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ABSTRACT

Auto-localization in wireless acoustic sensor networks (WASNs) can
be achieved by time-of-arrival (TOA) measurements between sen-
sors and sources. Most existing approaches are centralized, and they
require a fusion center to communicate with other nodes. In prac-
tice, WASN topologies are time-varying with nodes joining or leav-
ing the network, which poses scalability issues for such algorithms.
In particular, for an increasing number of nodes, the total transmis-
sion power required to reach the fusion center increases. There-
fore, in order to facilitate scalability, we present a structured total
least squares (STLS) based internal delay estimation for distributed
microphone localization where the internal delay refers to the time
taken for a source signal reaching a sensor to that it is registered as
received by the capture device. Each node only needs to communi-
cate with its neighbors instead of with a remote host, and they run
an STLS algorithm locally to estimate local internal delays and posi-
tions (i.e., its own and those of its neighbors), such that the original
centralized computation is divided into many subproblems. Exper-
iments demonstrate that the decentralized internal delay estimation
converges to the centralized results with increasing signal-to-noise
ratio (SNR). More importantly, less computational complexity and
transmission power are required to obtain comparable localization
accuracy.

Index Terms— Time-of-arrival, structured total least squares,
internal delay estimation, auto-localization

1. INTRODUCTION

Wireless acoustic sensor networks (WASNs) have attracted increas-
ing attention in the area of speech processing, due to their flexibility
in sensor placement, e.g., [1–4]. However, in many applications like
beamforming and source localization, the locations of microphones
are assumed to be known as a priori. This is not always true, es-
pecially for dynamic network topologies with some nodes joining or
disappearing.

Recently, many methods have been derived for microphone
auto-localization, which can be generally categorised into meth-
ods based on received signal strength (RSS) [5], time-of-arrival
(TOA) [6], angle-of-arrival (AOA) [7], time difference of arrival
(TDOA) [8] and Euclidean distance matrices (EDM) [9, 10]. TOA
and TDOA based techniques are popular in many applications be-
cause they are less vulnerable to multipath reflections, and they
only require one receiver per sensor. Actually, TDOA based local-
ization can be viewed as a special case of TOA based ones as the
TDOA matrix can be obtained from TOA matrix [8]. Given the
inter-sensor distances matrix, which can be obtained by multiplying
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the TOAs by the speed of sound, many techniques exist to estimate
the coordinates of the sensors. One of the most common methods
is multi-dimensional scaling (MDS) [11, 12]. MDS is designed to
find the sensor locations given the inter sensor distances. However,
MDS is based on an implicit assumption that the sensors and sources
are co-located, thus limiting its use in practical applications. Alter-
natively, auto-localization can also be solved by using non-linear
least-squares (LS), e.g., [9, 12–14].

The TOAs are usually incomplete with unknown source onset
times or device capture times, such that before localization, it is re-
quired to estimate the unknown parameters. The source onset time
denotes the time when a source signal is transmitted. The device cap-
ture time, also known as internal delay, denotes the time taken from
a source signal reaching a sensor until it is registered as received
by the capturing device. A number of algorithms are available to
solve this problem, see e.g., [14–21]. Most make use of the low-rank
information of TOA matrices, which is determined by the dimen-
sion of the space the sensors are located in. Although the unknowns
are accurately computed, to some extent, these methods assume that
the sources are located in the far field and often have slow rates of
convergence. To remove these limitations, [6] presented a data fit-
ting method based on structured total least squares (STLS), which
is guaranteed to converge to the optimal solution. In [6], the STLS
based internal delay estimation is realized by the Gauss-Newton it-
eration, with ultimately achieves a quadratic rate of convergence.

Most of the existing approaches for microphone localization are
based on a centralized computation strategy, which requires a fusion
centre (or host) for facilitating computations, communication and
time-synchronization in the WASNs. This is a serious bottleneck for
the reliability, scalability, communication and hardware costs. For
instance, if the fusion center were to fail, the operation of the WASN
will be compromised. In other words, the centralized algorithms
are not scalable, while localization methods are required not to be
influenced by changing network topologies.

