of required delay that caused
this effect to become more of a problem in flows even before the impact of
wire delay was noticeable.

How does this traditional delay modeling impact module delays. The delay
of a gate of a given size depends on the load and thus sizes of the gates which
loads its fanout. On the other hand the size of the current gate and thus load
influences the delay of the gate it is loading itself. Choosing a different size
and thus different load-delay characteristic to maintain a certain required delay
due to a high load change at its fanout will impact the gates at its inputs with
higher loads and thus cause higher delays there. As can be seen in figure 2.10
the net resulting delay might actually even be worse. Compensating also the
first gate is possible, but the total effect due to the load increase has become
a complicated calculation. So when the load would change at the output of a
predesigned module which is a network of gates then the delay might change
and this problem is not easily fixed.

36 wire planning

D=22
C=8

A=8
D=22
A=8

D=33 D=29

D=11
A=5

D=7
A=10

C=8

D=7
A=5

D=22
A=4

D=29

D=7
A=5 A=4

D=49

C=4 C=8
D=42

A=5
Cin=1

A=4
Cin=2

D=2 * Cload+3 D=5 * Cload+2

Figure 2.10: A higher load will increase total delay but increasing the size of
a gate to compensate the gate delay increase will impact other gates and can
in the end result in an increased total delay. The gate at the input has to be
compensated too for the increased size of the other gate.

Keeping these module delays completely fixed even by changing loads there-
fore requires a different suitable delay modeling. As already said in the intro-
duction (par 1.5) there exists a different approach called the constant delay
methodology which was recently presented[38] [16] [17]. The essence is that
by changing area delay can be kept at a certain fixed value for any load.

One way of applying this idea was to put in the library not fixed sized gates
with an load-delay relation but fixed delay gates with an area-load relation.
This idea was based on the observation that another linear relation existed
besides the one between load and delay which is between load and area. This
can also be observed in the previous example where doubling the area when
the load doubles results in equal delay.

2.3 sketches of a flow 37

The other approach was describing the delay in a different way with the
same results. In this case delay is written as D = f ∗ g + p where f is the
electrical effort and g the logical effort depending on the logic function. p is
the same parasitic delay again like b was earlier. The electrical effort depends
on the loads to be driven and the input load it will represent itself as f = Cin

Cload
.

The corresponding area equals A = a0 ∗ f ∗ Cload. Using these formulas the
parameter f can be used to do delay calculations and the resulting areas can
later be calculated using this f and the a0 based on the load to be driven.

This later formulation captures more nicely the constant delay effects then
the previous case. At the same time an classical algorithm with the function of
areas and delays interchanged and with modified libraries could directly be used
based on the first approach. The describing functions of those new fixed delay
based modeling and the classical fixed area based modeling can be transformed
into each other rather easy. Note that to drive a load which is twice as much
two gates can be placed in parallel each driving half the load. As a result the
delays of the gates will not change and the total area as well as the total input
load is doubled. From a gain based view to obtain equal delay the f stays the
same. As the load doubles the area doubles too. Using the fraction of input
load and output load show that at constant f doubling the output load will
double the input load.

area

delay

area

delay

Figure 2.11: In both cases a curve has been drawn to the given implementations
of a module for a specific load. The first figure shows the change due to load
in case area remains fixed and the second in case delay remains fixed. Both
area and delay have an linear relation with respect to the load.

So delays stay now fixed when load changes instead of fixed areas with
changing delays as a result (fig 2.11). Recall that a module is a collection of
gates. Now a higher load of the module can still result in the same delay by

38 wire planning

adjusting the areas of the gates. Although this change will impact the load
of the modules which it loads it still does not result in a changed total delay
as also the area of that module can be adjusted such that its delay is still the
same.

In fact doubling the load will double the module size due to the linear rela-
tion between area and load. The double load requires the gate it is connected
to to be doubled to preserve its delay. But that does double its loads at its
inputs. This doubling is seen again by the gates driving this one and they will
be double in size too. So finally the whole module is doubled in size which is
also the effect seen in the last image of figure 2.10.

Thus also the delay of a module which is a network of gates can be con-
sidered to have a fixed delay as no matter what changes are applied at the
output. If the load of the module changes it can be re sized to still meet the
required delay. This allows us to set both wire and module delay fixed as was
required from refinement.

2.4 time budgeting

wire planning is an approach requiring a number of procedures and properties.
Things like a good pin placement and a monotonic placement are required,
but are in essence not specific for wire planning. Any other flow would benefit
from a good pin placement and every good placement procedure should avoid
detours as much as possible. The same can be said about constant delay
modeling as changing delays due to loads are a common problem.

Layer assignment for wires is a procedure which is a result from the ob-
servation that it is possible to use an approach of optimal buffering to create
linear wire delay for “long” wires. This linear wire delay modeling could also
be applied in other flows. The result is an often easier wire calculation as the
quadratic relation is gone. How this linear relation is obtained has been pre-
sented in the literature. For now the assumption that the global wires are on
the top level is good enough for our discussion. A layer assignment procedure
would only add an extra optimization option in wire planning.

2.4 time budgeting 39

The essential task within wire planning is the distribution of the available
delay over the modules. Linear wire delay and monotonic placement with a
pin placement provide for easy accounting of total wire delay without being
affected by the real placement and routing following the wire planning stage.
The budgeting of remaining time after subtraction of wire delay from the given
timing constraints is therefore worked out further in this thesis.

Time budgeting is a procedure which takes the given network, footprint,
pin positions and required delays between them and produces time budgets
for the modules such that the path delays through wires and modules meet
required the pin-to-pin delays and the total area fits into the footprint. The
areas of the modules are directly related to the delays assigned to them.

As already suggested in the introduction of wire planning one can often en-
vision that there will be multiple instances per module possible with different
area-delay points. Different architectural choices, variations of implementa-
tions of sub functions and even sizing of gates will provide the opportunity of
a continuum of area-delay points per module. This is commonly abstracted by
the idea of a continues trade-off curve. Although maybe not explicitly written
down it is those trade-offs that play an important role in general white board
discussions in the first design stages. As a result of those alternatives for each
module multiple solutions will exists for the time distribution. Choosing one of
them automatically seems to suggest an optimization approach based on the
areas and with the constraint being meeting the timing requirements.

This optimization could then best be the minimization of area. As area
and delay have an inverse relation maximizing the area would reduce the delay
further then the require delays. Besides creating as large as possible spare
room between the required area and the provided area of the footprint is very
useful from multiple points of view. The assigned time budgets have to be
kept fixed under all circumstances. It was already stated that this could be
done by using a constant delay approach which essence is that area changes
can compensate for otherwise delay changes. Therefore the exact final area
usage is not known on forehand and thus creating area slack reduces the risk of
problems. Also modules cannot always be placed nicely together due to their
shape and also area is required for the routing done later. As the floorplan is
given this will leave us most room possible to accommodate all those things.
The difference between available area from a footprint and the resulting total
area for the modules can be seen as a measure of feasibility. If they are very
close to each other not much room is left for wiring and legal placement or
size adjustments for fixed timing.

40 wire planning

Approaching the time budgeting as an mathematical programming opti-
mization will be worked out in the next chapter. It is directly based on the
observations from the previous chapter. When a floorplan shape and area and
a pin placement are given the manhattan distance between the pins are known.
Assuming a good placement the paths will be monotonic and this the total
wire length of a path is equal to the manhattan distance of its pins. Due to
the linear wire delay segmentation and thus placement need not to be known
while at the same time the total wire delay can be calculated based on the
total wire length. The difference between required delay and wire delay can be
budgeted over the modules on a path. As area and delay are related to each
other this budgeting will result in an area too. When the total area fits in the
footprint a feasible solution has been found. If the delay assignment does not
fulfill the requirements it is already clear that the project is overconstrained
and thus impossible.

A few remarks can be made on the procedure described above. First of all
the total wire length is taken equal to the total path length. In reality they
would enter a module, most likely on one side, and after a certain module
delay leave it at some other side. Thus actually the total wire length is a little
shorter depending on the area and pins of the module. Still it is best to assume
the modules to be points and calculate their areas based on that.

wire planning is used in large system on a chip design and thus the num-
ber of modules we are looking at is hundreds or even thousands. Within the
floorplan they could be assumed small or points. Another point is that this
procedure is assumed to be in a hierarchical refinement context. In the next
section it will be shown that there is even a compensating effect for this erro-
neously accounted for wire delay were it would be inside a module. For now
note that using this point assumption allows us to proceed without iteration
as the resulting areas do not impact the way the calculation was performed.

Another aspect is the loads and the fixed delays of modules. The optimal
size of a buffer in an optimal buffered wire has a fixed size depending on layer.
As the layer is equal for all wires the size of the buffer and thus the load seen at
the output of an optimal buffered wire is fixed too. Therefore in the remainder
of the thesis the load dependent part of the delays is left out or put into a
constant. This does actually mean working with a known load for all modules.
In fact the buffered wires are shielding the loading effects of one module on
another. If this load changes however for what ever reason then area changes
can be used to compensate.

2.5 hierarchical context 41

The slack area results in a feasibility check as lots of potential errors due
to bad estimates can be solved by using area. First of all because area can
be exchanged for delay. Errors due to detours because of placement problems
can then be solved. Indirectly these errors can be caused by final resulting
shapes which require some legalization changes of the initial optimal placement
causing detours. Another big unknown is the required area for wire routing.
Again even in this case when routing causes a detour of a wire again area could
be trade for delay to compensate for the higher wire delay.

Another problem is introduced by allowing networks with cycles. These
conflict with the detour free assumption as the detour free cycle has length 0.
It can actually be regarded related to the pin placement problem. It is common
practice in timing oriented procedures to break cycles in the network at latch
or flip-flop boundaries and treat the input and outputs of them as outputs
respectively inputs of a now cycle free network. Arrival times for those inputs
are set to zero and the required time equal to the projected cycle time. As wire
planning requires the locations of pins, also the locations of the latches or flip
flops and thus virtual pins have to be predetermined during or in cooperation
with the normal pin assignment. Their locations are somewhat predetermined
already by the fact that clock distribution has to be such that it arrives at every
node at the same time. In principal the cycles are contradicting the detour
free requirements as their minimum wire length would be zero.

In practice assuming the latch assignments has taken place only a cycle
containing a single latch would result in that requirement. First of all this
would result in a very local loop where wire delay is of no concern and besides
that there would be much more other constraints which would set the delays of
logic on the path such that there would likely be time budget left over on the
cycle to allow this cycle to detour. Therefore taking the above into account
for now networks are assumed cycle free.

2.5 hierarchical context

The earlier mentioned aspects like the given footprint and pin placements and
pin-to-pin delays also create a natural possibility to apply the idea of wire
planning in a hierarchical context. It is very likely that the procedure still has
to be applied for the first levels after top level when these wires still might be

42 wire planning

considered “long”. That is a length of one or more times the critical length
such that their delay is significant compared to module delays. On the lowest
levels of the design still fit the capability of current tools as the length of
wires will be “short” and thus their delay might be more or less neglected and
therefore the current approaches will still work.

wire planning assigns delays to modules and thus a particular module gets
pin-to-pin delays for its inputs and outputs. The time budgeting was based on
center to center point wires while the actual pins will be assumed on the edge
of the module. It is actually also allowed to put pins more inside the module as
long as they are placed inside the quadrant around the center which is closes to
the other module the pin is connecting to. This has no fundamental impact on
the wire planning process and therefore a similar model with pins on the sides
will be taken for the modules as this matches the assumption made for the pin
placement of the total chip. As said before this will result in a minor change
and as the actual length of the wires between pins will be shorter and a little
spare delay or slack is created but the total path delays are not influenced.

Using the area-delay trade-off of a module a corresponding area is obtained.
This area provides a floorplan area but no shape. This shape is also required
as without it no wire planning and time budgeting can be performed for within
the module. What is missing is the pin-to-pin wire delay within the module.
This is obtained from the pin placement with is related to the floorplan shape
and area.

The shape if not known in any better way can be approached by a square
of equal area as could also be used during the initial floorplanning process after
the wire planning which produced the delay values. Wire planning is assumed
to be done in the context of hundreds or maybe a thousands modules. Then
modules themselves are relatively small compared to the total area and their
exact shape will not have a major impact on exact placement.

These assumed square modules will at least provide a shape and total area
available for the modules and can be considered a footprint for these modules.
Using these footprints placement can be performed after wire planning and
this will give the positions of modules. This placement is also monotonic and
thus routing is supposed to be able to create detour free connections and thus
a pin will be on the side of the module floorplan box on a place close to the
other module. The exact location can vary as the place where a monotonic
path between the centers of the modules leaves or enters the modules can be
on different places (fig 2.12).

2.5 hierarchical context 43

Figure 2.12: A range of possible pin positions are in general possible. A
heuristic to put it on a particular place uses the counterpoints connecting line.
When due to an error the size of a module changes increasing the internal wire
length and delay this is equal to the extra saved external wire length and delay

To obtain a complete pin assignment the following heuristic can be used.
Put the pin at the point where the direct line between to two centers of
the modules crosses the sides of the floorplan box of those modules. These
positions will automatically still always allow a detour free connection. In
principal the pins could move a little along the side but then care should be
taken that the connection can still be guaranteed to be detour free by looking
at the pin positions of both modules at the same time. The proposed heuristic
avoids this complicating factor.

Using the results of the current wire planning and floorplanning it is then
possible to create the required data for the modules in such a way that the
same procedure can be applied to the modules itself to refine the design to
a lower lever. Note also that those modules can be processed independently
and in parallel as they do not depend on each other any more due to the fixed
timing and wire delay and likely placement. This process of refinement can go
on until long wires do not exist any more and a more conventional flow will
produce an implementation. Then the process of assembling the lower levels
implementations can take place until the top level is reached again similar as
was shown earlier (par 1.6,fig 1.9).

One clear source of potential error in the above mentioned approach is
the assumption of square floorplans and thus shapes of modules or the areas
of them. This has a direct impact on the budgeting performed through the
estimated wire delays based on the pin placement which again is based on these
floorplans. If the final implementation would result in more wire delay between
pins as they become placed farther apart this could be solved internally by

44 wire planning

consuming a little more area and speeding up some paths. Note that at the
same time there is some slack delay as the higher level budgeting was assuming
center to center points wires. This slack could compensate for the increased
internal wire delay and the good news is that in fact this slack increases when
pins move father apart from this center by a changing floorplan.

It might seem contradicting to do a time budgeting of an assumed point
placed circuit and then talk about areas and pins on the edges. But wire delay
starts with the best knowledge available which is pin placement, delay and
circuit network to assign delays to modules. The modules are now refined to
have a certain delay and by use of area delay trade off a corresponding area.
In the refinement approach the delays are now fixed and kept that way and the
area can be adjusted to keep it so. Also the general assumption of a monotonic
placement can now be changed into a best monotonic placement which allows
for the areas as obtained.

As already argued there refinement is still able to cope with errors and will
consume them as gracefully as possible. The choices taken for the refinement
process eases this problem too. Errors are due to bad area delay predictions
of the modules, different final shape or area of a module impacting placement
and even wiring. Still wire planning is giving a feasibility check point at every
level for example about meeting the delay within a certain required area. The
difference between the required area and available area can also be seen as a
credibility measure how likely the design is still to succeed in case of some small
errors in estimations. Over estimates are no problem at all, and underestimates
might be consumed by using the over estimates or even the left over area.
While consuming this spare area modules can be made faster and by that
resolve timing conflicts.

Assuming area can be traded for delay this can solve a lot of issues if area
is available. As said before choosing the alternative budgeting of delays among
modules which has the least area cost is thus attractive. It creates for us the
spare room to do adjustments to account for errors, while still keeping the
delay which we fixed by wire planning unchanged even when errors occur.

A number of potential error sources exist in the process of hierarchical
refinement. The problem of floorplan shapes and areas needed for the induced
pin placements for the modules to refine the design on a lower level of hierarchy
was already mentioned. A choice has to be made about which estimation to
use to be able to continue the process. As already shown the possible change in

2.5 hierarchical context 45

shape or size is not likely to have a major impact on the decisions based on it.
Some sort of compensation exist between internal wire changes and external
wire changes for a module. But there are more differences possible between
the assumptions made in the refinement on the way down to lower levels and
the final results constructed and being propagated back to the higher levels.

The final placement can differ from the initial floorplan based on the es-
timated floorplans of the modules. Changes in shape from square to some
rectangle might require some shifting around of modules to nicely fit together.
The same is true for changes in total size. But even then it is likely that the
centers are still close to the initial locations and as long as the locations are
such that still a monotonic path exists it does not affect the calculated time
budgets. The change of centers is then only changing the segmentation of the
path, which was irrelevant. They can be seen as a variation of comparable
monotonic placements and will have similar relative positions and thus almost
equal pin placements too. This allows for recovering from these possible errors
during the assembly of the final results as the actual error in the wires stays
small and is partly compensated automatically.

It might also be impossible to change the monotonic point placement into
a valid legal placements with the resulting areas and shapes. Extra delay for
required detours might then be created by consuming some left over area to
speed up one or more modules. On the other hand recall the fact that wires
arrive at the boundary of the area and not in the middle resulting in some slack
delay. This can also be used for some detouring or non ideal pin placement.
Therefore wire planning still work rather well even when a perfect monotonic
placement is not available.

A much more severe error is due to bad area-delay estimates. This is not
as easy to handle as the other cases which results is small deviations from the
original assumption except maybe for an extreme change in floorplan shape.
A large change in area compared to the estimation to be able to meet the
required delay generates two problems. The major problem is deviation from
the optimum for the wire planner result. If this would have been taken into ac-
count during wire planning already a much better and different time budgeting
might exist. Now it might even render the implementation impossible as there
is not enough spare area to overcome this change. The second impact is of
course on the placement itself. It will cause a more significant deviation then
just some mismatch. At the same time a slicing floorplan can often consume

46 wire planning

even large changes quite well and only a part of the placements gets more
heavily affected. Most parts will keep rather equal positions and distances and
still work out fine. So only for the highly changed module and its close sur-
roundings there should be enough area left to both accommodate the larger
footprint of the module as well for exchange into delay to fix errors in wire
delays as they become larger now.

