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Binaural Sound Localization Based on Reverberation
Weighting and Generalized Parametric Mapping

Cheng Pang, Hong Liu, Jie Zhang and Xiaofei Li

Abstract—Binaural sound source localization is an impor-
tant technique for speech enhancement, video conferencing and
human-robot interaction, etc. However, in realistic scenarios,
the reverberation and environmental noise would degrade the
precision of sound direction estimation. Therefore, reliable sound
localization is essential to practical applications. To deal with
these disturbances, this paper presents a novel binaural sound
source localization approach based on reverberation weighting
and generalized parametric mapping. Firstly, the reverbera-
tion weighting as a pre-processing stage, is used to separately
suppress the early and late reverberation, while preserving
interaural cues. Then, two binaural cues, i.e., interaural time
and intensity differences, are extracted from the frequency-
domain representations of dereverberated binaural signals for the
online localization. Their corresponding templates are established
using the training data. Furthermore, the generalized parametric
mapping is proposed to build a generalized parametric model
for describing relationships between azimuth and binaural cues
analytically. Finally, a two-step sound localization process is
introduced to refine azimuth estimation based on the generalized
parametric model and template matching. Experiments in both
simulated and real scenarios validate that the proposed method
can achieve better localization performance compared to state-
of-the-art methods.

Index Terms—Binaural localization, reverberation weighting,
generalized parametric mapping, template matching.

I. INTRODUCTION

B INAURAL sound source localization (SSL) is to deter-
mine the spatial direction of a sound source, utilizing the

audio recorded by two microphones mounted in the left and
right ears. It has wide applications in speech enhancement,
speech segregation, hearing aids, human-robot interaction
(HRI) and intelligent video conferencing, etc [1]–[4]. Recently,
with the advances in array signal processing, SSL has been
widely researched. In general, it can be categorized into three
classes: 1) techniques based on the high-resolution spectral
or beamforming method, e.g., multiple signal classification
(MUSIC) [5] and steered response power (SRP) [6]; 2) techni-
ques employing time difference of arrival (TDOA) which is
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extracted from the cross-correlation function [7]; 3) techniques
adopting measured head-related transfer function (HRTF) [8].
Each category has its own advantages and disadvantages.

Binaural SSL based on biological acoustic characteristics
has been a prevalent sound localization branch, e.g., hearing
aids, humanoid robotics, due to its small-sized sensor array
required and easy-equipment. In other words, compared to mi-
crophone array based SSL, it is more convenient and friendly.
There are three challenging issues concerning binaural SSL:
1) how to accurately localize various types of sound source;
2) how to simultaneously localize several different sound
sources; 3) how to track moving sound sources [9]. The first
problem mentioned above is considered in this paper.

For binaural SSL, two physical cues consisting of interaural
time differences (ITD) and iteraural intensity differences (IID)
are frequently used. ITD represents the time-difference of a
sound source arriving at two ears, which can be calculated by
unwrapping the interaural phase difference (IPD). IID (usually
in dB) refers to the intensity difference between binaural
signals. In general, the binaural signals are decomposed into
perceptual frequency bands, e.g., Gammatone filter bank, or
uniform frequency bands, e.g., short-time Fourier transform
(STFT), from which the interaural cues are extracted. After
“Duplex Theory” [10] and cochlear model [11] were proposed,
a large amount of binaural sound source localization systems
have been developed based on ITD and IID. For example,
Heckmann et al. introduced a model of precedence effect to
achieve binaural SSL in echoic environments [12]. Youssef et
al. studied a combination of auditive cues and vision based
binaural sound localization in an HRI context [13].

In the presence of noise or reverberation, the performances
of most existing approaches degrade significantly [7], [14]–
[16]. In realistic environments, the noise generated by sur-
roundings, like air conditioner, is a serious interfering source
that cannot be ignored. Furthermore, due to the reverberation,
the recorded audio at each ear contains the sound wave coming
from the direct path and the sound waves reflected by walls and
furniture. Early reflections with different direction-of-arrivals
have amplitudes similar to that of direct-path signal, so they
lead to negative effects on determination of the true sound
source [17]. Besides, high computational complexity is also
a limitation to the implementation of real-time sound locali-
zation, so the time and storage complexity of the localization
methods should be taken into account.