Motivated by [6] and supposing each node is a simple micro-
phone sensor (having a small CPU, e.g., smartphone, laptop) with
some limited computational ability, this paper proposes a fully dis-
tributed microphone localization method based on STLS. We only
employ the local TOA measurements to estimate the internal de-
lays, which can be formulated as a low-rank approximation problem.
After that, the sensor locations can be computed through a singu-
lar value decomposition of the matrix containing the relative arrival
times, up to a d × d invertible matrix where d denotes the dimen-
sion of localization space. To this end, each node has a copy of the
neighbors’ internal delays and coordinates. Finally, we can calculate
the positions of sensors by averaging information between neigh-
bors. Experimental results show that the decentralized internal delay
estimation converges to the centralized results with increasing sam-
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pling frequency or signal-to-noise ratio (SNR). More importantly,
the computational complexity and transmission power are less than
those of the centralized approach to obtain comparable accuracy.

This paper is organised as follow. In Sec. 2 we formalize the
TOA-based localization problem. In Sec. 3 we describe the STLS
for distributed internal delay estimation. Localization is discussed in
Sec. 4 and the experimental results are shown in Sec. 5. Finally, the
conclusions are drawn in Sec. 6.

2. PROBLEM FORMULATION

Consider the situation where we have to localize M receivers
(e.g., wireless microphones, cellphones) (either near field or far
field) using N sources (e.g., loudspeakers). The source locations
sj ∈ Rd (j ∈ {1, ..., N}) and receiver locations ri ∈ Rd (i ∈
{1, ...,M}) are placed in space (d denotes the dimension of the
linear manifold the sensors are located in). Let τj and δi denote
the onset time of source sj and the internal delay of receiver ri,
respectively. Thus, the TOA measurement of the event generated by
source sj at receiver ri is given by

tij =
∥ri − sj∥

c
+ τj + δi, (1)

where ∥ · ∥ denotes the Euclidean norm, c is the velocity of the cal-
ibration signal and we assume the measurement is noise free. The
source onset times can be regarded as being known a priori, be-
cause we can generate the sources at known time instances, e.g., by
using periodically generated wavelets [20]. This means that we can
assume τj = 0 for all j without loss of generality. Furthermore,
setting c = 1 for notational convenience, the inter sensor distances
satisfy

∥ri − sj∥2 = (tij − δi)
2, for all i, j. (2)

To simplify notations, we index the neighboring nodes of node k
as k1, k2, ..., kMk , where Mk denotes the number of node k’s neigh-
bors, i.e., Mk = |Nk|. Considering node k and its neighbors ki
(ki ∈ Nk), we have four equations similar to Eq. (2), given by

∥rki − sj∥2 = (tkij − δki)
2, (3)

∥rki − s1∥2 = (tki1 − δki)
2, (4)

∥rk − sj∥2 = (tkj − δk)
2, (5)

∥rk − s1∥2 = (tk1 − δk)
2. (6)

With the operation of (4)+(5)-(3)-(6), we obtain

(rki − rk)
T (sj − s1) = δki(tkij − tki1)− δk(tkj − tk1)

− (t2kij − t2ki1 − t2kj + t2k1)/2, ki ∈ Nk,
(7)

which is bilinear with respect to the sensor and source locations. As
a consequence, we can define the following matrices for the kth node
as

Rk = (rk1 − rk, ..., rkMk
− rk) ∈ Rd×Mk ,

S = (s2 − s1, ..., sN − s1) ∈ Rd×(N−1),

T k(i− 1, j − 1) = −(t2ij − t2i1 − t2kj + t2k1)/2 ∈ RMk×(N−1),

for i ∈ {k1, k2, ..., kMk}, j ∈ {2, ..., N},

W k(i, j − 1) = tij − ti1 ∈ R(Mk+1)×(N−1),

for i ∈ {k, k1, k2, ..., kMk}, j ∈ {2, ..., N}

Ek =

⎛

⎜⎜⎜⎜⎝

−δk δk1 0 · · · 0

−δk 0 δk2

...
...