Using previous design knowledge could highly reduce this risk as well as
a careful design process. When doing a next layer of refinement it would be
better to work on the risky elements first and even go to deeper levels already
for this particular module. The fact that the designs are decoupled using
refinement and hierarchy allows this to be done. At all time the results from a
certain deeper level could be propagated back up as being more realistic data.
If it turns out that a major change occurs then the high level wire planning
could be repeated with the current already further designed modules fixed or
if willing to redesign them too with updated information for them. Then the
less unknown modules can be implemented with high assurance of success.
This aspect increases the advantage of an iteration free approach. Only when
allowing redesign of the problematic modules it is not completely iteration free
any more. Still the changes due to the iteration are not that costly as most of
the design was not fully designed yet.

From the above it is clear that even bad estimations can be handled rather
well. At least their impact is not worse compared to the impact of this problem
also on common flows. Also in those cases some implicit or explicit trade-
off is used in a high level white board discussion. In the context of wire
planning refinement this has been made explicit and the effects can be better
understood.

In general the hierarchical application of wire planning will not be problem-
atic as long as estimates will be good enough. The procedure fixes in a logical
way certain data and provides other required data automatically. Some errors
in estimations are automatically compensated or even irrelevant for some of
the decisions taken. It speeds up the design process as at every level of detail
the delay is assured to be met and the required area can be compared to the
available footprint to detect a failure early and also no countless iterations are
required.

2.6 algorithms 47

2.6 algorithms

From the previous sections the flowing can be concluded about required algo-
rithms and procedures for a complete working wire planning flow. As monotic-
ity is important and dependent on the pin placement a good pin placement
has to be found. Unfortunately pin placements can be rather fixed due to the
environment and thus the network should be modified when needed. This calls
for monoticity aware transformations for the logic network similar as presented
for logic synthesis. The wire planner takes wire delays into account based on
wire lengths and these delays can vary over different layers such that a layer
assignment procedure is required. Using the provided information and the ex-
istence of the required properties an algorithm can assign the optimal time
budgets to each of the modules. These budgets can only be assigned when the
modules provide area-delay trade-offs and it makes only sense if the assigned
delay can be kept that way for the synthesized results. Not all of these proce-
dures will be presented in this thesis. The focus will be on the budgeting step
calculating optimal time budgets for the modules and how synthesis can pro-
vide a results with exactly the required delay among the complete area-delay
curve that could be produced for this module using a delay model which allows
delays to be maintained fixed.

The main task of wire planning is to assign delays to modules. This time
budgeting should try to choose the alternative with minimum total area use
as available left over area can be used to make up for changes while keeping
delays fixed in the rest of the refinement. To make maximum use of the power
of wire planning and refinement there should be an as large as possible range
of delays and thus areas to choose from for each module. The selection of
the particular solution for each module from these ranges which is the optimal
solution with regard to minimizing the total area shows that this can be cast
into an optimization scheme.

This optimization scheme is somewhat similar to transistor sizing tech-
niques to reduce area while meeting delays. Most solutions for that problem
use a path by path based optimization approach which does not give a global
optimum or are heuristic based. Only for small sizes full optimization can be
achieved. Exploring particular properties of the problem at hand in our case
resulted in the development of a procedure which takes all paths concurrently
into account while still allowing large enough sizes of networks to be handled.
This allows for the problem to be solved to a global optimum and is described
in the next chapter.

48 wire planning

The wire planning approach assigns explicit delays to modules. This dif-
fers from common flows where the choice is more often from some instances
like usually the fastest when critical and smallest if possible. The refinement
approach also requires delays to be kept fixed although some properties like
load influences delay but at the same time is not set to a fixed value or might
still change. This requires a different logic synthesis and technology mapping
approach which we will present as a constant delay synthesis approach. This
does not only point toward the more common meaning of a delay which is
being kept constant although some parameters might influence it, but also to
the fact that it allows to choose a particular delay (constant) among a range
of possibilities from minimum area, and thus higher delay, to minimum delay.

Constant delay synthesis comes up with the instance which precisely meets
the required delay at the least cost. This can be done by an exploration of a
complete area delay space and keeping the interesting points. A well known
problem of reducing the complexity of design space exploration is that choosing
a solution already at some intermediate level to reduce the size of the design
space already at that point can prevent the best possible final solutions from
being reached if this intermediate choice was wrong. This approach to reduce
the design space is usually applied in common synthesis an technology mapping
and can have limited effect for minimum area or delay results as there modeling
on intermediate levels can then be quite accurate. But having to provide a
range of solutions makes it attractive to explore a design space as large as
possible and with the refinement approach in the back of our mind a strategy
was applied to relieve those problems of intermediate solutions and at the same
time expand the explored search space.

The other requirement of keeping the final delay constant can be fulfilled
by choosing another point from the exploration space as soon as something
changes, but another view of constant delay synthesis is that it is possible to
come up with an implementation which can be adjusted to the required delay
by sizing. This is due to an other type of delay and area modeling. It allows
efficient resizing of the sizes of the elements inside the module as soon as load
would cause a change in delay. It is the combination of design space exploration
and sizing which renders these changes in synthesis and technology mapping
attractive in the wire planning context and are therefore are researched and
presented later in this thesis.

Chapter 3

time budgeting

In the previous chapter a flow was sketched along which a timing-driven back-
end for chip design can be organized. That sketch was however not with-
out lacunae. Some of these can be filled by modifying existing algorithms
to fit in the present context. Others require a fresh inquiry and probably a
largely new approach. One of those is time budgeting. In this chapter we will
present a mathematical formulation of that problem based on the assumption
of monotonicity, linear wire delays and convex delay-area trade-offs for the
modules. The formulation allows a straight-forward implementation yielding
optimal budget allocation, but prohibitive time complexity. We therefore in-
troduce intermediate variables that as absorb most of the usually large number
of potential substructures at each network node. It produces an equivalent
budget allocation, but the problem size grows only linearly with the network
size. The chapter is rounded off with a number of improvements, two of which
reduce the problem size with another fifty percent by adapting it better to the
chosen solver, and one that enhances the robustness of the budget allocation.

3.1 the problem in a wire planning context

Time budgeting is the assignment of delays to wires and modules in a functional
network under given constraints. Here the constraints concern the space in
which the modules have to be allocated, for convenience a rectangle of given
dimensions, and the timing requirements for signals at the pins. The delay is
usually related to size: for modules this size is area, while for wires it is length.

50 time budgeting

Faster modules for the same function are likely to demand more area and longer
wires cause longer delays. So we assume that at the stage of time budgeting
in the context of wire planning the network, the monotonic pin positioning and
a complete set of timing requirements to be available.

The derivable pin-to-pin delays constrain the path delays the latter being
equal to the sum of the delays on the wire segments W and the delays of the
modules M on the respective path. The sum of the areas of the modules is
constrained by the total available area from the given floorplan. Note that in
practice full utilization is mostly neither achieved nor desirable as some area
is needed for routing wires and not all modules in the final placement will fit
precisely together.

M1

M2

M3

M4

PO1 PO2

PI1

PI2

Figure 3.1: A monotonic wire plan.

PO1 PO2

PI1

PI2

M4M1

M2

M3

Figure 3.2: Another valid monotonic
wire plan.

PO1

PO2PI2

PI1

M2

M1

M3
M4

W1

W2

W3

W4

W5

W6

W7 W8

Figure 3.3: A corresponding network.

In section 2.3 a number of observations which were made on monotonic
placement. Three of them are of particular interest for our approach for time
budget allocation to modules and wires. First, the fact that under the optimal
segmentation total wire delay is independent of the exact position of modules:
it will equal to the total wire length multiplied by some constant factor. Second,

3.1 the problem in a wire planning context 51

the total sum of the lengths of the wire segments on a path is invariant over all
possible monotonic placements of its modules and solely determined by the pin
positions. The sum of the wire segments W2+W3+W6+W8 of the circuit
in figure 3.3 will be equal for both given monotonic placements of figures 3.1
and 3.2 and will equal the manhattan distance between PI2 and PO2. The
third observation is that this is also true for all other paths between the same
primary input and primary output and thus they all will have equal total wire
length. The sum of W2+W3+W6+W8 is equal to W2+W4+W7+W8
which in turn is equal to the manhattan distance between PI2 and PO2 for
all possible monotonic placements.

So the total sum DWjk
of the delays of the wire segments is always equal

and determined by the manhattan distance of the pins j and k. The delay
of a path is then simply the sum of the delays of the modules Dm on a path
plus the total wire delay DW based on manhattan distance. Therefore delay
calculations can be done without knowledge of the delays of the individual wire
segments on a path, and also without knowledge of the exact positions of the
modules.

With the delay due to the wire segments fixed for all monotonic placements
the remaining total delay available for the modules on a pin-to-pin path is also
fixed for a given timing constraint Treqjk

between the same pins. This remaining
delay Treqjk

−DWjk
can be distributed freely over the modules as long as those

delays can also be realized by the modules. Of course, not every distribution
over modules is equally desirable or some may even be not feasible due to the
limited available total area.

In general there will be a whole range of solutions which fulfill both the
area and delay constraints. In fact both area and delay have to be just below
their required values. Yet, it is not simply the groove of synthesis (1.2) to
choose for minimization of one objective while fulfilling exactly some other
requirements. Minimizing the total area of the modules under the timing
constraints leaves the maximum amount of space for adjustments that might
be useful when accommodating wiring, picking library elements or correct for
wrongly predicted delays.

52 time budgeting

3.2 mathematical problem formulation

The objective of our time budgeting is to minimize total module area while
avoiding timing violation for all paths with respect to the given pin-to-pin
delays. This can easily be written down as an mathematical programming
problem :

min

#modules∑
i=0

Ami

subject to

∑
i=u∀mu∈Pjk

Dmi
(Ami

) + DWjk
<= Treqjk

∀Pjk∀j∀k

where the delay Dmi
(A) is a function of area Ami

of a module mi and the Dmi

are the delays of the modules mu on path Pjk which is one of all possible paths
between the primary input PIj and primary output POk with a calculated wire
delay of DWjk

based on the manhattan distance of the pin positions and Treqjk

the required time between the two pins.

Often Dmi
(A) is just a number of area-delay points. Enumerating all

possible combinations of sizes and delays for all modules is clearly impractical
for real designs, because of the high complexities involved. True for an optimal
solution which does not waste area or delay only pareto points are of interest.
(d1, a1) is a pareto point if there is no feasible pair (d2, a2) such that: (t2 ≤
t1 ∧ a2 < a1)∨ (t2 < t1 ∧ a2 ≤ a1). If for some node an equally fast but larger
choice was made it would waste area and thus has not to be considered at
all. The same is true for nodes which are slower but just fast enough but at
the same time require more area then a faster alternative. Although this will
reduce the area-delay pairs to be considered the run-time involved will still be
prohibitively long.

A common approach is these cases is to break the problem in sub-tasks and
solve those more smaller and manageable tasks, after which the results have to
be combined for a complete, generally sub-optimal solution. Optimizing one
path at the time is an example. Such an approach is chosen in some transistor

3.2 mathematical problem formulation 53

or gate sizing techniques like TILOS[12] where one transistor at the time on
a particular path is optimized with heuristics. iDEAS[34] improves on that by
optimizing more transistors on that path. Lagrange multipliers were used in a
method described in [13]. iCOACH[7]. has an outer and an inner loop The
outer loop does some time budgeting based on simple models and then in the
inner loop the transistors are tuned to meet those budgets.

Major problems with those methods are convergence and the possibility
of getting stuck in a local optimum. The final result is then usually very
dependent on the ordering of paths or the initial delay distribution. This is not
surprising since paths mutually share segments Adjusting paths several times
does not help much in making the result less sensitive to to path ordering.
It might even create an increased risk of non-convergence when two or more
paths cause opposite effects for a common node.

A more fruitful way might be to look at efficient mathematical programming
techniques and see whether we can relax some of the constraints without
sacrificing significantly in the outcome. The prime candidate for this seems
to be the modeling of the area-delay trade-off. Since wire planning is started
at an early stage in the design flow, there is still quite some uncertainty in
the data, and these “area-delay points” are at best local clouds, that only
later in the flow shrink to better defined “dots” and only after refinement is
complete become points. In general the data in the earlier stages are just
rough estimates or approximations based on previous designs and experience.
Therefore changing from a discrete to a continuous area-delay description is
quite acceptable.

Maybe the first thought then is to adopt a piece-wise linear trade-off,
enabling solvers for linear programming that are well-established and well-
researched. It can be polynomial in the size of the tableau, and it is certain to
return a global optimum. However, each “piece” adds a constraint (the num-
ber of “pieces” will be one less than the number of pareto points), and with
the high number of paths, it leads to very large problems with still problematic
run times.

But there are more continuous functions than piece-wise linear functions to
be fitted to a set of pareto points in area-delay trade-offs. The mathematical
programming would no longer be linear, and only in special cases we may end
up with an efficiently solvable non-linear optimization problem. Such a special
case is within reach, however, when the approximation of the pareto curve can

54 time budgeting

be a posynomial function. A simple transformation can then turn the problem
into a convex optimization problem that not only yields a globally optimum
result, but it can also do so in computation times polynomial in the size of the
formulation. This technique is called geometric programming.

So, in return for some detail and precision, that seldom is justified at
the levels where wire planning is applied, we obtain an efficiently solvable
optimization problem, though the size of the formulation is still a point of
concern. But our chances are much better than when we stick to path-by-path
techniques, which usually also use functions to capture the area-delay trade-off,
but seldom can guarantee global convergence.

geometric programming

When a posynomial approximation is used for the trade-off an efficient
solvable geometric program with an global optimal solution is obtained. A
posynomial function has the following form:

f =
∑

cj

∏
si

aij with cj ≥ 0 and aij ∈ R

In this case the object function as well as the constraints are posynomial
functions. A transformation to a new variable z done through si = ezi of the
posynomial functions results in convex functions again and also general convex
programming could be used but would of course be less efficient.

Assuming that some resemblance will exist between basic gates and the
modules built using them a posynomial approximation of the trade-off would
look like:

D(s) =
d

s
+p and A(s) = a0s which can be changed to D(A) =

d · a0

A
+p

It is also possible to use more complex posynomial approximations using
higher order terms, but it does not really change the main idea. Taking into
account that wire planning is done at a high abstraction level it is reasonable
to take only a coarse approximation with a single term. In numerous cases
there will be no exact data even, but only extrapolated figures.

3.2 mathematical problem formulation 55

pareto points approximation

delay

ar
ea

best posynomial match

Figure 3.4: A higher order polynomial approximation fitting all pareto points
as well as a simple posynomial curve fitted through as many pareto points as
possible

For now the delay and delay of a module is assumed to be given as a
simple posynomial function: D(s) = d/s + p and A(s) = a0s, where s is
the size we are solving for and which relates the area of a module to the
delay. For all modules, d, p and a0 are constants and given. The total area
becomes a01

· s1 + a02
· s2 + · · · + a0n

· sn for the n modules which is also a
posynomial function. The same is true for delay constraints which read now
dj · s−1

i1
+ pi1 + · · ·+ din · s−1

in
+ pk + DWjk

≤ Treqjk
for modules i on the path

between primary input j an primary output k. The resulting mathematical
program using variable s is:

min

#modules∑
i=0

Ami
(si)

subject to

∑
i=u∀mu∈Pjk

Dmi
(si) + DWjk

<= Treqjk
∀Pjk∀j∀k

where the area Dmi
(si) and Ami

(si) are the delay and area of module mi

expressed in sizing parameter si. The Dmi
(si) given by u are the delays of the

56 time budgeting

modules mu on a particular path Pjk which is one of all the paths between
primary input PIj and primary output POk. Wire delay DWjk

is based on the
manhattan distance and delay Treqjk

the required delay between those two pins.
To avoid awkward oblong shapes minimum and maximum module dimensions
can be imposed by adding extra posynomial constraints in the following form.

minSizei · s−1
i ≤ 1

1/maxSizei · s1
i ≤ 1

The resulting program calculates a global optimum. It takes into account the
effects of all possible paths and therefore gives a better result than methods
which try to optimize path by path.

The program can be solved for small cases. Larger networks however, can
become problematic due to the exploding number of paths: it is realistic to
assume an exponential relation between the number of modules M , and the
number of paths P . In a typical worst case it could be even P = O(2M).
Although usually less in practice the number of paths are still overwhelming in
realistic cases. The average number of modules on a path is O(M), making
the total number of terms in the constraints O(M · 2M). The number of
variables is equal to the number of modules.

3.3 problem size reduction

path enumeration

To verify the capabilities of the presented mathematical programming so-
lution experiments are needed. A network of modules, timing information for
the modules and input-output pin-to-pin distances are required for the experi-
ments. As no real data was easily available a choice was made to create this
data based on a set of well known MCNC benchmarks.

The chosen set was the whole range of C17 to C7552. They are technology
mapped using SIS[40] and the included technology library lib2.genlib. This
offers a network of modules which are represented by library elements with
an area-delay model also derived from the used lib2.genlib library. Although

3.3 problem size reduction 57

this results in lots of small nodes with a single output this is still useful as
a real multiple output node could be imagined to be broken into multiple
single output nodes as far as the modeling in the mathematical programming
is concerned.

For the pip-to-pin distances random lengths limited to some maximum were
first added to all edges connecting the modules. The maximum distance of all
the paths between to pins using those numbers was taken as the total pip-to-
pin distance. The required delay was set between the minimum possible delay
and the delay at the minimum area. It is set at 1/4 of the total difference from
the fastest solution and 3/4 from the smallest solution.

The experiments ran on a linux intel 1GHz PC with 512MB memory. Java
is used for the handling of the delay and network data and the interfacing to
the solver. The network model in java is used to do the ordering of nodes and
analyses as well as manipulations on the network. The interfacing to the solver
was done through writing and reading files and using matlab. The solver used
was a geometric solver in MOSEK [29] which has a matlab toolbox interface.