To tackle with above challenges, a number of novel algo-
rithms have been proposed. For instance, Li et al. proposed
a three-layer binaural SSL system based on the Bayesian
rule [18]. Along with the similar hierarchical architecture,
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experiments in [19] demonstrated that the hierarchical system
can effectively reduce the time consumption of SSL. For
acoustic interference, most existing methods focus on the
extraction of robust binaural cues, while ignoring their valid
combination. Benesty et al. provided a multi-channel linear
approach to reduce the noise in binaural signals [20]. Willert
et al. introduced a biologically inspired binaural SSL through
extracting binaural cues from cochleagrams generated by a
cochlear model [21]. With regard to reverberation, one idea
to remove the negative effects by inputting the reverberant
signals to a filter that inverts the reverberation process and
recovers the original signal. Alternatively, a novel two-stage
binaural dereverberation algorithm was proposed by Jeub et
al., which utilizes a dual-channel Wiener filter to preserve the
binaural cues by modelling room impulse response (RIR) [22].
A learning-based approach was also put forward to achieve
robust sound localization under reverberant conditions, but its
performance is limited by the training conditions [23].

Based on the Fourier analysis for binaural signals, Raspaud
et al. extracted the ITD and IID in the frequency domain [24].
In order to learn a more comprehensive dependence of ITD and
IID on azimuth, probabilistic model, e.g., Gaussian mixture
model, is introduced to achieve robust SSL in reverberant en-
vironments [25]–[27]. However, the probabilistic model needs
to be trained for different signal-to-noise ratios (SNRs) as well
as for different reverberation times to keep its environmental
adaptivity. Although the previous methods obtain acceptable
performance under certain specific conditions, most of them
simply focus on estimating the direction of sound source in
either noisy or reverberant experimental environments rather
than in a realistic environment.

Motivated by the above problems, we propose reverberation
weighting and generalized parametric mapping to localize
a single sound source in realistic environments including
uncorrelated noise and reverberation. Firstly, the reverbera-
tion weighting [28] is applied to dereverberate the received
binaural signals, which separately suppresses the early and late
reverberation meanwhile preserving the direct-path interaural
differences. After dereverberation, ITD and IID are extracted
from the frequency-domain representations of the dereverbe-
rated binaural signals for the online localization. The averaged
ITD and IID templates are established using the training data,
namely HRTFs. Then, the generalized parametric mapping
is proposed to build a generalized parametric model [29]
through finding generalized scaling factors. This model descri-
bes the mapping relationship from the extracted binaural cues
to azimuth estimates. Finally, a two-step sound localization
process is used to refine azimuth estimation based on the
generalized parametric model and template matching. Rough
azimuth estimation is quickly achieved through the generalized
parametric model, which is utilised to determine correct phase
unwrapping factor to unwrap the online measured ITD. A
precise azimuth estimation is obtained by combining the robust
estimates of ITD and IID through template matching. Both
the normalized distances between the two binaural cues and
their averaged templates are calculated, and combined over
frequency. The template matching using the averaged ITD and
IID templates makes our method achievable under noisy and

reverberant conditions. The proposed method is evaluated in a
simulated environment based on a public-domain HRTF data-
base. Moreover, the binaural signals collected by an artificial
head in a realistic indoor room, are also used to validate the
proposed method in practical situations. Note that the methods
proposed in this paper are the refined and expanded version
of the conference proceedings papers [28] and [29].

Contributions: 1) With regard to the impact of reverberation
on SSL, the reverberation weighting is used to suppress the re-
verberation of binaural signals. Through suppressing the early
and late reverberation separately, the proposed reverberation
weighting can preserve binaural cues better. Although cepstral
prefiltering is used to dereverberate binaural signals for locali-
zation [29], [30], it mainly focuses on the dereverberation for
time-delay estimation [31].

2) The generalized parametric model is built by the genera-
lized parametric mapping, which is computationally efficient.
It can also improve the adaptability of the proposed method
to practical applications. The generalized parametric model
in [29] is improved by parametric mapping with the optimal
generalized scaling factors which are obtained by solving a
least squares problem. Although the joint estimation based on
ITD and IID has been studied in [24], how to find more gene-
ralized scaling factors that are used to describe the mapping
relationship from the extracted binaural cues to the objective
azimuth, has not been provided. Based on this improved
generalized model, the two-step sound source localization is
used to refine azimuth estimation. Rough azimuth estimation
can be quickly achieved based on the generalized parametric
model to unwrap ITD, and a precise azimuth estimation is
achieved through the template matching of ITD and IID.