...
. . . 0

−δk 0 · · · 0 δkMk

⎞

⎟⎟⎟⎟⎠
∈ RMk×(Mk+1).

The internal delays that node k can access directly compose a vector
δk = (δk, δk1 , δk2 , ..., δkMk

)T ∈ RMk+1. With this we can express
Eq. (7) in a compact form given by

RT
k S = T k +EkW k. (8)

Assumption 1. In a random geographic graph (RGG), we assume
that Mk ≥ d, which is a sufficient condition for rank(Rk) = r ≤ d.

Remark 1. With Mk ≥ d, the matrices Rk and S have at least d
rows, such that rank(Rk) = rank(S) = r ≤ d. In the absence of
measurement errors the matrix RT

k S also has rank r as well as the
right side of Eq. (8) T k +EkW k.

To this end, the goal of this paper is to estimate the internal
delays δk (contained in the matrix Ek) as well as the source/sensor
positions (contained in the matrices Rk and S) using the local
TOA-based matrices T k,W k and the low-rank information in a
distributed way.

3. DISTRIBUTED STLS

In this section, we will estimate the internal delays based on the fact
that the matrix RT

k S has rank r. We formulate this low-rank ap-
proximation problem as a structured total least squares (STLS) prob-
lem [22] similar to what has been done in [6]. In order to find a rank-
r approximation matrix for T k + EkW k, we firstly write T k =
[Ak Bk], where Ak ∈ RMk×r,Bk ∈ RMk×(N−1−r) and W k =
[F k Gk], where F k ∈ R(Mk+1)×r,Gk ∈ R(Mk+1)×(N−1−r).
Note that the matrices T k and W k can be calculated from the
measured TOAs, such that the perturbation matrix of T k is given
by EkW k. We assume that T k and W k have full rank, and
rank(Ak) = rank(F k) = r. Therefore, the rank-r approxima-
tion matrix for T k + EkW k can be expressed as the following
optimization problem,

min
X,δk

∥EkW k∥F

s.t. (Ak +EkF k)X = Bk +EkGk.
(9)

In practice, each node can be viewed as a micro-processor, such
that it is capable of computation. Then, the optimization problem
in Eq. (9) can be solved by the kth node separately. Given the rank
information, the internal delay estimation based on the above op-
timization can be solved by rank approximation. And best rank-r
approximation of a matrix has an analytic solution in terms of its
singular value decomposition (SVD), which is given by the Eckart-
Young-Mirsky theorem [23]. Actually, the STLS is an extension
to TLS problem in the sense that it permits a known structure (e.g.,
rank-r) in [Ak Bk] to be preserved in [Ak+EkF k, Bk+EkGk].

In order to solve Eq. (9), we need to formulate the relation-
ship between Ek and δk. Through observing the structure of
Ek, for each node k we can induce the sparse matrices P k,i ∈
R(Mk+1)×(Mk+1), i = 1, ...,Mk with P k,i(1, 1) = −1,P k,i(i +
1, i+ 1) = 1, such that Ek = (P k,1δk, ...,P k,Mkδk)

T . Note that
P k,i represents the ith sparse matrix of the kth node. As a result,
we have

∥EkW k∥F = δT
k Zkδk, (10)
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Fig. 1. An example of WASN with 7 nodes (each node has 3 neigh-
bors at least). The original network topology is divided into many
local star-like networks.

where Zk =
∑Mk

i=1 P k,iW kW
T
k P

T
k,i. With the fact that Zk is

positive definite and symmetric, it has an eigenvalue decomposition
as Zk = QkΛkQ