Circuit #modules #inputs #outputs #paths # modules total in paths
C17 6 5 2 11 28
C432 147 36 7 291e3 464e4
C499 287 41 32 100e3 132e5
C880 225 60 26 8442 943e2
C1355 510 41 32 417e4 881e5
C1908 349 33 25 196e3 3278e3
C3540 740 50 22 225e5 509e6
C5315 1081 178 107 395e3 764e4
C6288 2371 32 32 538e17 481e19
C7552 1682 206 58 428e3 663e4

Table 3.1: Circuit parameters for some mcnc benchmarks

The following table 3.1 shows numerical data of the networks used. As
expected the number of paths increases quickly with higher number of modules.
Writing down all paths for C6288 is clearly not feasible and that alone would
require a long run time already before doing any solving already. In fact it
turned out to be even impossible to run the C432 circuit from both a memory
as run time point of view. A very cut down version running on a 4 GB machine
had run times well into hours.

58 time budgeting

Enumeration of all possible paths is clearly a problematic issue. To get
some idea how badly this gets out of hands look at figure 3.5. Adding the
dashed edge will introduce an additional number of paths equal to the product
of the number of outputs of node B and number of inputs of node A. In case
Ni and No are 5 the number of constraints rise from only 10 originally with
an additional 25 paths to 35. Adding another additional edge will result in an
even higher increase of paths. If the edge C to A is added C ’sees’ the No

primary outputs of B too through the previously added edge A to B. The same
is true for the Ni primary inputs of A for added edge B to D.

A
N i

B
No

POsPIs

D

C

Figure 3.5: Adding the dashed edge will introduce Ni*No additional paths.
Adding nodes C and D with thier edges will give an even higher increase of
number of paths.

dynamic programming

Table 3.1 shows that enumerating all possible paths is impractical, and
this goes then for the mathematical program too. Fortunately there exists
a way to circumvent this problem and still take all paths into account. The
dependencies among paths which was earlier mentioned as a problem for the
path-by-path algorithms can actually be exploited here. By a reformulation of
the information contained in the path delay constraints of the mathematical
program the total number of constraints reduces dramatically. As no model
reduction or heuristic pruning will be used exactly the same problem is solved
and the same solution obtained as in the unreduced case.

3.3 problem size reduction 59

A B

C

D E F

G

H PO2

PO1PI1

PI2

Figure 3.6: Some circuit paths with partial shared sub paths

Look at the situation of figure 3.6. Note that all possible paths between
a particular primary input PI1 and a particular primary output PO1 have to
comply to the same timing constraint. As seen before, due to the monotonic
placement assumed in the wire planning context all those paths will have an
equal amount of wire length and thus wire delay related to the manhattan
distance between this input pin and output pin. Therefore module delays
could be separately summed up and compared to the required delay minus the
wire delay. Of all those alternative paths only the one with maximum delay
has to be known. If this maximum is below the timing requirement minus wire
delay then the timing requirement is met. It also means that all other paths
meet the timing requirement too. So not all paths have to be set as timing
requirement, but only the ones with maximum delay.

Note also that lots of paths share common sub-paths. A very strong exam-
ple are the paths between PI1 and PO2 which are identical to those between
PI1 and PO1 with only H added. As H has a specific although unknown
location on the chip the amount of wire delay between H and primary input
PI1 is fixed for that location. As a result it is also equal for all paths going
through H and thus also for those from PO1 as well as PO2. Therefore the
amount of module delay added up from the modules on a particular path up to
this module H is also equal for both paths going to PO1 or PO2 which share
this particular common sub-path. So the delays of the paths to PO2 are equal
to those at PO1 with only the delay of H added to them. Finally this also
means that the path which results in maximum delay at PO1 automatically
results into this path with H added being the path which will be maximum
among all paths from PO2.

60 time budgeting

A similar observation can be made for the paths A B and C between PI1
and D. For any given position of D in a monotonic placement the amount
of wire delay between D and PI1 is equal. If the delay of A and B is higher
then C then for any path through D to PI1 the paths with highest delay will
take the A B alternative path. So when searching for all alternative paths with
maximum delay at the primary outputs it can already be determined at module
D that only the ones going through A B have potential and that the amount
of this delay will be equal for all paths with maximum delay going through D.

Having a single optimal alternative option even at intermediate points and
the fact that those optimal options are related to each other and shared a lot
seems to call for a dynamic programming approach. In general the following
properties should exist:

• There exist optimal substructures for an optimal solution of the problem.
• There exist a recursive way to define optimal values for those substruc-

tures.
• The optimal solution can be calculated in a bottom up fashion.

Recall that we are searching for a path with highest delay. So within the
following discussion the optimality which we look for is the alternative pin-
to-pin paths with highest delay. This is the structure of an optimal solution.
Substructures are in this context sub-paths. The optimal substructures are
part of the optimal structure.

Theorem 1 Any sub-path between two modules A and B of a larger sub-path
which has maximum delay has also the maximum delay among all alternatives
between those two modules A and B.

Proof: Suppose there is a path between primary input PI and primary output PO which

has the highest delay and goes through a particular path from A to B. Now if there would be

an alternative between A and B with higher delay then the path taken by the path from PI

to PO then an alternative path between PI and PO would exist with a higher total delay.

This contradict the fact that we had the path with maximum delay.

The calculation of the maximum delay value of the optimal substructures
can easily be done. The previous theorem already stated that any substructure
will be constructed from other optimal substructures as any sub-path can be
broken into smaller sub-paths which will be optimal.

3.3 problem size reduction 61

Theorem 2 The maximum path delay from a certain pin or module P to
the current module M is equal to the maximum of all maximum path delays
coming from the same pin or module to the module N at any of the n inputs
of the current module plus the delay of the current module.

Proof: Assume maximum path delays from a certain point P to be known for all Ni

modules at the n inputs of M . Then n alternative paths to P can be constructed by adding

the delay D of module M to the values at the modules Ni. As the same value D is added

to all alternatives the resulting maximum delay path will be based on the maximum of all

maximum delays at the n inputs.

The value for a module can thus be calculated based on its direct inputs.
As delay budgeting is pin-to-pin based the logical choice for the reference pin P
in the previous theorem to start from would be a primary input. When arriving
at the outputs we know the maximum delay whenever there is a path.

Usually multiple primary inputs have a path to the same primary output.
We can easily take all of them into account by identifying a separate maximum
path delay for each primary input at each module. They do not interact and
the maximum of all inputs is just based on the corresponding maximum delays
towards the corresponding primary input. Therefore a topological ordering of
all modules starting from the primary inputs would fit this formulation very
well. It requires all the modules at the input of a module to be in the ordering
before itself is added. As the intermediate variable at a node represents the
total delay from a primary input it could be interpreted as an arrival time. A
signal starts at a primary input with a certain arrival time, for now assumed to
be 0. The delay of a module is added to get the delay at its output. This is the
time AT at which moment the signal arrives at this point. If there are multiple
paths from the same primary input coming in at the inputs of a module the
maximum is chosen which is the latest moment the signal could arrive at this
point. This is very similar to an arrival time calculation where the maximum
among all inputs is taken to get the arrival time at the current node. A major
difference is that we will have separate calculations and thus variables ATPIj

for each primary input PIj at each module.

Assume again the area delay relations to be given as before such that for
a given sizing parameter s of a module m the delay Dm(s) and area Am(s)
are known when s is given. The the path with highest delay for given size
parameters s can be efficiently calculated using the ideas presented above.

62 time budgeting

Also the total area can be calculated. The whole procedure to obtain the
arrival times AT at the primary outputs for a given size parameter assignment
could be written as:

The whole procedure could be written as:

ALL MAXIMUM PATH DELAYS

1: Order <- topological ordering from primary inputs PI
to primary outputs PO

2: for n= 0 to |PI|
3: cre-ate ATPIn

=0

4: for module m <- Order(0) to Order(|Order|)

5: for n= 0 to |PI|
6: ATm

PIn
=0

7: for i=0 to |inputs of M|

8: N=input i of m
9: if ATN

PIn
+ Dm(s) > ATm

PIn

10: ATm
PIn

= ATN
PIn

+ Dm(sm)
11: for j= 0 to |PI|
12: for k= 0 to |PO|

13: MAXIMUM PATH DELAY(PIj,POk)=AT POk

PIj

14: return MAXIMUM PATH DELAY

This procedure is much more efficient in determining the highest pin-to-
pin delays than enumerating all of them. Enumeration has an exponential
complexity of O(2M) in the number of modules M . This procedure is visiting
each module only once and for each module all inputs once for each primary
input variable. At most |PI| inputs exist and thus the complexity can be set
equal to the number of edges in the network times the number of primary
inputs or O(PI ∗E). The number of variables is at most |PI| at every module
and thus of O(PI ∗ N).

3.3 problem size reduction 63

useful intermediates

Using the dynamic programming procedure the pin-to-pin paths with max-
imum delay can efficiently be identified for a given set of sizing parameters
s. The optimization can then be done in another way, by formulating the
mathematical program as:

min
∑#modules

i=0 A(si)

subject to

AT POk

PIj
≤ Treqjk

− DWjk
∀j ∈ PI, k ∈ PO

and module size limiting constraints

minSizei · s−1
i ≤ 1 i = 0 → #modules

1/maxSizei · s1
i ≤ 1 i = 0 → #modules

where PI, PO are the sets containing all the primary inputs and primary out-
puts, AT s are the maximum arrival times at the primary outputs for the given
primary inputs with a given required timing Treq between them and a total
wire delay DW based on the manhattan distance between PIj and POk. The
dynamic programming approach would have to generate the variables AT at
the primary outputs for the currently assigned values s during the optimization
which represent the paths with highest delay. However as soon as the optimiza-
tion changes the sizes and thus areas A(s) of some gates the corresponding
delay D(s) of a gate will change too. As a result the path delays will change
and another path might have the highest delay than the one calculated by the
dynamic programming procedure. It is therefore very impractical to have those
two separate procedures as it would require a lot of iteration between the two.
Fortunately that can be avoided!

The essence of the dynamic procedure was choosing a maximum among
the inputs of a node and store this value for further use. Further the calculation
had to be done from primary inputs to primary outputs as based on the previous
calculation method this is the order in which they become available.

64 time budgeting

Theorem 3 The following set of constraints added to the mathematical pro-
gram

A ≤ G
B + C ≤ G ⇐⇒ G = MAX{(A), (B + C), (D + E + F)}

D + E + F ≤ G if G is minimum

will at all times set G equal or higher to the sum of variables of the particular
constraint with the highest total sum and thus determine a maximum over
those alternatives.

So a variable G is introduced which will represent the maximum delay
among all alternative constraints. Suppose now that in the constraints the
variables are the sum of the maximum delay variable of the module at a par-
ticular input of the current module and the delay of the current module. Then
writing such a constraint for each input will exactly represent the choice of a
maximum among all inputs of a module as was required. Note however that
G seems to be allowed to also have a much higher value. This is fortunately
not true in our context.

Theorem 4 If the following set of constraints is added to the mathematical
program

A ≤ G
B + C ≤ G G ≤ F

D + E + F ≤ G

All constraints will end up having an equal value and will also be equal to F
when G is limited by a timing constraint F.

Proof: The mathematical program tries to minimize area by exchanging it for higher

delays. Therefore the constraints will all try to get as large as possible and by that pushing G

higher and higher. The maximum delay is however limited by a timing constraint and thus G

is limited from above. As a result G becomes equal to the limiting timing constraint and the

constraints will grow until they are equal to G.

So due to the optimization and the exchange of area and delay we get the
equality sign in the set of constraints representing the maximum operation of
dynamic programming. But the timing limit is only set at the last node.

3.3 problem size reduction 65

Theorem 5 Adding all MAX operation constraints for all modules continually
provide the relation of delays of one module to another generating the maxi-
mum delay values in such way that an ordering as with dynamic programming
is no longer required.

Proof: Look at the following set of constraints representing the paths between input A
and output D. There is one alternative for the paths to B and C and from those two there
are two alternatives to D.

0 ≤ A A + Dm1 ≤ B B + Dm3 ≤ D D ≤ Tconstraint

A + Dm2 ≤ C C + Dm3 ≤ D

As proven before D will be equal to the constraint Tconstraint as it is bounded by that from

above and both constraints will like to be equal to that too as Dm3 will try to be as large

as possible. As a result B and C will like to be to D − Dm3 or less. But the constraints

generating B and C also have a module delay trying to be as large as possible and by that

trying to maximize B and C. But now B and C are also limited like D and therefore

also there constraints will have an equal sign and try to set A to B − Dm1 and C − Dm2

rassignmentespectively. But A has been bounded from below by 0 in this case. As there are

all equal signs in the constraints the variables represent the maximum delay values at every

module. They are bounded between 0 and Tconstraint and the module delays Dm will take

on maximum values to make the constraints have equal signs at all times. As the variables

are continually updated they will represent the dynamic programming solution instantaneously

and at all times during the optimization. Therefore ordering is not required as the solver will

take into account all constraints at the same time.

So the module delays Dm are maximized to create all equal signs to make
maximum use of the available delay between upper and lower bound. At the
same time their corresponding areas are summed and minimized. As a result
there will be an to the module delays Dm such that the constraints are fulfilled
and thus the maximum path delays are equal to the timing given constraints
and at the same time have a minimal total area.

the bottom line

The number of extra variables introduced is equal to those generated during
the dynamic programming procedure. The number of extra constraints is
related to the max operation of dynamic programming. The total is equal
to the number of max operations performed in the dynamic programming

66 time budgeting

procedure. Therefore the number of variables is O(PI ∗N) and the number of
constraints is O(PI ∗E). This has clearly a much lower (even linear) relation
to the network size as compared to the enumeration case.

Using the same time variables AT as during dynamic programming the
following complete mathematical programming problem is obtained:

min
∑#modules

i=0 Ami
(si)

subject to

AT I
nu

+ Dnunv
mi

(si) ≤ AT I
nv

∀I ∈ PIC(nv), e(nu, nv) ∈ E

AT POk

PIj
≤ Treqjk

− DWjk
∀PIj ∈ PI, POk ∈ PO

dnunv/si + pnunv ≤ Dnunv
mi

(si) ∀e(nu, nv) ∈ E

and additional size limiting constraints

minSizei · s−1
i ≤ 1 i = 0 → #modules

1/maxSizei · s1
i ≤ 1 i = 0 → #modules

where E, PI, PO and PIC(nv) are the sets containing all the edges of the
network graph, primary inputs, primary outputs and the intersection of PI and
the cone of the corresponding output or net nv of module m, respectively, and
e(nu, nv) is an arc from net nu to net nv through a module m. Of course the
the size limiting constraints shown earlier can also be added.

The number of variables is now equal to the sum of the number of primary
inputs in the input cones at the outputs of all modules and the module delays
themselves. A worst case estimate would be O(PI ∗ o ∗ M + i ∗ o ∗ M + M)
assuming all primary inputs PI are in the input cone of the o number of outputs
of all the M modules. Then i ∗ o ∗M delay variables for all input-output delay
relations of each module and another M for the size variables s establish the
estimate. In case all input-output delays of a module are equal the middle
term would be reduced to M as well.

All of the constraints except those at the primary outputs and the size limits
have only two terms: the previous maximum value and the current delay,
that is a size dependent delay part and a fixed delay part. The number of

3.3 problem size reduction 67

constraints per output of a module is equal to the number of primary inputs in
the input cone or nets nv of the modules (=PIC(nv)). Therefore the number
of constraints is now in worst case of the order O(PI ∗ i∗ o∗M +M +2∗M)
where there are M modules with o outputs which are all connected to all i
inputs of the module each having all PI primary inputs in there input cones.
Then there are M delay constraints and another 2∗M size limiting constraints.

One more remark about the size limiting constraints is in order. When those
are added the module delays become bounded and therefore not all constraints
will have an equal sign. In fact some values will be allowed to float between
two limits. Although this still would lead to valid timing, it usually is a problem
for many solvers. This can be fixed by adding the resulting maximum delay
paths variables to the object function with a very small multiplication term.
As a result this will push the resulting delay down if possible at virtually no
area cost.

The original exponential complexity is now avoided. It is now linear in the
number of nodes and edges of the corresponding timing graph like representa-
tion. The number of constraints increases linear with the number of edges in
spite of the fact that adding a single edge could still generate many additional
paths. This can also easily be observed by looking to the situation of figure
3.5. Adding the dotted edge will introduce only one extra variable due to the
new PI in the input cone, and only one extra constraint for this input as there
is only one primary input in the input cone.

original reduced
Circuit #vars #constr #terms #vars #const #terms runtime
C17 14 31 56 18 48 84 3s
C432 301 291e3 4640e3 2838 6205 12193 14s
C499 606 100e3 13200e3 5915 10869 21307 28s
C880 476 9143 95252 3025 5754 11102 13s
C1355 1052 4171e3 88101e3 9622 17159 33600 90s
C1908 723 196e3 3278e3 6061 12183 23861 47s
C3540 1502 22500e3 509e6 12422 25636 50215 126s
C5315 2269 395e3 7641e3 12326 22950 43914 69s
C6288 4774 53800e15 41800e18 34710 68695 134507 1493s
C7552 3422 428e3 6630e3 23442 44205 86189 188s

Table 3.2: Solver parameter comparison for some mcnc benchmarks

68 time budgeting

Table 3.3 shows that we are now capable of handling the larger circuits in
reasonable time. Circuits with up to 10e18 paths are within reach. Even C432
would originally have taken more than the 1500 sec now needed for such large
circuits.

To illustrate the approach we offer the example in figure 3.7:

PO1

PO2PI2

PI1

M2

M1

M3
M4

W1

W2

W3

W4

W5

W6

W7 W8

Figure 3.7: A very simple circuit with modules M and wire segments W of
unknown length

The paths have a total delay of:

W1 + M1 + W5 < TreqPI1PO1

W2 + M2 + W3 + M1 + W5 < TreqPI1PO2

W2 + M2 + W4 + M3 + W7 + M4 + W8 < TreqPI2PO2

W2 + M2 + W3 + M1 + W6 + M4 + W8 < TreqPI2PO2

Using the simplification due to monoticity this becomes:

M1 < TreqPI1PO1
− DWPI1PO1

M2 + M1 < TreqPI2PO1
− DWPI2PO1

M2 + M3 + M4 < TreqPI2PO2
− DWPI2PO2

M2 + M1 + M4 < TreqPI2PO2
− DWPI2PO2

After introducing common terms for maximum values up to a certain primary
input yields:

0+M1 < DPO11
DPO11

+M1 < DPO12
DPO12

< TPI1PO1−DWPI1PO1

0+M2 < DPO21
DPO21

+M1 < DPO22
DPO22

< TPI2PO1−DWPI2PO1

3.4 further tableau reductions 69

DPO21
+M3 < DPO23

DPO23
+M4 < DPO24

DPO24
< TPI2PO2−DWPI2PO2

DPO22
+ M4 < DPO25

DPO25
< TPI2PO2 − DWPI1PO2

Now result 11 smaller constraints with 16 terms. This may hardly seem
an improvement over the initial 4 constraints with 9 terms in total, but this is
only a small example and a local result. Moreover the fanouts and fanins have
a low maximum of 2 and the paths are short so that there is in fact not much
chance on sharing.