The remainder of this paper is organized as follows.
Section II formulates the binaural localization model and pre-
sents the reverberation weighting algorithm. Section III details
binaural cues extraction and their templates establishment.
Section IV presents the generalized parametric mapping and
correct phase unwrapping factor estimation. The SSL process
based on template matching is detailed in Section V. Experi-
ments and analyses for simulated and realistic environments
are shown in Section VI. Finally, Section VII concludes
this work.

II. DEREVERBERATION

A. Binaural localization model

In the far field, let x(n) denote the sound signal emitted
by a source in the discrete-time domain, the binaural signals
received by two ears in the noisy and reverberant environments
can be modeled as

yi(n) = hi(n) ⋆ x(n) + vi(n), i = l, r, (1)

where n is the discrete-time index, ⋆ denotes convolution
operation, hi(n) is the impulse response between the source
and ears (i.e., binaural room impulse response, BRIR), vi(n)
denotes the corresponding interfering term, which is assumed
to be an uncorrelated, zero-mean, stationary Gaussian random
process, i denotes the microphone index, l and r refer to the
left and right microphones, respectively. The impulse response
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Fig. 1. Binaural localization model. (a) Signal model of binaural sound
localization in reverberant environment. (b) The head-center interaural-polar
coordinate system. The azimuth θ is the angle between a vector to the sound
source and the midsagital plane (i.e., X2-X3 plane), and it varies from −90◦ to
+90◦. The elevation φ is the angle from the horizontal plane to the projection
of the source into the midsagital plane, and it varies from −90◦ to +270◦.

hi(n) involves two independent components, which include
the acoustic property of room (i.e., reverberation) and head-
related impulse responses (HRIRs). The modeling scheme in
the reverberant environments is illustrated in Fig. 1(a). It can
be seen that the propagation paths from the sound source to a
receiver include a direct path and subsequent reflections. The
HRIRs are derived from the training data along with the direct
path, and the reflections contain the effect of reverberation.
As shown in Fig. 1(b), azimuth θ and elevation φ measured
in a head-center interaural-polar coordinate system (which is
different with the vertical-polar coordinate system), are used
to denote direction of the sound source, which follow the
description of the CIPIC HRTF database [32].

In many practical applications, such as HRI, beamforming,
the azimuth is more important than the elevation in general,
azimuth estimation in complex acoustic environments is the-
refore the main focus of this work.

B. Reverberation weighting

Many works have been conducted for dereverberation in
the past decades, such as inverse filtering [17], spectral sub-
traction [33], etc. Most of these methods are suitable for the sy-
stems with a single output, yet they may break the localization
cues. In order to alleviate the contamination of reverberation
to the binaural cues for sound localization, the reverberation
weighting is proposed to suppress the reverberation.

Since RIR consists of the direct, early and late compo-
nents [34], hi(n) can be defined as

hi(n) =


hE
i (n), 0 ≤ n < TL · fs

hL
i (n), TL · fs ≤ n ≤ TR · fs

0, n < 0

(2)

where E and L stand for the early and late reverberation, re-
spectively, and hE

i (n) contains the direct and early propagation
paths of the sound source, hL

i (n) represents the late path, TR

refers to the reverberation time [35] and fs is the sampling
frequency. TL denotes the onset time of late reverberation,

which generally ranges from 50 ms to 100 ms [34]. Hence,
the received binaural signals in Eq. (1) can be rewritten as

yi(n) =
TLfs−1∑
k=0

hE
i (k)x(n− k) +

TRfs∑
k=TLfs

hL
i (k)x(n− k) + vi(n).

(3)
Since the two components contained in the RIR affect the
sound signal in different ways, they are treated separately in
what follows.

Suppressing the late and early reverberation can be done in
the frequency domain using the late and early reverberation
gains. According to the properties of late and early reverbera-
tion, the gains are calculated based on a spectral subtraction
rule and the coherence of binaural signals, respectively. Since
the spectral weighting has no influence on the coherence, the
first step is to suppress the late reverberant components. To
do this, the variances of late reverberation can be acquired by
a simple statistical model for RIR [36]:

h̃L(n) = m(n)e−ρnf−1
s , n ≥ 0, (4)

where m(n) is a standard Gaussian sequence with zero mean
and unit standard deviation, ρ denotes the decay rate, which
is determined by the reverberation time TR:

ρ =
3 ln(10)

TR
, (5)

where TR can be estimated by Schroeder’s method [35]. In
Eq. (4), the late reverberant components can be considered as
an uncorrelated noise process if the energy of direct path is
smaller than all reflections [37].