T
k with Qk unitary and Λk ≻ 0. Hence, Zk can

be decomposed as Zk = DkD
T
k with Dk = QkΛ

1
2
k Q

T
k ≻ 0, i.e.,

the symmetric matrix Dk is the square root of Zk. Therefore, the
optimization problem in Eq. (9) is equivalent to

min
X,δk

∥Dkδk∥2

s.t. (Ak +EkF k)X = Bk +EkGk,
(11)

which is non-convex, because the constraint in terms of δk is non-
convex. Alternatively, we change Eq. (11) into an unconstrained
minimization problem as

min
X,δk

1
2
∥Dkδk∥22 +

ω2

2
∥vec(ρk(X, δk))∥22, (12)

where ρk(X, δk) = Bk + EkGk − (Ak + EkF k)X , vec(·) is
the vectorization operator and ω is a sufficiently large penalty value.
As a consequence, we can solve X and δk using a Gauss-Newton
method in a decentralized manner. For the sake of brevity, we refer
to [6] for an overview of this approach.

4. MICROPHONE AUTO-LOCALIZATION

After the internal delays are estimated by the Gauss-Newton algo-
rithm, each node has an estimate of its own and its neighbors’ inter-
nal delays. For example, in Fig. 1 node 1 has internal delay estimates
of nodes {1, 2, 5, 6}. Then, we can compute the final internal delays
by collecting data from neighbors and averaging over a local star
network, like,

δk =
1

1 +Mk

⎛

⎝δk +
∑

i∈Nk

δi

⎞

⎠ , k ∈ {1, ...,M}, (13)

to reduce the estimation error. As a result, the right side of Eq. (8) is
known (Ek is known), such that RT

k S has an SVD given by

RT
k S = UkΣkV

T
k , (14)

where Uk ∈ RMk×r, V k ∈ R(N−1)×r and Σk ∈ Rr×r , which
determines Rk up to an r × r invertible matrix. The locations of
the receivers and sources can be formulated as Rk = (UkC)T and
S = C−1ΣkV

T
k , where the matrix C can be obtained by non-

linear optimization or LS approximation (if one source-receiver pair
is co-located, a closed-form solution is known) [18].

To this end, each node has access to its own estimated position,
those of its neighbors, as well as the positions of all sources. Let’s

consider again the example of a WASN with 7 nodes as depicted in
Fig. 1. Node 1 has the estimated positions of {1, 2, 5, 6}, and it also
holds the estimates of all source locations. This is true for all other
sensors. Hence, for microphone auto-localization, node k only needs
to collect data from its neighbors, and then do averaging as

rk =
1

1 +Mk

⎛

⎝rk +
∑

i∈Nk

ri

⎞

⎠ , k ∈ {1, ...,M}, (15)

to reduce the estimation error. Of course, the procedure of collecting
data can be also viewed as averaging consensus [24] over a local star
network. Every node also has an estimate of the source positions
in matrix S. They will be different in general due to measurement
noise. To reduce these variations, it is necessary to calculate the av-
eraged source positions using averaging consensus. In this work, we
only focus on the task of microphone self-localization with source
localization left as future work.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results and analysis for the
internal delay estimation and microphone localization, respectively,
and compare the decentralized STLS algorithm with the central-
ized STLS algorithm. In the following experiments, there are 15
sources placed uniformly at random in a room of dimensions 4 ×
4× 2.5 m. The receivers are wirelessly connected as a random geo-
graphic graph (RGG), where the transmission range is determined by√

logM/M . Note that in practice, for a fixed enclosure as the num-
ber of receivers increases, the distribution of nodes becomes denser,
and each node will have more neighbours, because the number of
receivers increases (in linear sense) faster than the increase of trans-
mission range (in logarithmic sense). For the receivers, the internal
delays are generated according to an uniform distribution over the
time interval [0, 100] ms. The sound velocity is set to c = 343 m/s
and the penalty value ω in Eq. (12) is chosen to be 109, which is
kept the same for both the centralized and decentralized STLS algo-
rithms. Furthermore, the programming platform is MATLAB 2014b,
and the processor is i5-4690 CPU@3.50GHz.