3.4 further tableau reductions

The huge reductions in problem size by introducing the node-to-node formu-
lation of the previous section brought the complexity of time budgeting down
to an acceptable level. Further reduction might be possible for specific solvers.
Such is the case with solver as MOSEK[29] whose runtime is quite sensitive to
both the total number of terms in the constraints and the total number of vari-
ables. Therefore reducing those would directly result in an run time advantage.
Two methods from literature are particularly useful in our situation.

pruning

Using a pruning strategy like proposed in a timing optimization paper[42] it
is possible to reduce in some cases both the number of variables as well as the
total number of terms in the constraints at the same time. Note that pruning
reduces variables and constraints by reformulating the constraints and not by
rejecting variables or constraints of the problem such that the problem which
is solved and the solution which is obtained are still exact and the same as for
the unmodified case.

The term pruning comes from the network view of the problem. In the
original formulation there is a variable at each node and a constraint for each
edge relating those variables together with the delay of the node. It is possible
to prune a network node and therefore a variable by replacing the now uncon-
nected edges by a new set of edges which connect all the outputs of the nodes
at the input of the removed node with the inputs of the nodes at the output of
the removed node. Those edges will now be represented by constraints again

70 time budgeting

relating the variables at the nodes but now contains as an extra term the delay
of the pruned node. This will change the total number of constraints but also
the number of terms per constraint. This is illustrated in figure 3.8.

a

b

x

y

z

a

b

c

x

y

zc

m

ATm
I ≥ AT a

I + dm

AT y
I ≥ ATm

I + dy

}
⇒ AT y

I ≥ AT a
I + dm + dy

Figure 3.8: The basic pruning operation with constraints for the bold path
shows the elimination of variable ATm

I and one constraint.

Assigning certain weights based on the solvers properties to the removed
variable and changed number of constraints as well as number of term in
the constraints it is possible to calculated a gain value for different cases of
number of inputs and outputs of a node. It turns out that in our case only
the single input-single output node as well as the multiple input-single output
result always in a gain. The single input-multiple output nodes result in gain
for variables and constraints but not in terms and in general does not improve
our run time. We get back to this particular instance in the next paragraph.
Having more inputs and outputs at the same time results only in gain if it is 2
and 2 and no edge has result from pruning. Therefore this rare case is omitted.

The reduction itself is carried out in a very simple heuristic way. For every
possible reduction the network nodes are visited in a topological order from
inputs to outputs and pruned if they are of the current type of reduction
alternative. first the one input one output nodes are pruned followed by the
one input multiple output nodes.

Although the few reduction possibilities might seem very limited they still
result in major gains in run time. This was actually also the case for the original
paper were not much more cases were an advantage to prune. Another aspect
to take into account is that in our case the network has multiple variables
representing delay from each primary input in the input cone at each node.
For the pruning not the real network but the striped down version for only
the variables of a single primary input is of interest. This will have a major

3.4 further tableau reductions 71

one to many (=N) one to onemany (=N) to one

NN

one to many many to one one to one
N 2 3 10 2 3 10
vars 6 7 14 10 15 50 5
constr 5 6 13 8 12 40 4
terms 10 12 26 16 24 80 8
vars 5 6 13 8 12 40 4
constr 4 5 12 6 9 30 3
terms 10 13 34 14 21 70 7
vars 4 5 12 6 9 30 3
constr 3 4 11 4 6 20 2
terms 9 14 48 12 18 60 6

Figure 3.9: The last two pruning operations always result in a gain. The first
one results sometimes in a gain as the increases of the number of terms in the
constraints have a counter effect on the other reductions.

impact on the fanout and fanin count of the nodes in the remaining network
and result in many more attractive nodes to prune then the original network
might suggest.

This reduction method can reduce run time in certain cases with high
amount of reduction by more than 50% as can be seen comparing the first two
runtime columns in table 3.4. Not all cases improve and even slight increases
are noted. But in general those are small circuits where the exact gain is not
really clear. The problem here is that the change in run time is a little different
for small examples then for larger ones. In general one can conclude that the
pruning never results in a loss of run time but can lead to a major improvement.

72 time budgeting

Note that if the reduction would be applied until all internal nodes were
gone the original formulation enumerating all paths would result. There is
clearly an optimum between the two formulations of enumerating all paths
and using intermediate variables at all nodes.

forward versus backward formulation

The sensitivity of the solver to the number of terms and variables can also
be exploited in another way. The previous described method writes down the
delay constraints as functions related to the primary inputs in the input cone
of each module. But the formulation of the constraints can also be done
in reverse order from primary outputs to the primary inputs. The resulting
budgeting is exactly the same but the number of variables and constraints can
be quite different. In general there will be a majority of modules with much
more primary inputs in its input cone then primary outputs in the output cone
or the revere which can be exploited.

In this reverse case the number of delay constraints is related to the number
of primary outputs in the output cone of each module. In case the circuit has
many inputs and few outputs the structure of the circuit will be more likely to
be trees rooted at the primary outputs. Therefore the the number of primary
outputs in the output cone of a node will be only few or just one. Then the
backwards formulation will have far less variables at the nodes and terms in
the constraints as well as number of constraints. If there is only one primary
output then there is only one variable at every node and only one constraint
for every edge. While at the same time multiple inputs would result in multiple
variables and constraints per edge in a forward oriented formulation of the
same circuit.

Also pruning can still be applied. Note however that the most effective
nodes to prune having multiple inputs and a single output mostly disappear
using the reversed orientation of a network with few outputs. It turns out
that the change from a forward to backward formulation in general results
in a better gain for the same multiple input-single output node then pruning
the same node in the original formulation direction. The first pruning type
of figure 3.9 can be regarded as the backwards formulation of the second
prototype which result in much lower numbers but the effectiveness of pruning
is reduced. The same is true starting from a backwards formulation for single

3.4 further tableau reductions 73

input-multiple output nodes as reversing the direction does turn them into
multiple input-single output nodes for the backwards formulation. Still pruning
is advantageous afterward and adds still to the gain observed from the reverse
formulation as there are still also the one-to-one nodes and not all nodes will
have optimal direction.

This is also supported by the data in table 3.4. In the cases that pruning
did not gain much in the forward direction much was gained in changing the
direction of the formulation. The networks have a construction such that most
nodes does not gain much with pruning and thus are likely of the multiple
input-single output type of nodes. But it is exactly these type of nodes that
gain a lot by reversion the formulation.

Chip #nodes #paths run time
fw fw pruned bw pruned

C432 147 291e3 14s 17s 5.3s
C499 287 100e3 28s 26s 30s
C880 225 8442 13s 19s 5.2s
C1355 510 417e4 90s 44s 74s
C1908 349 196e3 47s 45s 36s
C3540 740 225e5 126s 114s 76s
C5315 1081 395e3 69s 66s 76s
C7552 1682 428e3 188s 130s 69s
C6288 2371 538e17 1493s 528s 1414s

Table 3.3: Results for different formulations including reduction.

A quick network traverse forward and backwards including pruning will show
which of the two is most effective to use. This fast and cheap preprocessing
will yield high gains in run time in most cases and therefore should always be
done.

The effects are much less noticeable when there are many input and outputs
or only a few of them. On one hand something is saved but at the same time
for some other part of the network extra costs are introduced, which is just the
reverse when the traversal direction is reversed. In the second case not much
is gained first of all as there are only few variables at maximum at a node for
each direction.

74 time budgeting

A mixed direction formulation choosing the best direction which might be
different for parts of the network seems to be an even better solution. Problem
however is the connection of the variables of the separate parts. The required
number of constraints is a multiplication of there numbers of variables for
each related connection point. This clearly grows exponential and very soon
outweighs the advantage of the best directed formulations.

3.5 enhancing robustness

The fully optimized solution has some problems as it hides the real problematic
delay paths. Mathematical solvers fully optimize all variables so tight that if
afterward a little change occur the total solution can be heavily affected. This
is mainly caused by a change in a path which is hard to optimize. But as
not every module and path is as critical the change could have been made
somewhere in the non-critical areas too with little effect on the total solution.
The main problem is however that this non-criticality has been optimized away
from observance.

This problem has been dealt with in a timing optimization paper[4] by
introducing separation term in the cost function. It tries to create some sep-
aration between the resulting delay and the required delay if possible at low
cost. Therefore non-critical paths will have slack introduced at them. The
more slack assigned the less critical the path is and changes will cost relatively
little if needed. Were earlier all outputs equally critical with slack 0 resulting
in a “wall” in an ordered slack plot, now there will only be a few with slack 0
which are the real hard to optimize paths (figure 3.10).

The same idea can be easily added to the previous presented geometric
program. The only change required from the presented separation is that it
should be turned into a term which can be added to a posynomial objective.

A separation cost term P (Treq, AT) = k ∗
(

AT
Treq

)q

. which tries to enlarge

the difference between the arrival time(AT) and the required time(Treq) at
a controllable cost is added to the cost function. q determines how fast the
penalty decays with separation, and hence how much separation is “enough”
and k controls the importance of slack as compared to area.

3.5 enhancing robustness 75

-5 0 5 10 15 20
0

100

200

300

400

500

600

700

800

slack

si
gn

al

original form.
robust form.

Figure 3.10: Only one to three percent area increase reduces the number of
critical paths dramatically

It turns out that this separation term is closely related to the presented term

P (Treq, AT) = k ∗ e
−(AT−Treq)

σ in the paper with k is equal and σ ∗ q = Treq.
This allows direct translation of the effects of the parameters as presented
there to our case.

Experiments showed that at area costs of about 3% only a very few paths
are realy critical. When requiring at least 5% of the required arrival time
as slack before denoting a signal non-critical about 20 to 30% of the signals
become non-critical. When this requirement is lowered to 3% of the required
time this increases quicly up to 70 to 80%. Figure 3.10 shows such an example
using circuit C499 with k = 80 and q = 40.

It requires some tuning of k and q to get the desired amount of separation
for a certain number of paths at a particular area cost. k determines mostly
the amount of extra area allowed while q determines the amount of separation
and thus the number of non-critical paths and their amount of slack.

76 time budgeting

Chapter 4

constant delay mapping

Wire planning requires a concept of constant delay synthesis. It assigns delay
values to modules based on the best known information at that time and then
keep the chosen delays fixed at further refinement of the design. This means
that an implementation of the logic function of the module must be provided
at a required delay at minimum area cost which can be kept at that delay
although some parameters influencing it can change.

Conversion of the boolean network into an implementation in only known
library cells which can be laid out on a die is done by logic synthesis. This
is a refinement step of the design as the general boolean representation is
replaced by a more detailed and specific implementation. Thus among a range
of possibilities the right one has to be chosen to continue the refinements from
there and limit the range of possible final solutions reachable from there at the
bottom of the design space triangle(figure 1.1).

Traditionally this conversion is a two phases approach. Based on some rules
of thumb without real notion about area or delay the boolean representation
is technology independent optimized to a specific boolean network. Then the
step of technology mapping[24], also called library binding[10], does based
on this biased starting point the technology dependent optimization to an
implementation of library cells. Seen in the context of refinement the first
optimization choses already an intermediate refinement point and by that limits
the range of reachable solutions in the second step. The complexity of the total
task is reduced by first choosing some structure for the boolean network, before
also changing it into library cells with delays and areas. But it is also clear from

78 constant delay mapping

this view that rules of thumb can put us in the wrong corner before starting
the last conversion to library cells (figure 4.1 and 4.2).

abstraction

detailing

many variables many alternatives

few alternativesfew variables

library

boolean
network

boolean
optimized

cellsR2

P1P2

unaccesable from P1unaccesable from P2
R1

Figure 4.1: Going from one level of detail into another in two steps can lock
out solutions in the intermediate step

abstraction

detailing

many variables many alternatives

few alternativesfew variables

R2R1
both R1 and R2 accesable at the same time

boolean
network

optimized
boolean

library
cells

Figure 4.2: Going from one level of detail into another directly offers a larger
search space to be explored at the cost of higher complexity of optimization

79

In the context of wire planning the result of technology mapping or actual
of the whole synthesis step should be a description of an interconnection of
library gates meting the required delay at a specified load at minimal costs
like area and or power. Traditionally technology mapping is producing as fast
as possible or small as possible implementations. This has also its impact on
the internal working of technology mapping and the delay representations used
for the library elements. By merging partly the steps used in logic synthesis a
larger search space can be explored at once and by using a different approach
for area and delay modeling and evaluation choosing the exact required delay
at least cost is enabled.

The library elements used to implement the logic functions are commonly
described by a fixed area and a delay which depends on the load. As a result
of that the delay of a module will change as soon as something changes at
its interface like more wire load or a heavy loading module. Therefore also
a different delay modeling is required in the context of wire planning were
delay should be fixed while other parameters can still change. This is done
using a new delay paradigm were the gate is modeled with a constant delay
and which area is adjusted to keep it to that constant while things like load
change[20][16]. This delay modeling was already proposed in section 2.2.

A
B
C

D
E
F

F=ABCDE

G=BCDEFN2

N1

F=ABCDE

G=BCDEF

A
B
C

D
E
F

F=ABCDE

G=BCDEFN2

N1

A
B
C

D
E
F

N2

N1

estimate delay=3

delay=1.2 at fanout 1

estimate delay=2.2
real delay =3.2

real delay=3

fanout estimate=1

delay=1 at fanout 1
delay=2 at fanout 2

Figure 4.3: The optimal subnetworks based on default fanout of 1 might lead
to wrong estimations of the final solutions as shown for two alternatives

This is also an attractive delay model to use during technology mapping
itself, as it is based on choosing the best area delay sub-implementation before

80 constant delay mapping

the rest of the circuit has been fixed and thus while load is still unknown. A
common approach uses load or fanout estimated while determining the best
sub-implementation but if it turns out to be off and much higher in the final
solution then the calculated estimated delay of the solution will be off too
and the real delay will be much higher (fig 4.3). The constant delay model
allows to adjust the areas while selecting the final implementation which was
predicted to meet a certain delay such that errors does not result in a changing
delay value. This assures that an given delay by wire planning can be chosen
from the search space and will always be able to meet it for sure.

In the remainder of this chapter the focus is on technology mapping and
how it can absorb transformations of technology independent optimization and
how the ability of choosing the required delay at least costs can be achieved.

4.1 technology mapping

Technology mapping converts a given boolean network into a logically equiva-
lent one consisting of library gates. To ease this process both the library gates
and boolean network nodes are expanded into a representation using base func-
tions. To do this these base functions should form a logically complete set,
that is any function can be realized using these base functions.

Common implementations of mapping procedures use two-input-nands and
although this in itself is a complete set also often inverters. Attractive is that
both can be implemented in a single gate in common technologies while this
would not be true for two-input-and gates and inverters. Including inverters
enables essentially better networks allowing the inverter function itself as well
as computational simpler procedures and libraries. In a cost optimizing context
it even pays to represent every connection by a series of inverters and add in
the library a similar series with cost zero. Richer sets of base functions do not
improve the potential of optimization but might complicate procedures[33].

When both the boolean network as well as the library gates are represented
by base functions a partitioning of the network can be created with library
gates as the partitions. Having the base functions also included in the library
guarantees that at least one solution exists. Mapping is first expanding the
nodes of the boolean network into sets of nodes only containing basic functions
and then do a contraction of sets of nodes into library gates. The expansion

4.1 technology mapping 81

will preserve the original network structure, and as the contraction is based
of relative small library gates also this will have only a local effect. The real
problem is to find among all possible mappings the one with overall minimum
area cost or lowest delay.

This problem of covering an acyclic graph cost optimal is known to be NP-
hard [21] even if the fanout of all gates is at most 2. Only in the case the fanout
is 1, efficient algorithms are known[35][2][24]. This class of networks, also
called convergent networks, have one primary output and each input terminal
of every node has one and only one directed path to that primary output.
These are all trees with the exception that nodes are allowed to share primary
inputs. They are sometimes called leaf-dags in design automation. In an
optimal mapping of such convergent networks every node resulting from the
contraction represents a subnetwork which is in the same sense optimal as the
subnetwork containing all directed paths from the primary inputs to this node
must be optimally mapped as well. This property of optimal substructures
in technology mapping for convergent networks therefore calls naturally for
dynamic programming.

Cost-optimal technology mapping using dynamic programming is in general
a four phased procedure:

1. expansion into a network of base functions.
As multiply logical equivalent representations exist every boolean node is
replaced by a balanced network of base functions to disturb the synthesis
result the least. Note that optimallity of the following steps can only be
claimed with respect to this initial expansion. This is closely related to
the problems of the limitations imposed on the possible search space
due to the intermediate choice of an technology independent optimized
network which also leads to suboptimallity (figures 4.1 and 4.2).

2. matching: determine for each node all matches that can cover a subgraph
of the network with this node as its output.
A string matching algorithm due to Aho and Corasick[1] could be used as
proposed in [24] resulting in a matching time proportional to the longest
string. But using only two base functions which are topologically distinct
allows the application of less sophisticated matching[18]. Convergent
networks that are not trees are also allowed in the library, and only have
to be tried when primary inputs are involved which can have a fanout
larger then 1.

82 constant delay mapping

3. dynamic programming in topological order
The cost is set to 0 at all primary inputs. For each node the cost of a
match is equal to the sum of the costs at the inputs of the match added
to the cost of the current match. The match with lowest cost is stored
at the node together with the cost value.