Here, the received binaural signals are enframed by a Ham-
ming window, and then transformed to the frequency domain
through STFT. The variance of the late reverberant signal
in the frequency domain can be estimated by an estimator
proposed in [22]:

σ2
yL
i
(κ, ω) = e−2ρTL · σ2

yi
(κ−NL, ω), (6)

where σ2
yi
(κ, ω) denotes the variance of the reverberant signal,

NL is the number of frames corresponding to TL, κ is the
frame index, ω denotes the frequency index. Here, the spectral
variance of the reverberant speech signal is calculated through
recursive averaging:

σ2
yi
(κ, ω) = α1 · σ2

yi
(κ− 1, ω) + (1− α1)|Yi(κ, ω)|2, (7)

where α1 is a smoothing factor, which is set to 0.95, and
Yi(κ, ω) denotes the STFT coefficients of yi, which obeys the
zero-mean complex Gaussian distribution.

Hereby, a posteriori signal-to-interference ratio can be com-
puted by

ηLi (κ, ω) =
|Yi(κ, ω)|2

σ2
yL
i

(κ, ω)
. (8)

Then, the weighting gains used to suppress the late reverberant
components contained in the binaural signals are calculated
based on the spectral magnitude subtraction rule. They are
formulated as

GL
i (κ, ω) = 1− 1√

ηLi (κ, ω)
. (9)



4

Fig. 2. The effect of reverberation weighting on spectrograms. (a) Original
signal. (b) Reverberant signal with reverberation time TR = 0.5 s. (c) Late
reverberation-suppressed signal. (d) Reverberation suppressed signal.

The late reverberation-suppressed binaural signals can be
obtained by

Ỹi(κ, ω) = Yi(κ, ω) ·GL
i (κ, ω). (10)

Subsequently, the goal is to suppress the early reverberant
components. The coherence-based method is adopted to keep
the coherent parts unaffected and to remove all non-coherent
signal parts, since the direct-path signal shows a high cohe-
rence among binaural signals. The coherence is calculated by

Γylyr
(κ, ω) =

|Φylyr
(κ, ω)|√

Φylyl
(κ, ω)Φyryr

(κ, ω)
, (11)

where Φyiyi(κ, ω) and Φylyr (κ, ω) refer to the weighted short-
term auto- and cross-power spectral densities, respectively,
which can be recursively evaluated by

Φyiyi(κ, ω) = α2Φyiyi(κ− 1, ω) + |Ỹi(κ, ω)|2, (12)

Φylyr
(κ, ω) = α2Φylyr

(κ− 1, ω) + Ỹl(κ, ω)Ỹ
∗
r (κ, ω), (13)

where (·)∗ denotes the complex conjugate operation and α2

represents a recursion factor [38], which is determined by

α2 = e−
L

4tfs , (14)

where L denotes the frame length, and t refers to the time
duration for coherence estimation. Similar to [38], t is set
to 0.1 s.

Inspired by [39], the obtained coherence is applied to
compute the weighting gains for suppressing the early rever-
beration, which is formulated as

GE
i (κ, ω) =

Re{Φylyr
(κ,ω)}−Γylyr

(κ,ω)Φyiyi
(κ,ω)

Φyiyi
(κ,ω)(1−Γylyr

(κ,ω))
, (15)

where Re{·} returns the real part of its argument.
Applying the early reverberant gains to Ỹi(κ, ω), the dere-

verberated output signals can be obtained:

Ŷi(κ, ω) = Ỹi(κ, ω) ·GE
i (κ, ω). (16)

An illustration of dereverberation results in a spectrogram
sense is shown in Fig. 2. It can be seen that the speech
spectrum of reverberant speech (TR = 0.5 s) becomes fuzzy
due to the influence of reverberation compared to the original
speech. This phenomenon leads to inconsistent extraction of
binaural cues for localization. After reverberation weighting,
the dereverberated speech spectrogram becomes clearer and
the reverberation tail in the spectrogram is obviously shor-
tened. Meanwhile, it has enhanced peaks that cause a little
distortion, yet the acoustic quality of the dereverberated signal
is acceptable by listening test.