Most literatures, like [9, 25], use signal-to-noise ratio (SNR) to
represent the measurement noise level. With measurement noise
present, the TOAs can be expressend as

t̂ij =
∥ri − sj∥

c
+ δi + νij , (16)

where νij denotes the measurement errors, which are randomly draw
from an uniform distribution over the interval [−Ts/2, Ts/2] (simi-
lar to [6]) with Ts representing the sampling period (in seconds) of
the calibration signals. Using the matrix formulations t̂ = [t̂ij ],ν =
[νij ], the SNR is then defined as

SNR = 20 log10
∥t̂− ν∥F
∥ν∥F

. (17)

Hereby, we clarify the relationship between the SNR and sampling
frequency fs with fs = 1/Ts in Fig. 3. We conclude that for a
fixed sampling frequency, ∥ν∥F becomes larger with an increasing
number of receivers, such that the SNR gets slightly smaller.

Firstly, we show the results of internal delay estimation in terms
of the sampling frequency fs in the upper subplot of Fig. 2(a). The
bars denote the statistical qualities (i.e., mean and variance) of inter-
nal delay estimation, which are averaged over 100 trails. It can be
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concluded that with noisy TOA measurements, the centralized STLS
(CSTLS) always outperforms the decentralized STLS (DSTLS), but
with increasing sampling frequency (i.e., SNR) the performance of
DSTLS converges to that of CSTLS gradually. However, the com-
putational complexity of the two methods are of order O(MN) and
O(MkN) with Mk ≪ M , respectively. Hence, with increasing
receivers the runtime of CSTLS increases linearly, while that of
DSTLS stays approximately constant.

Secondly, the root-mean-square errors (RMSEs) of the micro-

phone localization (i.e.,
√

1
M

∑M
i=1 ∥ri − r̂i∥2) are shown in the

bottom subplot of Fig. 2(a) as a function of the sampling frequency.
These results are quite consistent to the results of internal delay esti-
mation. The localization error of DSTLS decreases with increasing
sampling frequency, and it converges to that of CSTLS.

Finally, the transmission powers (TPs) of the two approaches are
compared in Fig. 2(b). Since the TP is proportional to the squared
Euclidean distance between sensors, we will measure the TP in terms
of inter-sensor distances. For CSTLS, each sensor must transmit
its TOA to the fusion center (assumed to be placed at the center,
say rc, of the room), and the fusion center needs to broadcast the
localization results back to the sensors after computation. Thus, the
minimum TP of CSTLS will be

PT,CSTLS =
M∑

i=1

∥ri − rc∥22 + max
i∈{1,...,M}

∥ri − rc∥22. (18)

For DSTLS, each sensor only requires to communicate with its

neighbors, its minimum TP can be formulated as

PT,DSTLS =
M∑

i=1

∥ri − arg max
rj , j∈Ni

{
ri − rj

}
∥22

+
M∑

i=1

Mi∑

j=1

∥ri − rj∥22,

(19)

where the two terms on the right side of Eq. (19) represent the power
consumption used to broadcast the measured TOAs and to collect
data, respectively. Note that we ignore the influence of the size of
transmitted data on the TP here. From Fig. 2(b), we can conclude
that DSTLS requires significantly less TPs, such that it can save re-
sources to prolong the lifetime of the WASNs.

6. CONCLUSIONS

In this paper, we extended the centralized STLS based internal de-
lay estimation for microphone localization presented in [6] to a fully
distributed framework. With the assumption that the minimum num-
ber of neighbors of each sensor node is the dimension of a local-
ization space, the results of the proposed decentralized method con-
verge to those of the centralized method with increasing SNR (i.e.,
sampling frequency). When the TOA measurements are noise free,
the localization errors of the two approaches are identical. Futher-
more, for an increasing number of sensors, the proposed algorithm
achieves a significant reduction in transmission power and compu-
tational complexity as compared to the centralized case. Hence, the
proposed method can improve the scalability, flexibility, and lifetime
of WASNs.
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