4. covering by contracting the nodes of the saved match at each surviving
node.
Starting from the primary output chose the previous stored best match
and proceed at the inputs of this match and again take the best matches
there and continue until reaching the primary inputs.

The chosen matches are the library elements that realize the optimal net-
work equivalent with the original network. This is the basic procedure used
for a long time even when the objective changed to speed optimal mapping
although there are some noteworthy different properties.

delay = 2.4
area = 4.6

delay = 1.7
area = 5.4

N N N

N

1.0 1.0

1.8 1.4

2.7 1.7

pattern area delay

+

+ +

partitioning 1

partitioning 2

Figure 4.4: The partitioning in non-convergent networks influences the solu-
tions to be found. In the first case an implicit duplication of node N occurs
resulting in more area use but on the other hand a better speed optimal total
solution.

A second important observation is that circuits are in general non-convergent
requiring the original circuit to be partitioned in convergent parts as shown in
figure 4.4. An easy way is to make every node with fanout more then 1 an
primary output of a subcircuit. The positive effect is that at least node dupli-
cation is avoided which could otherwise result in higher areas. But the negative

4.1 technology mapping 83

side effect is that the combined optimal mappings might not be the optimal
mapping for the total circuit. This is another example where an intermediate
decision influences the search space of the refinement into an implementation
of library cells.

change to speed optimal covering

A remarkable change in technology mapping came up when it was noted
that the properties of speed are different from area. It allows to deal with the
problem of sub optimallity due to the partitioning of non-convergent networks
in an elegant way as it is no longer required. It turned out that omission of
the requirement of convergence allowed even more extensive changes as also
the optimallity dependence on the initial expansion could be relieved.

The previous presented technology mapping procedure can also be applied
for speed optimal mapping if the delays are load independent as also there
the same principal of optimal substructures will apply. Note however that not
every convergent subnetwork with only primary inputs needs to be optimal to
achieve an complete optimal network. The alternative solution in figure 4.5
for the bottom part which is not the speed optimal subcircuit solution will not
change the delay of the final solution but costs considerable less area. However
essential is that there exist optimal solutions in which these subnetworks are
also optimal hence dynamic programming still applies.

A=9 != (3+3+3+1)

D=3 (max(2,2,1)+1)

A=7

D=3 (max(2,2,2)+1)

Equal delay

A
rea=

0
D

elay=
0

D=1 (max(0,0)+1)
A=1 (1+0)

A=1 (1+0)
D=1 (max(0,0)+1)

A=1 (1+0)
D=1 (max(0,0)+1)

A=3 (1+1+1)
D=2 (max(1,1)+1)

A=3 (1+1+1)
D=2 (max(1,1)+1)

OPTIMUM(D)
A=3
D=1

ATERNATIVE
A=1
D=2

Delay=1
Area=1

Figure 4.5: Selection of the alternative with less area which is just meeting the
required delay for a non-critical subpath results in equal delay but less area.
It also illustrates the difference for area and delay calculations with respect to
reconvergence in the absence of partitioning

84 constant delay mapping

Delay is calculated using the maximum over all inputs. At the point of
reconvergence the maximum over the input delays will only depend on the
delay value propagated through one of the possible fanouts. Therefore under
the assumption of load independent delay fanout is not a problem any more
as delay is not an extensive operator like area. In figure 4.5 this effect can be
observed for delay and area where the latter can not be calculated correctly
without partitioning first. Thus the delay for each node can be directly found
in a acyclic network and the partitioning and the possible non-optimallity due
to that can be avoided. This changes technology mapping from a partitioning
into library pattern to a direct covering of a possible acyclic network[25]. It
introduces however a duplication problem again as shown in figure 4.6 likewise
the case of figure 4.4 and causes an high increase in area consumption.

Figure 4.6: Covering the network on the left with two patterns of the type in
the middle causes one base function to be covered twice.

Another improvement possible due to covering is the use of choice nodes[26]
to encode the multiple logical equivalent representations of the non-unique
conversion into base functions in one and the same network. This highly
improves the quality of the final result as possible wrong decisions taken too
early are avoided. The intermediate step in the refinement of a boolean network
to a mapping which would limit the search space on an arbitrary way has been
removed. Therefore choice nodes increases the potential for finding optimal
mappings enormously.

b
c

a
f

b
c

a
f

b
c

a
f

Figure 4.7: Three logical equivalent representations of f=abc

4.1 technology mapping 85

Figure 4.7 shows three networks realizing f=abc. Choosing only one of
them as the input to the mapping procedure already bars several possibly
better solutions from popping op in the final solution at all. As this happens
at almost every node it is clear that in fact only a small portion of the total
available solution space is explored. Recall also the remark made earlier that
this is similar to the effect of choosing a particular technology independent
optimized circuit in the context of refinement which also limits the reachable
search space on forehand.

The authors of [26] even show that the whole space reachable through the
algebraic decompositions and factorizations of [5] can be completely contained
in a single representation. This removes the limiting factor of a technology
independent optimized boolean network choice enabling an even more natural
refinement approach. The again enlarged search space can be explored more
correctly leading to better overall results. A further reduction allowed is to
make sure that no two choice nodes have logically equivalent outputs as in
that case they can be merged into one and no base function node should have
equivalent inputs as in that case they are equal and can be identified.

b
c

a

b
c

a

b
c

a

f

Figure 4.8: The node marked X is the choice node. Exactly one of the repre-
sentations at its inputs has to be chosen when covering with a particular library
pattern

A choice node can best be viewed as a selection switch allowing the selection
of alternative network parts (fig. 4.8). During covering with library patterns
always only one of the inputs of the choice node is active. But all the choices
could be tried one after the other.

86 constant delay mapping

Applying full reduction starting with a network with the double inverters
and a choice node between every other node results in a network with many
4 node cycles of alternating choice nodes and inverters. The configuration of
this cycle together with the and nodes whose outputs are connected to one
of the two choice nodes is called a ugate in [26] and serves as the basic data
structure to represent a network with choice nodes. All possible decompositions
of f=abc, thus including those of figure 4.7, can be encoded using 4 ugates
and is shown in figure 4.9.

c

Ugate

a

b

c

f=ab

f=ac

f=bc

b

a

f=abc

f=(ab)c

Figure 4.9: A full representation of f=abc using ugates. One particular de-
composition is highlighted

The ugate compactly and elegant captures the multitude of representations
enables by choice nodes. It also allows the addition of an arbitrary number of
inverters. Besides that the 4 node cycle structure provides always both phases
of a function variable allowing additional reductions.

4.1 technology mapping 87

Although these discoveries allows for a larger solution space to be searched
and therefore the discovery of better options they also introduce some prob-
lems. As already noted the change to covering is likely to cause higher area
consumption as duplication will occur (fig 4.6). Another thing pointed out was
the over consumption of area due to the fact that speed optimal covering does
not always require subnetworks to be optimal, which usually means more area
consumption too, to be optimal itself (fig 4.5). There also arise issues about
complexity and runtime caused by the fact that a much larger search space
has to be explored by evaluating all alternatives at all the choice nodes.

area and search space control

The observation that for speed optimal technology mapping almost the
same algorithms as used for convergent networks can be applied efficiently on
non convergent networks directly where the search space does not have to be
constrained to only one possible representation in base functions, increases the
potential of technology mapping enormously. Note however that the mapping
process is no longer a partitioning process but a more general covering on a
larger search space. This causes considerable problems in terms of computa-
tional run time and memory usage but also in aspects of network quality. They
can be traced to two consequences of the innovations:

• enlarged search space. The enlarged search space means that many
more possible library matches have to be evaluated to pick the best one.
During the covering with library gates lots of alternative choices at a
ugates have to be tried. If a library pattern covers multiple choice nodes
the number of alternatives is the product of the alternatives at each
choice node. The number of ugates and number of choices at those
ugates of a fully reduced decomposition of an single multiple input and
node depends highly on the number of inputs. A six input and node
result in 57 ugates, eight in 247 ugates and 10 in 1023 ugates. In the
last case choice nodes with 511 alternatives exist. In the case of eight
inputs it is 127 and in the case of six it is just 31.

• unbridled area claims. Speed optimal covering of networks leads often
to high and unnecessary area consumption because traditionally all sub-
networks are also optimized although this is not always needed for the
overall optimum. On non critical paths solutions which are just fast

88 constant delay mapping

enough would cost less area while the resulting optimum speed is not
affected. Due to covering faster library matches can be found but are
likely to duplicate basic function nodes very often resulting is higher area
consumption. This problem is even aggravated when choice nodes are
allowing even more and thus faster matches to be found. Consequently
the resulting networks are often much larger then equally fast and func-
tionally equal alternatives as both [25] [26] report.

Data structures are needed to enable trade-offs between area and speed.
Then speed can be controlled and optimized without claiming to unnecessary
chip area. Also the enlarge search space due to choice nodes has to be limited
to avoid an unmanageable exploded network size and it has to be explored in an
efficient way. Both are problematic. No way to constrained it is known to limit
the search space without barring possible optimal solutions,so the guarantee
of an optimal result has to be given up. Also constructing the required area
delay data structures is hampered by the fact that the relation between them
is ambiguous.

In the next sections methods are presented to allow a practical implemen-
tation which deals with those problems which avoids the a priory partitioning
in convergent networks and bias of arbitrary representations and reduces un-
necessary area claims.

4.2 area control

To control the area consumption data structures to trade off area and delay
are needed. Measures have to be taken such that only the needed and requires
data is calculated and stored to render this solution feasible in large networks.
As already pointed out area is problematic to be calculated in a network cover-
ing context with fanout points that reconverge later and as multiple covering
can occur. A heuristic to deal with this problem is presented. Many possible
fanout points are created by the choice node approach, but it should also be
nooted that in most cases there is only a decomposition choice taken which
does not generate fanout points. This should be accounted for by the heuristic.
As an heuristic is used based also on structural information of the technology
independent optimized network the optimallity guarantee has to be given up.
Still the a priory partitioning in convergent networks and the bias due to arbi-
trary representations in base functions is dealt with very well. The heuristics

4.2 area control 89

introduced will in general favor the nodes with multiple fanout, especially for
the non-critical paths, because they will be more cost effective. At the same
time they also result in more accurate estimates of the heuristics and as a
result possible errors will not propagate for from such nodes into the network.
A speed optimal mapping can still be guaranteed, while avoiding unnecessary
huge area demands when covering directly an acyclic network.

area delay trade off

In the discussion about speed optimal covering it was pointed out that for
an optimal solution not all subcircuits need to be optimal in the same sense.
Some subcircuits can become slower while the optimum delay is not changed,
but less area is consumed (fig 4.5). The problem however is that until the final
cover is chosen the possible non criticality is not known. Therefore multiple
distinct area-delay implementations should be stored instead of a single best
match during covering search such that area-delay trade off is possible during
covering choice. Note that this is a similar problem to the requirement of delay
budgeting in a wire planning context to chose a specific delay at the least area
cost. Therefore while solving this problem for optimal speed also the ability
for choosing the best delay at least area is solved.

To enable these trade-offs between area and speed both should be stored for
the matches at each node. It is not hard to understand that only Pareto points
are of interest to obtain all possible optimal solutions and thus all others need
not to be saved. A point (t1, a1) is a Pareto point if there is no feasible pair
(t2, a2) such that:(t2 ≤ t1∧a2 < a1)∨ (t2 < t1∧a2 ≤ a1). The curve spanned
by the Pareto points is the area-delay trade-off curve for that node. They are
created by calculating the area-delay output values of all combinations of all
points at all inputs of a possible match. Only those which are Pareto point
need to be saved. When adding such a point it could at the same time make
other already existing points lose their Pareto status and thus those need to
be removed in that case.

Straight forward combination of all ni points of all inputs i costs N =
n1 ∗ n2 ∗ · · · ∗ ni evaluations, and thus increases run time a lot. At the same
time at most n1 + n2 + · · · + ni new points will result. Using the ordering
at the inputs the total number of evaluations can be in the same order. The
fastest point of the slowest input renders the even faster solutions at other
inputs useless as the delay is determined by the slowest input and those other

90 constant delay mapping

points will only lead to more area use and thus not to a Pareto point. A change
in delay can now only occur due to a slower solution of the currently slowest
input and thus thus point is changed. Now one of the other inputs could be
the slowest and the solutions of all the other inputs need not the be faster then
that delay. Only if all Pareto points would be spaced in such a way that every
time just one input changes and non of the others become uselessly fast the
maximum number of n1 +n2 + · · ·+ni evaluations is required but in common
situations this will be less.

Although the number of evaluations are limited to the sum of the alterna-
tives of the inputs of a match there still is the problem of rapid increase of
Pareto point when moving toward the output node of a circuit. Both, memory
and time complexity, are considerably reduced by limiting the total number
of Pareto points in a trade-off curve at each node while not affecting results
significantly. For all trade-offs at least the fastest and the slowest points are
stored. Other nodes are only added is they make a significant difference com-
pared to already stored nodes. This significance could be a fixed area or delay
difference, but this could lead to unpredictable worst case number of point at
certain nodes which would have a large runtime impact. Therefore the total
number of points per trade-off is limited to a certain number using an adaptive
difference to separate points apart. This number of points per curve can be
used as a trade-off parameter between quality odd results and runtime. The
result of this pruning is that we generate point which are spaced apart in area
(fig 4.10). The same can be done based on delay, but in our context trying to
reduce area at a given delay the other spacing is preferred.

5

3
2
1

0 1 2 3 5 6 74

4
5

3
2
1

0 1 2 3 5 6 74

4
5

3
2
1

0 1 2 3 5 6 74

4

(a) original curve (b) delay spaced (c) area spaced

Figure 4.10: Area or delay based pruning of area-delay trade-off curves

The area-delay trade-off curves of all nodes can thus be created in topo-
logical order from inputs to outputs. Covering is done in the opposite order:
the smallest match which meets the delay constraint is picked from the curve,

4.2 area control 91

and the timing requirements at the inputs are calculated. As a full trade-off
is also available at the output it allows to chose the optimal implementation
which just meets a required delay: exactly what is needed for delay budgeting
in a wire planning context.

This procedure works fine for load independent delay and convergent net-
works. Accurate area and delay pairs can be calculated and the result is a
mapping with minimal area under given area constraints if all Pareto point
would have been kept[6]. Nonconvergence and load dependence complicate
this however. The latter is already a problem for any kind of network but is
now even more severe as due to covering nonconvergent networks the point
of fanout becomes uncertain. Using the proposed constant delay or load inde-
pendent fixed delay model this is not a dramatic problem any more.

Although the use of a gain based delay allows a full and exact load inde-
pendent area-delay points calculation as area of input nodes can be related
to loading of the current node it has one major drawback. There will be a
minimum size which will not be taken into account when applying these kind
of calculations which results into the fact that a wrong potential structure was
assumed for the first portion of the circuit as the required areas will be much
smaller then the minimum sizes. Changing those to minimum sizes result in
much higher areas and likely smaller alternatives will exist. Therefore a default
load or gain is assumed for the area calculations as also commonly used by
others using these delay models[16][37]. Delay will be unaffected by changing
loads as it is compensated for, only area estimations might be off in the cal-
culated curves and not exactly the right ones are propagated. All areas will be
affected but to almost the same extent although the exact amount might be
a little different. Then still the overall spread of area-delay points in a curve is
likely to be good and valid and major reduction in area can be achieved.

The area estimations are also confounded by the covering of nonconvergent
networks. Matches that include multiple fanout points cause duplication of area
costs of parts of the network. At reconvergence the total area is estimated too
high which results in this point being dropped as being not Pareto.

92 constant delay mapping

crossing numbers

The problem of duplication of area counts in a non-convergent network is
a well known problem and was the reason to do partitioning in nonconvergent
networks in the first place. Our context of minimum area but speed optimal
covering requires area counts. if not accurate then at least usable guesses, to
enable trade-offs even for nonconvergent networks. The basic problem is that
the area of a subnetwork whose output is used to prepare different inputs for
the same gate, is counted to many times.

a
b

fanout=2
A/2+m2

A/2+m1

A+m1+m2+m3
A=a+b+m0

a
b

2A+m1+m2+m3
A+m1+m2+m3

A+m2
A/2+m2

A/2+m1
A+m1

incorrect area
corrected area

fanout=2

A=a+b+m0

a
b

fanout=2

to all matches
(a) multiple fanout external

(b) matches inlcuding a multi fanout point

(c) Resulting circuit if matches of (b) are selected

Figure 4.11: The impact on area calculations of multiple fanout points and
covers extending over them.

4.2 area control 93

A simple and common heuristic is to divide the area at a fanout point by
its fanout count such that when reconvergence occurs the areas are added
up again and the total area will be correct counting the area at the fanout
point only once(fig 4.11a). This will only work for simple cases. In the more
complex covering cases such estimates will be wrong as the area at the inputs
of a match which extents over multiple fanout points does not get divided for
those all fanouts and parts are still counted to often(fig 4.11b). Choice nodes
only aggrieviate the situation by increasing the number of such fanout point
and deserve a separate discussion in the next section.

The following heuristic is proposed to accommodate the errors introduced
by matches which extent over fanout points and by that hiding them. Assume
that all library patterns are trees, which is true with a few leaf dags as ex-
emptions that require a little adaptation and will be discussed at the end. In
pattern trees every input has a unique path to the output. When matching
such a pattern with a subgraph of the network a one to one correspondence
exist between the nodes of those paths and some particular nodes of the net-
work. By adding the fanouts of those nodes for a particular path to one minus
their number a crossing number is assigned to the input of the path:

1 − |P | +
∑
p∈P

γ+(p)

where P is the set of network nodes on the input-output path of the match
and γ+(p) is the out degree (or fanout) of node p. Only nodes with fanount
unequal to 1 should be considered as the others without multiple fanout do
not contribute to the crossing number. This crossing number can be used
to represent more faithfully what happens due to fanouts of the nodes in the
network on the complete path from input to output in the match. The area
is now estimated by first dividing the area at the inputs of the match by the
corresponding crossing number before adding them to the area of the library
pattern itself.