III. ESTIMATING LOCALIZATION CUES

A. Online binaural cues extraction

In this part, two frequency-dependent acoustic cues are com-
puted from binaural recordings after reverberation weighting,
namely ITD and IID [40]. The two physical localization cues
used in this paper are extracted based on the sliding STFT
spectra of the dereverberated binaural signals. Hereinafter,
the online binaural cues extraction and sound localization are
implemented based on each individual frame. For each frame
of the binaural signals, the IID (in dB) can be calculated by

∆I(ω) = 20 log10

∣∣∣Yr(ω)

Yl(ω)

∣∣∣, (17)

where Yl(ω) and Yr(ω) are the STFTs of left and right channel
of the binaural signals, respectively. When one or both of
the |Yi(ω)| is null, the interaural differences are regarded as
invalid, so that the information of this frame is disregarded.

With the frequency spectra of binaural signals, the ITD is
extracted by

∆Tp(ω) =
1

ω
(∠Yr(ω)

Yl(ω)
+ 2πp), (18)

where p denotes the phase unwrapping factor, which is a
priori integer. Since the angle corresponding to the spectral
ratio is calculated modulo 2π, the factor p is necessary for
the correct ITD estimation. However, p makes IPD become
ambiguous above a certain frequency, which mainly depends
on the size and shape of listener’s head. As the average radius
of human head is about 0.07 m, its corresponding ITD range
is about [-0.5, 0.5] ms. The binaural signals are analyzed
over the frequency range of 0-8 kHz, so the range of p is
[-7, 7]. For each possible p in this range, the corresponding
∆Tp(ω) is calculated to estimate azimuth for determining
the following correct phase unwrapping factor in the online
localization stage. In addition, the parameter p indexes sound
positions. A negative p corresponds to a position on the left
side (θ < 0) and positive p indicates the position on the right
side. In this case, possible values of p depend on the physical
layout of microphone sensors and sources. Note that Eq. (17)
and Eq. (18) are used to extract the binaural cues from the
binaural recording for subsequent online localization.

B. Offline templates establishment

In order to retrieve the azimuth from an STFT pair for
a given frequency bin, the IID and ITD estimates of that
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bin are required to be matched with the estimated IID and
ITD from the HRTFs of all subjects, respectively. It is
assumed that the HRTFs are time-invariant, and they are
only dependent on the azimuthal angle θ. In this work, the
templates consisting of the intensity difference ∆ITs (θ, ω) and
the time difference ∆T T

s (θ, ω) for each individual subject
s, need to be established before the online localization. The
templates establishment can be accomplished offline. Similar
to the online IID extraction in Eq. (17), IID templates can be
established by

∆ITs (θ, ω) = 20 log10

∣∣∣HRTFs
r(θ, ω)

HRTFs
l (θ, ω)

∣∣∣, (19)

where T stands for the template, HRTFs
l (θ, ω) and

HRTFs
r(θ, ω), respectively, represent the frequency-domain

HRTFs on the left and right ears for azimuth θ and subject s.
Similarly, ITD templates based on HRTF can be built as

∆T T
s,p(θ, ω) =

1

ω
(∠HRTFs

r(θ, ω)

HRTFs
l (θ, ω)

+ 2πp). (20)

In Eq. (20), the ITD also depends on the phase unwrapping
factor. In the offline training stage, the exact position of a
calibration source related to the head is known in advance,
such that the theoretical ITD can be calculated, with which
we can choose the correct p of the ITD templates for Eq. (20).
The ambiguity is eliminated through unwrapping modulo 2π
for the phase differences of the HRTFs across frequencies.
The actual phase differences of the HRTFs are assumed to be
a continuous function versus frequency. Besides, p is supposed
to be 0 when θ = 0◦, where the phase difference ought to be
pretty small. Since the correct phase unwrapping factor p̂ can
be determined in this case, the unwrapped ITD templates can
be obtained as T T

s,p̂(θ, ω), which is simplified to ∆T T
s (θ, ω)

in the context. Note that Eq. (17) and Eq. (18) are used for
online localization based on the binaural audio, while Eq. (19)
and Eq. (20) are applied for offline training templates using
HRTFs. Taking the CIPIC database [32] as an example, the
ITDs and IIDs for one specific head are shown in Fig. 3(a) and
(b) in terms of the azimuth and angular frequency, respectively.