This effect is illustrated in figure 4.12. When matches completely cover
the multiple fanout point still the sum of the area costs of the inputs and the
matches correctly add up to the sum of areas at the outputs. If a particular
node fans out into other parts then covered by the match then only a part of
the area up to there is incorporated in the area at the outputs. The rest is
assumed to be taken into account by matches that also tap into this multiple
fanout point such that in the total sum of area at the outputs the area at this

94 constant delay mapping

at outputs
area

54

64
1

2
2

1

number
crossing

at inputs

110 118=110+4+4

area
at outputs

34

44
1

2
2

1

number
crossing

at inputs

110 78=110+4+4-12.5-12.5

area

30

20

10

50

area=50/2=25 each match

area

30

20

10

50

area=50/((3+2)-(2-1))=12.5 each match

Figure 4.12: Examples of area estimations using crossing numbers. The area
of the matches patterns are assumed to be 4.

point is only counted one. So crossing numbers try to avoid to count parts
of the network that feed into multiple other parts are counted to many times,
and at the same time add up to the correct total when reconvergence occurs.

When inputs of one match are internal nodes of another match (and vice
versa) the method becomes less precise but still most area gets divided among
multiple matches. Still this error is seldom large as it is compensated by the
fact that trade-off curves are used. To obtain the least area use at just the
required delay, often duplications of nodes has to be avoided resulting into
the fact that multi fanout point are attractive to use. In those cases the area
division works fine and only in the few time critical paths fanout node covering
will occur and only in this overall limited case errors will occur.

4.2 area control 95

The exception of non tree patterns in the library are an undesired limitation
and at least leaf dags should be allowed. The problem is that in that case there
are multiple paths to a particular input from the output with possibly different
crossing number counts and therefore crossing numbers are ambiguous. In
general those library patters exhibit multiple paths with very similar properties
both in length as fanout. To set an unambiguous crossing number at each
input the average of all possible crossing numbers corresponding to an input
is taken for this input.

unknown fanout

The crossing number heuristic is based on fanout points of the network to
be covered. In a representation with choice nodes however the fanout points
are unknown. Take a look at the example of figure 4.13. The configuration
on the top is assumed to be a part of a total larger network. The network is
matched using a library containing at least patterns for a two-input and and
a three-input and and results in several possible solutions depending on the
choices at the choice nodes. Two different choices which produce the upper
output are highlighted and they result in a fanout for the gate producing the
and of ef of 1 in the first case and 2 in the second case. So what can be said
to calculated crossing numbers in the case of choice nodes.

The ability to increase the potential of technology mapping using choice
nodes does not mean that it has to spoil the choices taken during technology
independent optimization. Although some optimization power is given up by
not extending the network conversion to incorporate logic transformations and
thus technology independent transformations it allows us to come up with a
way to still apply the proposed heuristic.

A strong correspondence between the network before expansion and after
covering is often maintained. The expansion does not introduce any problem
and preservers the network structure very well. This is also true for covering
using contraction, but even for the more general covering there is no large
discrepancies as usually only small patterns are used. The only problematic
issue still would be the full reduction, meaning that no two logical equivalent
nodes are allowed and therefore is also not applied.

The resulting procedure which keeps the representations similar and there-
fore provides a way to introduce crossing numbers is the following. The original
network is expanded into a network with only two types of nodes: multiple-

96 constant delay mapping

d

e
f

g

c
b
a

d

e
f

g

c
b
a

b

e
f
g

d

e
f

g

a

c

Figure 4.13: The different highlighted matches of the top part which is part
of a larger network are leading to different implementations and therefore also
different fanouts at certain nodes for the two alternatives.

input ands and inverters. The number of inputs of the and is not restricted to
two but up to some other maximum, typically not more then 10 for reasons
explained in the following section. Then ugates are used as in figure 4.9 to
create the full decompositions of the multi-input ands which are then glued
together taking the inverters into account by taking the right ugate outputs.
The fanout numbers at the nodes within the decomposition of those multi-
input ands are set to 1, and the node representing the original output gets the
fanout number equal to the network before expansion. With those numbers
crossing numbers can be calculated again.

The heuristic is based on the expectation (and now also experience) that
the structure of the original network and the result after mapping are highly
correlated (fig 4.14). The decomposed node is merely used to select a particular
decomposition and thus likely has a fanout of 1 while at multi fanout points
matches are chosen which end and implement exactly that point as this will
improve sharing. The latter is due to the fact that in an area-delay trade-off

4.3 search space control 97

TM

Figure 4.14: The structure before expansion is likely closely related to the
structure after covering when only decompositions of multi-input and nodes is
applied.

context it is advantageous to share as long as delay permits this. Only critical
nodes will generate matches extending over fanout points, but as patterns are
small the effects are limited and the preference of the other nodes to implement
fanout point will avoid propagation of errors a lot.

4.3 search space control

The choice nodes allows multiple representations of base functions to be en-
coded in one network such that the search space is enlarged. It will provide the
inclusion and discovery of a wider range of alternatives which leads to greater
flexibility in the trade-offs. Faster choices may become available for critical
nodes and at the same time more area cost effective ones for the non critical
nodes which just have to be fast enough. The growth of the search space,
and directly related to that the network, heavily depends on how much of the
alternatives are encoded. As said in the previous section the area delay trade-
off heuristic uses some structural information of the technology independent
optimized circuit and thus not full reduction is applied. But even while only
encoding multiple decompositions of multiple-input ands in the decomposed
network some limit has to be applied to limit the growth. Another problematic
issue is the tree matching were multiple choices have to be taken into ac-

98 constant delay mapping

count at every choice node it covers. Therefore a different matching strategy
is applied which in common technology mapping does not buy much but in
the presence of choice nodes results in a dramatic improvement of matching
speed.

input limitations

A major problem is the quick growth of the search space by inclusion of
choice nodes. In our case the number of inputs allowed for a node before
decomposition determines the increase in an exponential way. The number of
ugates generated for an associative operation like an and with N operands or
inputs is already 2N −1−N . For every output of a ugate is the combination of
subset of operands. All these subsets are in the power set of the operand set.
There are 2N such sets. The empty set and the sets with only one operand
should not be counted, N + 1 is therefore subtracted from the cardinality of
the power set. Then there are 2n alternatives to split the inputs of a particular
ugate in two groups. Neither should be empty reducing this number by 2 and
interchanging the two groups need not to be distinguished. Then the total
number of two input ands at a choice node is (2n − 2)/2 = 2n−1 − 1. Now
the total number of such gates is obtained by summation over the product
of the number of ugates with n, the N inputs and the number of gates in
such a ugate. Written as

∑N
n=2

(
N
n

) ∗ (2n−1 − 1) which can be proven to be
1
23

N − 2N + 1
2 . This shows the exponential dependency of the growth of the

search space on the number of inputs of the nodes before decomposition.

As a consequence limiting the maximum number of inputs before expansion
into choice nodes vastly reduces the size of the expanded network. This has
a direct impact on memory use but also a strong effect on runtime as the
number of alternatives to be considered during matching depends on choice
node alternatives which also reduces quickly as well as the number of choice
nodes themselves. The exact limit has to be a compromise between circuit
quality and a reasonable runtime and memory usage. As useful libraries do not
contain patterns with trees with a depth of more then 6 and gates a reasonable
limit would be 6 or 8. Still sometimes 10 does make a difference in quality
and thus if 6 or 8 does not provide the solution maybe trying much harder is
what you are willing to pay for. Even higher limits lead to exorbitant resource
usage.

4.3 search space control 99

partial matching

It the matching step with is most affected by the introduction of choice
nodes. Traditionally all library patterns corresponding to the subnetwork pre-
ceding an given node are reported. By the use of choice nodes the possible
alternatives for the preceding subnetwork have grown very fast. For every
choice node on the path from the root of the pattern tree to the leaf multiple
choice have to be evaluated. But the choices are not independent and the
alternative choices for the first node on the path leads to different other choice
nodes with multiple alternatives again and the total alternatives for only a
single path in the pattern to evaluate are in the order of n ∗ n assuming each
choice node has n alternatives. Keeping in mind that then all combinations of
alternatives paths and subpaths are possible and that n can already be in the
order of 50, 250 or 500 when the input limit for decomposition is set to 6, 8 or
10 respectively it is clear there is a complexity and runtime problem. The size
of the subnetwork to be considered depends on the size of the larger patterns
and the length of the longest path determine the power of n.

Note however that most nodes involved have already been investigated
before, as nodes are treated in a topological order. Only complete matches
have been recorded at that time. Therefore some information might have
been lost as the absence or presence of a particular pattern at a certain node
will exclude or include the existence of a pattern with a similar subpattern of a
node at its fanout. The choice nodes have enlarged the number of subnetworks
enormously but at the same time there is also a lot of partial equality.

In [18], under the name bottum up matching algorithm, a technique is
introduced that reports not only on all complete patterns, but also parts of
patterns that match at that node. This enables reusing earlier generated in-
formation about matching subpatterns resulting in a considerable speed up
without exorbitant memory requirements. For a normal library with a reason-
able number of rather similar not toot large gates the increase of memory is
quite low. The only drawback is that it is restricted to libraries with equal
input output delay for all inputs of a gate and to tree patterns only.

Construction of matches out of other matches is illustrated in figure 4.15.
The symbol “-” stands for an initial value of a match: it represents the input
of a complete match in the end, that means either the output of a complete
match or a primary input of the network. Every match is constructed by and-
ing two other partial matches or extending an existing partial match with an

100 constant delay mapping

AND4 4 1.4

”-”
AOI21 3 1.6

”-”

”-”
AND2 1 1.0

”-”
INV1 1 0.9

Input Rootcell
Partial-
match cell

Library-
Name Area Time

Figure 4.15: Library for partial matching

invertor. The inputs of the (new) partial match are the union of the inputs
of the previous partial matches. All partial matches at a node are found by
combining all the partials at the inputs of the current node. If some of the
partial matches are also complete matches then those are also kept. Note that
row three in the library also shows the existence of partial matches which are
not complete matches but which are required to find other matches based on
this partial. Doing this procedure again in a topological order from inputs to
outputs will generate all complete matches in an efficient way.

Figure 4.16 shows an example how a circuit can be mapped using partial
mapping. The area and delay calculations are performed as follows:

• The delay of a new partial is set equal to the worst delay of the partials
at its inputs. The delay of a complete match is obtained from its cor-
responding partial match by adding its own delay to the partial match
delay. Of all isomorphic partial matches only the one with the lowest
delay has to be saved.

• The area of a new partial match is the sum of the areas of the partial
matches at the inputs. The area of a complete match is the area of
the corresponding partial match plus its own area. For a minimum area
result only the partial match with lowest area among all isomorphic partial
matches has to be saved.

4.3 search space control 101

”-”PI: 0 p/c

”-” ”-”

”-”

01:
a , b AND2

p
c1.0

”-” ”-”

”-”

2:
c , d

0
1.0AND2

p
c

”-” ”-”

”-”

3:
e , f

0
1.0AND2

p
c

Match-
type

Library-
cell

Input Result Time CommentGate

”-”5: 1.0 p
0 p

2 1.9 cINV1 ”-”

”-” ”-”

”-”

”-”

”-”

”-”

”-”

6: 1.9 p

1 , 5 2.9 c

1.0 p

2.6 c Keep thisAOI21
AND2

1 ,(c , d)

”-”

”-”

7: 2.6
1.9

p
p

6 INV1 3.5 c

”-”

”-”
”-”

”-”

”-”

”-”

8: 3.5

2.6

p

p

4 , 7 4.5 c

1.9 p

4 ,(1 , 5) 3.5 cAOI21
AND2

Keep this

”-” ”-”

”-”

”-”

4: p1.0

0 p

2 , 3 AND2 2.0 c
1.6 c Keep thisAND4

”-”

(c,d),(e,f)

”-”

”-”

”-”

”-”

”-”

”-”

”-”

”-”

”-”
”-”

a
b

c
d

1

2

3

4

5
6

8
7

e
f

a
b

c
d

c
d
e

f

AND2

AND2

AND4

INV1
AOI21

Figure 4.16: Example of partial matching procedure: A list of all steps during
the procedure, the network after node 4 has been matched, and the final
covering result.

In the example the matching and mapping effort is not much different from
conventional matching and mapping and could very well be even more costly.
But in the context of choice nodes the improvement is dramatic. It is mainly

102 constant delay mapping

due to the observation that there are often lots of similar substructures in all
the matches to consider and on top of that a local best choice can be made
at each choice node already which avoid the multiplication of choices. This is
illustrated is figure 4.17. After the best among 2 times 4 isomorphic partial
matches at the choice nodes have been evaluated only a simple combination of
those partials lead to the next best partial. Using conventional tree matching
4 times 4 is 16 alternatives should have been evaluated.

”-”

”-”

Figure 4.17: Illustration of runtime improvement due to optimal partial match
selection at choice nodes

In the context of area delay trade-offs not only the fastest or smallest
isomorphic partial should be stored but a trade-off. Still the same local reduc-
tion due to isomorphism is in place. The same techniques used for complete
matches applies for partial matches too. In practice only storing the fastest
and smallest partial matches still generates nice trade-off curves for complete
matches while avoiding a lot memory and runtime increase.

Also the crossing numbers can directly be calculated for the partial matches:
the number for a “-” is 1 and whenever a match is formed the numbers at
the inputs are increased by the fanout value of the current node minus 1. The
area estimates for the partials are adjusted using these numbers. The area of a
complete matches is still produced in the same way and automatically crossing
numbers have been counted for already.

4.4 experiments and conclusions 103

This partial match approach is only applicable for tree patterns, while li-
braries are not restricted to that. The main problem is that it introduces
dependencies on further decisions which are not possible when choosing lo-
cally optimal partial substructures. Relations between inputs, as required for
leaf dags, can not be taken into account. In these cases still traditional tree
matching has to be applied, but fortunately most patterns are usually trees.

Another restriction is the requirement of equal input output delay for all
inputs of a match. This is also required to enable the local decisions of partial
matches which resulted in the major gain. In general the worst case could be
taken for the delay of the other inputs as well. Usually this does not result in
a significant deviation as “skewed” patterns are seldom essential, and besides
that they would disturb the assumptions of technology independent stages.
Again if really needed the only solution is to resort to the traditional tree
matching again, but at a considerable runtime cost.

4.4 experiments and conclusions

For the evaluation and experiments a modified library lib2.genlib [40] is used.
The load independence is obtained by setting the corresponding gate charac-
terization parameters to 0. Rise and fall delay of a gate a set equal to the worst
input output delay in the original version of the library. When curves are used
the number of points are limited to 10. Also the input limit for decomposition
of multiple inputs is set to 10.

A comparison is made to conventional mapping [40][33] based on a single
representation with the two input and gate and the inverter resulting from tech-
nology independent optimizations. Conventional is understood as partitioning
the network in nonconvergent subnetworks followed by the application of the
algorithm invented by Keutzer [24]. Table 4.1 clearly shows the improvements
of the proposed approach. Much smaller as well as faster solution are possible
and at equal delay the area is always lower.

Figure 4.18 shows how the different heuristics and procedures impact the
result also compared to other state-of-the-art procedures. If the conventional
method is extended with choice nodes the search space is enlarged and a faster
circuit is found, but at the expanse of more area. Extending the conventional
method with speed-optimal covering which avoids the introduction of sub op-

104 constant delay mapping

circuit normal trade-off curves and choice nodes
fastest smallest comparable

area delay area delay % area delay area % delay
C432 375 12.26 424 7.33 40 310 13.56 321 14 12.56
C499 694 9.63 785 6.50 32 565 9.10 565 18 9.10
C880 627 12.06 510 7.02 41 411 10.17 411 34 10.17
C1355 801 14.97 769 7.61 49 743 9.13 743 7 9.13
C1908 1173 14.02 938 9.14 34 664 17.82 765 34 13.98
C2670 1503 12.03 1285 7.14 40 1050 10.71 1033 31 11.88
C3540 2101 20.37 1829 11.84 41 1510 20.72 1635 22 19.83
C5315 3352 17.14 2540 13.28 22 2186 25.23 2352 29 16.84
C6288 3378 76.56 3447 40.00 47 3223 54.00 3223 4 54.00
C7552 4253 13.95 3706 11.30 19 3157 22.26 3409 19 13.34

Table 4.1: Area and delay comparison of the new approach with the conven-
tional matching showing the enlarged search space is really effective

timality due to an intermediate selection also enlarges the search space to
be reached and does provide a faster circuit at higher area cost again. The
combination of the two extensions is even more powerful as on two different
ways more alternatives become available resulting in a solution faster then the
previous cases but at a quickly rising area cost. To deal with that problem the
area control mechanism is used based on the trade off curves. The classical
heuristic based on area division by number of fanouts does resolve this area
increase problem to some extent, but the crossing number heuristics gives a
much better result. Similar results are obtained for all the other circuits.

Table 4.2 shows the effects of the limits which can be imposed on the
maximal input count before decomposition and the number of points in the
trade-off curves as well as the gain obtained by partial matching. The intro-
duction of partials does not introduce a much higher memory usage as was
already expected. Run time clearly benefits from the local optimality choices
of partial matches especially with large decompositions and thus high num-
ber of alternatives at choice nodes. In the classical case (input limit = 2)
only a very slight increase is the result. The exponential nature of number of
ugates and alternative choices caused by the decomposition of multiple inputs
is shown. The effect of the limiting points is more or less linear due to the fact
that although the number of possible combinations grows exponential with the

4.4 experiments and conclusions 105

800

900

1000

1100

1200

1300

1400

1500

5 6 7 8 9 10 11 12 13

ar
ea

delay

C880.blif

conventional mapping
speed-optimal covering

conventional mapping with choice nodes
speed-optimal covering with choice nodes

area controlled mapping using 1/n
area controlled mapping

Figure 4.18: Comparison of various mapping procedures applied to C880 shows
the effect of the different proposed procedures and heuristics.

number of points, still the needed and useful new points can be calculated in a
smart way in only the sum of the number of points as number of evaluations.

It should not come as a surprise that the results are better is all cases. The
choice node and covering techniques themselves are enlarging the search space
both in an orthogonal way and thus the conventional case should still be in
there. Only small errors due to the heuristics might in some cases result in
slightly worse solutions.

The use of partial matches does not increase memory requirements a lot
as apparently most partials are also complete matches. This is quite logical as
commonly a library is constructed as a range starting from simple basic gates
to more complex extensions or combinations of them. Therefore at rather low
memory cost a high run time gain can be achieved in the context of choice
nodes were local optimal partials reduces the negative run time effects of choice
nodes.

106 constant delay mapping

runtime/ points in trade-off curve
memory 1 5 10
decomp no partials

2 0:02/220k 0:03/359k 0:03/455k
5 0:08/347k 0:17/660k 0:25/871k
10 11:19/1667k 32:04/3221k 52:33/4542k

with partials
2 0:02/220k 0:03/363k 0:04/460k
5 0:04/631k 0:08/841k 0:11/976k
10 1:04/2039k 4:33/3515k 7:33/4864k

Table 4.2: Compare runtime and memory usage for circuit C432 due to the
applied limit on inputs for the decomposition, the pruning in the trade-off
curves and the application of partial matching

The application of the suggested solutions also provides new ways to deal
with problems of critical multi fanout points (figure 4.19). Besides providing
these alternatives also automatic evaluation takes place. One or more buffers
can be inserted and parts of the network can be duplicated by different matches
that better fit the output requirements. This offers a wider range of possibilities
then serial repowering and capacitance splitting and using the trade-off curves
the best one is automatically selected.

Remarkable progress has been shown in the research of technology mapping
recently. Efficient solutions for convergent networks, with respect as well as
speed with load independent delay models, were known well over a decade.
Also cost minimization under timing constraints and finding the minimal cost
among all fastest mappings could be solved efficiently for those networks. It
was also known that extending cost minimization to more general networks
was nor likely, since the problem was proven to be NP-hard. The fact that
speed optimization could be solved in polynomial time for general networks was
overlooked for quite some time, though virtually the same technique applies.
In the meantime, an elegant way of capturing several representations with base
functions in a single network was introduced. Also in these cases implicit direct
speed optimization does occur but was not identified as such while it partly
contributes to the improvements shown.

4.4 experiments and conclusions 107

A

B

q

q

A

q

B

A

q

B

A

q

q

A
q

A

graph with choice nodes and multifanout

Figure 4.19: The proposed techniques allow for the generation and automatic
selection of a whole range of repowering solutions.

In this chapter we have shown how to take advantage of these separate
discoveries while avoiding failing miserable with other quality characteristics
than speed and avoid the consumption of excessive amounts of area which was
reported for both discoveries. Also the consumption of run time and memory
was addressed allowing a trade-off between those two and the quality of the
result. This is important for practical implementation and use.

An interesting observation is also that the different techniques covering,
choice nodes and trade-offs are orthogonal. They can independently be ap-
plied and at the same time do not interfere with each other when used at the
same time. This is also the reason that the results never get worse but only
better when more of them are used at the same time. Actually con current
invocation boost the improvement up higher than on first sight based on indi-
vidual improvements. The reason for that is that possible negative size effects
of one method are compensated by advantages of others.

The required area control was obtained, not surprisingly, by adoption of
area-delay trade-off curves. Without it, speed-optimized networks tend to grow
out of proportion due to the optimization of all substructures. In this chapter

108 constant delay mapping

a procedure was presented using fanout numbers and choice nodes to enable
good area guesses which would otherwise not be possible but required for the
application of trade-offs. The impact on runtime is controlled by limiting the
maximum number of points in those curves and the efficient generation of new
points.

By the application of bottom-up or partial matching which would normally
not result in any gain at all we were able to reduce dramatically the run time
as it is an efficient technique in the context of choice nodes. It is based on
choosing optimal local partial matches which means that only all alternatives
at a choice node have to be evaluated once and there is no dependency on
other choices at other choice nodes at all.

By keeping some structure in the decomposition process and limit the
amount of decomposition heuristics for areas were feasible and runtime could
be controlled. As was shown the number of ugates and also the number of
choices at each of the choice nodes of such ugates grows exponential with
the number of inputs of a node before decomposition. Considering the library
patterns 6 or 8 as a limit works well at relative low costs. Setting the limit to
10 the network starts to grow quickly while only a little effect is notice in the
quality of results.

The results presented show the effect and the impact of the heuristics very
clearly. In a controllable and efficient way a wider search-space is evaluated
which results in a wide range of area minimized delay solutions which can be
used to select the required delay with minimum area cost from the delay but
getting.

Chapter 5

conclusions

This thesis presented a refinement design approach based on the idea of wire
planning to avoid the increasing number of design iterations to achieve timing
closure. As wires are planned early their effects can be taken into account
timely avoiding the need of correction later. Fortunately the delay of the long
wires with significant impact on path delays turn out to be linear in length.
Due to this linearity the total delay on a path of wire segments and modules
with delays does not change when the wire segment lengths changes as long
as the total wire length is constant.

The objective of the design process is to minimize the amount of delay
wasted in wires and thus minimizes the wire lengths. The total delay in wires
on a path from input pin to output pin can however never be smaller then the
Manhattan distance between those pins. Therefore a design is optimal when
all paths have this minimum length between the input and output pins. This
results to paths with a monotonic increasing or decreasing x and y coordinates.

As a result the placement of the modules is restricted by the desired mono-
tonic paths. Still multiple solutions are possible as the exact wire segmentation
does not influence the total path delays any more. Therefore we can speak of
a monotonic floor plan at this stage of freedom where module sizes and thus
delays are still free.

Given the timing constraints the remaining delays on a path after subtrac-
tion of the wire delays can be assigned to the modules while minimizing the
total area. This is done by a time budgeting technique using geometric pro-

110 conclusions

gramming. By an efficient reformulation large problems can be handled. Some
other small adoption from literature allows us to obtain a little more efficiency
and results which are more robust within the context of assigning delays to
modules.

Those assigned delay have now to be implemented by logic synthesis. Clas-
sical synthesis came from the time that area minimization was the main objec-
tive which later changed into minimizing delay to get higher clock performance.
In our context we want to obtain a solution just fast enough with minimum
area usage. This requires to explore the design space for a range of areas and
delays. Recently presented adjustments to this process enables a larger search
space with more potential solutions and thus better chance of one meeting just
the required delay. To enable the exploration of solutions between fastest and
smallest implementation in an efficient and structural way and avoid unneces-
sary high area claims trade-offs were used.

Within this context the following contribution were presented in this thesis:

• A non iterative design flow was presented and discussed which is based
on wire planning, monotonic floor plans and constant delay synthesis.
We showed how this can fit well together as the objectives of currently
used algorithms are exactly those things taken as assumptions in this
flow.

• The problem of delay budgeting was explored and modeled as mathemat-
ical programming. Reformulating the constraints resulted in a dramatic
reduction of constraints enabling the practical solving of the budgeting
problem. Other recently presented additional reductions and extensions
were fit to the current case and implemented too resulting in another
50% gain and a robuster contex.

• To manage the increased complexity of the enlarge search space and to
obtain the objective of just fast enough circuits trade-offs were intro-
duced. Heuristics were introduced the have even better advantage of
the different orthogonal techniques used and result in an additional gain.

Although the iteration free approach presented does assume the implicit
objective of currently used algorithms not all problems are solved. Not is the
first place as the explicit optimization done in those algorithms are derivatives
of the actual objectives. For future research the following aspect do show up.

111

First of all there is pin placement. The minimum wire length is clearly
limited by the pin positions. They do also indirectly through the allowable
wire paths influence the freedom and availability of a monotonic floor plan.
Note that a better pin placement does not only benefit the presented flow.
Assuming good routers try to achieve results which are detour free good pin
placement would directly also improve these results.

Another point is obtaining monoticity. It is depending on network topology
and wiring between the placed pins. So some more changes can be required
after a monoticity aware pin placement. Some work has been done on network
transformation in combination of monoticity. This can be in the area of logic
optimization as well as technology mapping.

Routing should actually already make monotonic wiring, as this would min-
imize wire length, but in practice different heuristics are used which are less
strictly related to this objective. Attention should be paid that no detours are
made to avoid congestion due to bad placement. On the other hand research
on monoticity aware routing could directly also give improvements in currently
used flows.

The delay budgeting is depending on an area delay estimation. Although
meeting the calculated delay is the only thing required to avoid disturbing the
path delays, this clearly can have a negative effect on area usage or even place-
ment. A mechanism to reuse and extrapolate area delay data from previous
designs would be required. As back and forth interaction is not required for
the delay also some sort of exploration or identification of a few points could
improve robustness.

A rather new phenomena would be layer assignment. Delay budgeting
based is based on the delay not used for wiring. This delay of wires do depend
on layer. Therefore connections should also be assigned a layer before actual
delay budgeting.

112 conclusions

bibliography

[1] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Commun. ACM, 6:333–340, 1975.

[2] A.V. Aho, S.C. Johnson, and J.D. Ullman. Code generation for expressions
with common subexpressions. Journal of the Association of Computing
Machinery, pages 146–160, January 1977.

[3] Magma Design Automation. Blast Fusion white paper.
http://www.magma-da.com, Cupertino (CA), USA, May 2000.

[4] X. Bai, C. Visweswariah, P.N. Strenski, and D.J.Hathaway. Uncertainty-
aware circuit optimization. In Proceedings of DAC, pages 58–63, 2002.

[5] R.K. Brayton and C.T. McMullen. The decomposition and factorization
of boolean expressions. In Proceedings of ISCAS, pages 49–54, 1982.

[6] K. Chaudhary and M. Pedram. A nearly optimal algorithm for thenology
mapping minimizing area under delay constraints. In Proceedings of DAC,
pages 491–498, June 1992.

[7] H.Y. Chen and S.M. Kang. icoach: A circuit optimization aid for cmos
high-performance circuits. In Integration, the journal of VLSI, pages 185–
212, 1991.

[8] Theo Claasen. The logarithmic law of usesfulness. Semiconductor inter-
national, 1998.

[9] Jason Cong. An interconnect-centric design flow for nanometer technolo-
gies. Proceedings of the IEEE, 89(4):505–528, April 2001.

[10] G. DeMicheli. Synthesis and optimization of digital circuits. McGraw-Hill,
New York, 1994.

114 BIBLIOGRAPHY

[11] H. Eisenmann and F.M. Johannes. Generic global placement and floor-
planning. In Proceedings of DAC, pages 269–274, 1998.

[12] J.P. Fishburn and A.E. Dunlop. Tilos: A posynomial programming ap-
proach to transistor sizing. In Proceedings of ICCAD, pages 326–328,
1985.

[13] L.A. Glasser and D.W. Dobberpuhl. The design and analysis of VLSI
Circuits. Addison-Wesley, 1985.

[14] W. Gosti, A. Narayan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli.
Wire planning in logic synthesis. In Proceedings of ICCAD, pages 26–33,
1998.

[15] W. Gosti, A. Narayan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli.
Wireplanning in logic synthesis. In Proceedings of ICCAD, pages 26–33,
1998.

[16] J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, and Y. Watan-
abe. A delay model for logic synthesis of continuously-sized networks. In
ICCAD, November 1995.

[17] J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, and Y. Watan-
abe. A delay model for logic synthesis of continuously-sized networks.
In Proceedings of the European Design Automation Conference, pages
458–462, November 1995.

[18] C.M. Hoffman and M.J. O’Donnell. Pattern matching in trees. Journal
of the Association of Computing Machinery, pages 68–95, 1982.

[19] D.J.-H. Huang and A.B. Kahng. Partitioning-based standard-cell global
placement with an exact objective. In Proceedings of ISPD, pages 18–25,
1997.

[20] R. Sproull I. Sutherland. The theory of logical effort: designing for speed
on the back of an envelope. In Advanced Research in VLSI, UC Santa
Cruz, 1991.

[21] J.Bruno and R. Sethi. Code generation for a one-register machine. Journal
of the Association of Computing Machinery, pages 502–520, July 1976.

[22] D.J. Jongeneel and R. Otten. Technology mapping for area and speed.
Integration, the VLSI, pages 45–66, 2000.

BIBLIOGRAPHY 115

[23] D.J. Jongeneel, R. Otten, Y. Watanabe, and R.K. Brayton. Area and
search space control for technology mapping. In Proceedings of DAC,
pages 86–90, June 2000.

[24] K. Keutzer. Technology binding and local optimization by dag mapping.
In Proceedings of DAC, pages 341–347, 1987.

[25] Y. Kukimoto, R.K. Brayton, and P. Sawkar. Delay-optimal tecnology
mapping by dag covering. In Proceedings of Design Automation Confer-
ence, June 1998.

[26] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. Logic decompo-
sition during technology mapping. IEEE Transactions on Computer Aided
Design, pages 813–833, August 1997.

[27] Chris Malachovski. When 10m gates just isn’t enough... the gpu challenge.
In Proceedings 39th Design Automation Conference, New Orleans(LA),
U.S.A., page 375, June 2002.

[28] F. Mo, A. Tabbara, and R.K. Brayton. A force-directed marco-cell placer.
In Proceedings of ICCAD, pages 177–180, 2000.

[29] MOSEK. Mosek. http://www.mosek.com.

[30] Ralph H.J.M. Otten, Lukas P.P.P. van Ginneken, and Narendra V. Shenoy.
Speed: new paradigms in design for performance. Proceedings Interna-
tional Conference on Computer Aided Design, San José(CA), U.S.A., page
700, November 1996.

[31] R.H.J.M. Otten and R.K. Brayton. Planning for performance. In Pro-
ceedings of DAC, June 1998.

[32] R.H.J.M. Otten and R.K. Brayton. Performance planning. Integration,
the VLSI, pages 1–25, March 2000.

[33] R. Rudell. Logic synthesis for vlsi design. Technical Report UCB/ERL
M89/49, University of California, Berkeley, April 1989.

[34] S.S. Sapatnekar and V.B. Rao. ideas: A delay estimeter and transistor
sizing tool for cmos circuits. In Proceedings of Custom Integrated Circuits
Conference, pages 9.3.1–9.3.4, 1990.

116 BIBLIOGRAPHY

[35] R. Sethi and J.D. Ullman. The generation of optimal code for arithmatic
expressions. Journal of the Association of Computing Machinery, 17:715–
728, 1970.

[36] SIA. The national technology roadmap for semiconductors. Technical
report, SIA, San Jose, 2003.

[37] L. Stok, M. Iyer, and A.J. Sullivan. Wavefront technology mapping. In
Proceedings of DATE, pages 531–536, 1999.

[38] I. Sutherland, R. Sproull, and D. Harris. Logical Effort: Designing Fast
cmos Circuits. Morgan Kaufmann publishers, November 1996.

[39] Ivan Sutherland, Bob Sproull, and David Harris. Logical Effort: designing
fast CMOS circuits. Morgan Kaufmann Publishers, San Francisco, CA,
U.S.A., 1999.

[40] H.J. Touati, C.W. Moon, R.K. Brayton, and A. Wang. Performance-
oriented technology mapping. In Proceedings of the 6th MIT Conference:
Advanced Research in VLSI, pages 79–97, 1990.

[41] L.P.P.P. van Ginneken. The Predictor - Adaptor Paradigm. PhD thesis,
University of technology Eindhoven, 1989.

[42] C. Visweswariah and A.R. Conn. Formulation of static circuit optimization
with reduced size, degeneracy and redundancy by timing graph manipu-
lation. In Proceedings of ICCAD, pages 244–249, 1999.

summary

Rapidly advancing process technology will enable man-made devices with com-
plexities that are unprecedented in the history of mankind. The design scale of
Integrated Circuits (ICs) is increasing exponentially according to Moore’s law,
approaching 1,000,000,000 transistors in the coming years. The low cost and
huge capabilities of IC devices has already transformed all aspects of our daily
live: from cellular phones, through electronic money in chip cards to digital
surround sound entertainment centers. The demand for silicon Integrated Cir-
cuits that power these devices is expected to continue increasing in the near
future. Especially in the area of computer generated imaging (e.g. for games
and home systems), there is an unsatiable demand for processing power.

In the past 3 decades, the anatomy and physical size of an Integrated
Circuit has remained roughly the same. The active transistor devices are pro-
duced at the surface of a silicon semiconductor wafer. To interconnect the
components several layers of metal wire tracks are available. Both the wire
width and transistor dimensions are shrinking by a factor of 2 every 18 months.
Unfortunately, this increase in scale has made certain parasitics - most notably
the wire delay - more prominent than in older process generations. One might
say that the complex physics of silicon manufacturing is increasing the ’silicon
complexity’ of the design. Overall the designers of Integrated Circuits are fac-
ing a two-fold complexity increase: in terms of the number of components and
in terms of battling parasitic electrical effects of nanometers devices.

The times that IC’s are designed manually have long gone. Electronic
Design Automation (EDA) tools are software programs that design and verify
an integrated circuits. We can distinguish multiple levels of abstraction in this
design process, each with its own set of EDA tools. At the bottom level there
are tools that generate (and check) masks. Automatic routing algorithms are
used to generate the interconnect pattern. Other programs automatically place
hundreds of thousands of gates instances on the chip surface. This process

118 summary

of placement and routing is called the physical design of the IC. At a higher
abstraction level are the logical synthesis programs that generate a net list of
gates from functional description in a hardware description language. Higher
levels of design abstraction have also been automated.

This thesis focusses on the interface between automatic logical and phys-
ical design of integrated circuits. The actual placement of the components
determines the length of the wires, and with that it sets the amount of the
wire delay. This parasitic delay dominates the speed and quality of the result.
Therefore, the transition from the logical to the physical domain is where ’the
rubber meets the road’ in the sense that real transistors and real wires and
their parasitics must be dealt with properly. The wire planning concept of this
thesis is a major step towards a better synergy between the domains.

It should be emphasized that the new synergetic approaches that are de-
scribed in this thesis not rely on iteration. In contrast, a conventional design
flow does require iteration to converge to a feasible solution. In more detail,
the main steps at the bottom end of the design flow are as follows:

1. Logical synthesis tools produces a net list of gates that implement the
desired functionality. At this time the placement of the components is
unknown. Therefore the timing optimization and sizing of the gates can
only be performed using a statistical wire load model. The output of the
logic synthesis tool is a interconnected net list in which the gates have
a specific size, based on the statistical wire load model.

2. Placement of the gates. The primary objective of the placer is to ensure
that the gates are not overlapping and the total wire length is minimized.
Issues such as minimizing the length of the most timing critical paths are
only taken as secondary objectives. The large number of critical path is
often over-constraining the algorithm.

3. Routing of the wires to interconnect the gates. This generates the
topology and layer of the wires, and with that it sets the parasitic wire
capacitances. Some wires will need to detour around obstacles, resulting
in a higher than expected parasitic load.

The major problem with this flow lies in step 1, where the optimization algo-
rithms are unaware of the actual parasitic delays of the wires. The wire delays
are only known as result of step 2. In most cases it is not possible to place

summary 119

the gates such that the timing of the entire circuit is feasible. To alleviate
the timing problem designers are running steps 1, 2, and 3 a number of times
in an iterative fashion. Each time the latest parasitic data is fed back into
the optimization algorithm of step 1, and each time the circuit is placed again
from scratch. This iterative process is not only slow, it is also not guaranteed
to converge, especially in the latest processing technologies.

The cause of the problem in the above iterative approach is that the syn-
thesis tool in step 1 made a premature decision on the size of the logic gates.
At a later stage, it was not possible to recover from the likely mistakes in this
decision. A better paradigm is stepwise refinement, where at each step in the
design flow a single parameter is fixed. All other parameters are left undecided.
Therefore, decisions are postponed until as late as possible, when sufficiently
accurate data is available to take such decisions.

A good example of a successful stepwise refinement flow for logical and
physical design is constant delay synthesis. This approach fixes the delay and
functionality of a gate in step 1, but postpones the decision on the size of the
gate until after placement (step 2). The idea is to use gate sizing is used to
maintain the given delay target. Timing and wiring closure can be achieved
without iterating back to earlier steps, which speeds up the design flow.

As indicated earlier, the speed and performance of an IC is primarily de-
termined by the parasitic wire delay. It is only the small fraction of long wires
(with high delay) that is responsible for the overall chip timing. The main
thrust of this thesis is to plan the these critical wires beforehand. In chapter 2
we derive a stepwise refinement paradigm for long wires called wire planning.
We introduce the concept of a monotonic floor plan, in which the total wire
length (and with that the parasitic delay) from pin to pin is fixed. We will
show that it is also minimum if the wires is optimally buffered, and that we
may assume that the delay of this wire grows linear with its length. In the wire
planning paradigm we can therefore calculate delay budgets for the modules
on a path before the actual implementation using placement and routing.

In chapter 3 we address the issue of deriving the proper delay budgets. A
straightforward approach for a delay budgeter would be to enumerate all path.
This is clearly infeasible as the number of paths grows much faster than the
number of components in the paths. To address this issue we derive a novel
reduction methodology that can guarantee the same result. We also present
additional improvements that improve the speed and make the result more
robust.

120 summary

After budgets have been calculated the synthesis algorithms will have to
create a solution which complies to the budgets for each module. Its goal is to
generate a circuit that is is just fast enough. Excess speed would only result a
larger circuit area and higher power consumption. We will present a modified
constant delay synthesis approach with these objectives in chapter 4.

In practice designers are looking for a good trade-off between circuit speed
and chip area. Therefore it is required to explore a lager search space than just
the fastest possible implementation. A well-known approach uses choice-nodes.
This is advantageous within the context of stepwise refinement paradigm of
this thesis since the circuit topology choice is postponed to a later point in the
flow.

Simultaneously the fast implementations as well as the smaller (but slower)
coexist. In the enlarged search space faster implementations then usual become
available for all parts, including the non-critical parts, resulting in an area
blowup. But area and delay can be traded off per module. We address the
issue of automatically deriving a feasible trade-off in the context of choice-
nodes. The approach yields the overall best trade-off for the complete set of
modules.

The larger the search space for possible implementations of the circuits, the
longer the algorithm will run. Finding the optimal choices become exponential
harder with the number of choices, since all possible combinations of choices
have to be evaluated. To alleviate this issue an implementation is presented
which controls the search space problem as well as the area blowup.

samenvatting

De snelle vooruitgang in de procestechnologie maakt door de mens ontworpen
systemen mogelijk die complexiteiten bezitten die nog nooit vertoond zijn in
de geschiedenis van de mensheid. De omvang van gëıntergreerde circuits (ICs)
neemt exponentieel toe volgens Moore’s Law en benadert de 1,000,000,000
transistors in de komende jaren. De lage kosten en de grote capaciteiten
van ICs hebben alreeds alle aspecten van ons dagelijks leven veranderd: van
mobiele telefoons, via elektronisch geld in chip kaart tot digitale surround sound
systemen. De vraag naar gëıntergreerde circuits gemaakt van silicium om al
deze systemen te besturen zal naar verwachting blijven groeien in de nabije
toekomst. Met name op het gebied van beelden die worden gegenereerd met
de computer (b.v. voor spelletjes en thuisbioscopen), is er een onverzadigbare
vraag naar meer rekenkracht.

In de afgelopen 3 decennia is de anatomie en fysieke afmeting van een
gëıntergreerde circuit ongeveer gelijk gebleven. De actieve transistor elemen-
ten worden geproduceerd op het oppervlak van een silicium halfgeleider schijf.
Om alle componenten met elkaar te verbinden zijn meerdere lagen met me-
taaldraden beschikbaar. Zowel de afmeting van de draden als die van de tran-
sistoren halveren elke 18 maanden. Helaas maakt deze verkleining bepaalde
parasitaire effecten - met name tijdsvertraging in draden - steeds prominenter
dan bij vorige proces generaties het geval was. Men zou kunnen zeggen dat de
fysische complexiteit van het produceren van silicium de “silicium gerelateerde
complexiteit” van het ontwerpen doet toenemen. In het algemeen worden
ontwerpers geconfronteerd met een tweeledige toename van complexiteit: in
termen van het aantal componenten en in termen van het overwinnen van de
parasitaire elektrische effecten van elementen met nanometer afmetingen.

De dagen dat IC’s met de hand ontworpen werden liggen ver achter ons.
Elektronische Ontwerp Automatisering (Electronic Design Automation – EDA)

122 samenvatting

gereedschappen zijn software programma’s om gëıntergreerde circuits te ont-
werpen en te verifiëren. We kunnen verschillende abstractie niveaus in het
ontwerpproces onderscheiden, elk met zijn eigen set van EDA gereedschap-
pen. Op het laagste niveau zijn er gereedschappen om maskers te genereren
(en te contoleren). Automatische bedrading algoritmen worden gebruikt om
alle interconnecties te maken. Andere programma’s plaatsen volautomatisch
honderden of duizenden cellen op het chipoppervlak. Dit proces van plaatsing
en bedrading wordt het fysiek ontwerpen (physical design) van het IC ge-
noemd. Op hoger abstractie niveau zijn er de logische synthese programma’s
die een netwerk van cellen produceren vanuit een functionele beschrijving in
een hardware-beschrijvings-taal. Ook hogere abstractie niveaus van het ont-
werp proces zijn geautomatiseerd.

In dit proefschrift ligt het accent op de interactie tussen het geautomati-
seerde logisch ontwerpen en het fysieke ontwerpen. De uiteindelijke plaatsing
van componenten bepaalt de lengte van de draden, en daarmee ook de hoe-
veelheid tijdsvertraging van de draden. Deze parasitaire vertraging domineert
de snelheid en de kwaliteit van het uiteindelijke resultaat. Daarom is het de
overgang van het logisch domein naar het fysieke domein waar het om draait,
in de zin dat er juist op dat moment omgegaan moet worden met de werkelijke
transistors en werkelijke draden en hun parasitaire neven effecten. Het concept
uit dit proefschrift om bedrading te plannen is een grote stap voorwaarts naar
een betere synergie tussen deze domeinen.

Nadrukkelijk moet gesteld worden dat de nieuwe synergetische benaderin-
gen zoals die beschreven zijn in dit proefschrift niet gebaseerd zijn op iteratie.
Een conventioneel ontwerptraject daarentegen heeft iteratie nodig om te con-
vergeren naar een oplossing die voldoet. In meer detail zijn de belangrijkste
stappen aan het einde van het ontwerp traject als volgt:

1. Logische synthese programma’s produceren een netlijst van cellen die
de gewenste functie implementeren. Op dat moment is de plaatsing
van de componenten nog niet bekend. Daarom kan de tijdsvertraging
optimalisatie en het aanpassen van de afmetingen van de cellen alleen ge-
beuren met behulp van een statistisch model van de capacitieve belasting
door de draden. Het resultaat van een logische synthese programma is
een netlijst van verbonden cellen met een specifieke afmeting gebaseerd
op het statistisch draad model.

samenvatting 123

2. Plaatsing van de cellen. Het hoofddoel van de plaatser is te verzekeren
dat de cellen niet overlappen en dat de totale draadlengte wordt gemi-
nimaliseerd. Zaken als het minimaliseren van de lengte van het meest
kritische pad komen pas op de tweede plaats aan de orde. Het grote
aantal kritische paden legt vaak te veel eisen op aan het algoritme.

3. Bedrading neerleggen om de cellen te verbinden. Dit levert de topolo-
gie en bedradingslag op voor de draden. Daarmee bepaalt het ook de
parasitaire capaciteiten van de draden. Sommige draden zullen een om-
weg moeten maken om een obstakel heen wat resulteert in een hogere
parasitaire belasting dan verwacht zou worden.

Het grootste probleem met deze aanpak zit hem in stap 1 waar de opti-
malisatie algoritmen niets weten van de werkelijke parasitaire tijdsvertraging
van de draden. De tijdsvertraging van de draden zijn het resultaat van stap 2.
In de meeste gevallen is het niet mogelijk om de cellen zo te plaatsen dat
de eis van een bepaalde snelheid van het totale circuit gehaald wordt. Om
dit snelheidsprobleem op te lossen, past een ontwerper de stappen 1, 2, en
3 een aantal keren in een iteratieve manier toe. Elke keer worden de laatste
parasitaire gegevens teruggevoerd in het optimalisatie algoritme van stap 1, en
wordt het circuit volledig opnieuw geplaatst. Dit iteratieve proces is niet alleen
traag, er is ook geen garantie van convergentie, met name voor de laatste
proces technologie.

De oorzaak van het probleem in de bovenstaande iteratieve benadering is
de premature beslissing over cel afmetingen door het synthese programma
in stap 1. Op een later moment is het niet mogelijk terug te komen op
mogelijke fouten over deze beslissing. Een beter paradigma is stepwise re-
finement(stapsgewijze verfijning), waarbij in elke stap van het ontwerp proces
slechts een parameter wordt vastgelegd. Alle andere parameters blijven onbe-
slist. Beslissingen worden zo lang mogelijk uitgesteld tot voldoende nauwkeu-
rige informatie beschikbaar is om de beslissing te kunnen nemen.

Een goed voorbeeld van een succesvolle benadering met stepwise refinement
van een logische en fysiek ontwerp traject is constant delay synthesis. Deze
benadering legt de tijdsvertraging en functies van de cellen vast in stap 1, maar
stelt de beslissing over de afmetingen van de cellen uit tot na plaatsing (stap 2).
Het idee is om het aanpassen van afmetingen van de cellen te gebruiken om
ten alle tijden de doelstelling van de gegeven tijdvertraging te handhaven. Het

124 samenvatting

behalen van de snelheid doelstelling en het bedraden kan nu gedaan worden
zonder iteratie naar eerdere stappen. Dit versnelt het ontwerptraject.

Zoals eerder aangegeven is, wordt de snelheid en performance van een IC
voornamelijk bepaald door de tijdsvertraging in de draden. Het is slechts een
klein aantal lange draden (met hoge tijdsvertraging) die verantwoordelijk zijn
voor de uiteindelijke snelheid van de chip. Het belangrijke idee in dit proef-
schrift is deze kritieke draden van tevoren te plannen. In hoofdstuk 2 leiden
we een stepwise refinement paradigma af voor lange draden onder de naam
wire planning(draden plannen). We introduceren een monotoon plaatsingsplan
waarin de totale draadlengte (en daarmee dus de parasitaire tijdsvertraging)
van aansluitpin tot aansluitpin vast ligt. We zullen laten zien dat deze tijds-
vertraging ook minimaal is als de draden optimaal gebufferd zijn. Tevens laten
we zien dat we kunnen aannemen dat de vertraging lineair toeneemt met de
lengte. Daarom kunnen we in het wire planning paradigma de tijdsbudgetten
voor de cellen op een pad berekenen nog voor de werkelijke implementatie met
behulp van plaatsing en bedrading.

In hoofdstuk 3 behandelen we het aspect van het afleiden van de juiste
tijdsbudgetten. Een rechttoe rechtaan benadering van een tijdsbudgetter zou
bestaan uit het opsommen van alle paden. Dit is natuurlijk onmogelijk aange-
zien het aantal paden veel sneller groeit dan het aantal elementen in de paden.
Om dit aspect aan te pakken, leiden we een nieuwe reductie methodologie af
die dezelfde resultaten kan garanderen. Ook presenteren we enkele additionele
verbeteringen die de snelheid verbeteren en robuustere resultaten opleveren.

Nadat de budgetten berekend zijn moeten de synthese algoritmen oplossin-
gen produceren voor de modules die overeenkomen met deze budgetten. Het
doel is een circuit te maken dat net snel genoeg is. Te veel snelheid zou resul-
teren in een groter circuit oppervlak en hoger energie verbruik. We zullen een
gemodificeerde constant delay benadering met deze doelstelling presenteren in
hoofdstuk 4.

In de praktijk zoeken ontwerpers naar een goede afweging tussen circuit
snelheid en chip oppervlak. Daarom is het nodig een grotere zoekruimte te
doorzoeken in plaats van het zoeken naar slechts de snelste oplossing. Een
bekende benadering gebruikt keuze knooppunten. Dit is aantrekkelijk in de
context van het stepwise refinement paradigma in dit proefschrift omdat dan
de topologie beslissing uitgesteld wordt tot een later punt in het ontwerpproces
dan gebruikelijk is.

samenvatting 125

Op hetzelfde moment bestaan er zowel de snelle implementaties als ook de
kleinere (maar tragere). In de vergrote zoekruimte komen snellere implementa-
ties dan gebruikelijk beschikbaar voor alle delen, inclusief de niet kritieke. Dit
resulteert in een explosieve toename van oppervlakgebruik. Maar oppervlak
en vertraging kunnen afgewogen worden per deel. We zullen het automati-
sche afleiden van een afweging tussen oppervlak en vertraging in de context
van keuzeknooppunten behandelen. Deze benadering resulteert in de beste
afweging voor de complete set van modules.

Hoe groter de zoekruimte voor mogelijke implementaties van de circuits
hoe meer tijd het kost om het algoritme te draaien. Het vinden van de opti-
male keuzes wordt exponentieel moeilijker met het aantal keuzes, omdat alle
mogelijke combinaties van keuzes geëvalueerd moeten worden. Om dit pro-
bleem te verlichten presenteren we een implementatie die zowel de controle
brengt over het probleem van de zoekruimte als het probleem van explosief
groeiend oppervlak.

acknowledgements

I would like to thank Prof. R. Otten for giving me the chance to do my
Ph.D. at the Delft University of Technology. The work was done mainly in the
Systems and Circuits group in Delft but later also partly in the Information
Communication and Systems group of Eindhoven University of technology. I
would like to thank all members of both groups for the various support and
good discussions. The time I spend with Mr. Sawkar at Intel Strategic Cad
Labs in Hillsboro, USA, have been worth a lot even though this was just before
stating my Ph.D. and I would like to thank him for that. I am also grateful to
Prof. R. Brayton of University of Califonia Berkely, USA, for the opportunities
to spend time in his group and exchange ideas. I met there with Mr. Y.
Watanabe and we had some fruitful discussions about choice-nodes. During
the stay of Mr. Visweswariah from IBM, I had a chance to take advantage of
his knowledge about timing and delay calculations. Many thanks for that. Also
many thanks to Prof. Groeneveld for his help in getting the general subject of
what design automation is all about in this thesis in a nice shape. Finally I can
not forget my family. Thanks to my wife for keeping me alive when I was totally
concentrated into writing this thesis but also for her general support. And my
daughters for their timed and untimed but often worthwhile interrupts.

biography

Dirk-Jan Jongeneel was born April 29, 1975 in Dordrecht, the Netherlands. In
1993 he started his studies at the department of Electrical Engineering of Delft
University of Technology at Delft. The work for his Masters was done in the
Circuits and Systems group of Prof. R. Otten. Part of the master thesis work
was done in the group of Prof. Brayton at the University of California Berkeley
in the USA. He graduated cum laude on September 15, 1998. From July till
September 1998 he visited Intel Strategic Cad Labs in Hillsboro ,Oregon, USA.
He extended there the work from his Masters. On December 1998 he started
working toward a doctorate in the Circuits and Systems group of the Delft
University of Technology in the field of Design Automation. After Prof. Otten
changed postions, part of the time the work was done in the Information and
Communication Systems group of the Electrical Engineering department of
Eindhoven University of Thechnology. He expects to receive this degree based
on the work presented in this thesis on April 26, 2004. Currently he is working
at Magma Design Automation at its Eindhoven site.

+*

	TIMING-DRIVEN CHIP DESIGN
	contents
	Chapter 1 introduction
	1.1 ic design complexity: chasing moore’s law
	1.2 the ic design process
	1.3 refinement
	1.4 the anatomy of an ic design .ow
	1.5 constant delay design methodology
	1.6 iteration free design

	Chapter 2 wire planning
	2.1 early timing analysis
	2.2 fixing delays
	2.3 sketches of a .ow
	2.4 time budgeting
	2.5 hierarchical context
	2.6 algorithms

	Chapter 3 time budgeting
	3.1 the problem in a wire planning context
	3.2 mathematical problem formulation
	3.3 problem size reduction
	3.4 further tableau reductions
	3.5 enhancing robustness

	Chapter 4 constant delay mapping
	4.1 technology mapping
	4.2 area control
	4.3 search space control
	4.4 experiments and conclusions

	Chapter 5 conclusions
	bibliography
	summary
	samenvatting
	acknowledgements
	biography