Let Ns denote the total number of subjects, the averaged
ITD and IID templates over all the subjects can be obtained by

∆ĪT (θ, ω) =
1

Ns

Ns∑
s=1

∆ITs (θ, ω), (21)

∆T̄ T (θ, ω) =
1

Ns

Ns∑
s=1

∆T T
s (θ, ω). (22)

The obtained ∆ĪT (θ, ω) and ∆T̄ T (θ, ω) are shown in
Fig. 3(c) and (d). It can be seen that the smoothed ∆T̄ T (θ, ω)
(or ∆ĪT (θ, ω)) and ∆T T

s (θ, ω) (or ∆ITs (θ, ω)) are in the
same range and follow similar changing trend. Hence, the
smoothed versions of binaural cues can be representative of
an individual subject, and they are thus used for the online
localization process. From Fig. 3(a) and (c), it can also be
concluded that, for a specific angular frequency, ITDs are
significantly influenced by the azimuth, and for a specific
azimuth, the ITDs almost stay invariant in terms of the
frequency. However, the IIDs in Fig. 3(b) or (d) vary with both

Fig. 3. Binaural cues distribution versus azimuth and angular frequency in
the CIPIC HRTF database. (a) ITD and (b) IID for subject #21. (c) Averaged
ITD and (d) averaged IID over all subjects.

the azimuth and frequency. This phenomenon explicitly reveals
that the IID measurement can be employed to resolve the phase
unwrapping factor, which will be detailed in Section IV.

IV. GENERALIZED PARAMETRIC MAPPING AND CORRECT
PHASE UNWRAPPING FACTOR ESTIMATION

A. Generalized parametric mapping

In Section III, we present how to extract the binaural cues
and how to establish the ITD and IID templates. In this section,
the generalized parametric mapping is proposed to describe
the mapping relationship between binaural cues and azimuths
by finding more generalized scaling factors, which builds a
generalized parametric model to guide templates lookup for
azimuth estimation. This generalized parametric mapping im-
proves the robustness and adaptability of the sound localization
system when it is applied to different artificial heads.

As a typical human head has a nearly spherical and uniform
surface, the ITD produced by a sound source at azimuth θ can
be approximately defined based on the diffraction theory [41]
(has also been validated in Fig. 3). However, the formulation
between the IID and azimuth does not obey a monotonic
function but a more complex function as a typical example
depicted in Fig. 3. Since the scale of IID is proportional to the
sine of the azimuth [40], an approximation is made to simplify
analysis but without loss of generality. Here, for azimuth θ, the
corresponding ITD and IID are related to ∆τ(θ) and ∆ε(θ),
respectively, which can be approximatively defined as

∆τ(θ) = γ
θ + sin θ

c
,

∆ε(θ) = sin θ,
(23)

where c denotes the propagation speed of the sound signal in
the air (set to 344 m/s), γ represents the “head radius” and its
value is set to be the mean head radius in the CIPIC database,
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namely 0.07 m. Based on Eq. (23), the parametric ITD and
IID model for subject s can be formulated as

∆TP
s (θ, ω) = αs(ω)∆τ(θ),

∆IPs (θ, ω) = βs(ω)∆ε(θ),
(24)

where P stands for “parametric”, αs(ω) and βs(ω) are the
scaling factors for the ITD and IID model, respectively. The
two scaling factors depend on the frequency and the subject,
which are applicable for all the values of θ. These scaling
factors are introduced to give the closest match to the measured
ITD and IID templates in the training stage (see Section III-B).
Since human head cannot perfectly conform to the head used
for modeling Eq. (23) in realistic scenarios, ∆τ(θ) and ∆ε(θ)
may only reflect the global changing trend for different θ.

Let Na denote the number of azimuth, such that θj , j =
1, 2, · · · , Na. With the ∆τ(θ) and ∆ε(θ) in Eq. (23), we can
separately define their vectors as

∆τττ = [∆τ(θ1),∆τ(θ2), · · · ,∆τ(θNa)]
T
,

∆εεε = [∆ε(θ1),∆ε(θ2), · · · ,∆ε(θNa
)]
T
.

With regard to the ITD and IID templates established in the
training stage, we can define the vectors of ITD and IID
templates for each subject s as

∆TT
s (ω) =

[
∆T T

s (θ1, ω),∆T T
s (θ2, ω), · · · ,∆T T

s (θNa
, ω)

]T
,

∆ITs (ω) =
[
∆ITs (θ1, ω),∆ITs (θ2, ω), · · · ,∆ITs (θNa

, ω)
]T

.

In order to make the parametric ITD and IID give the closest
match to the measured ITD and IID templates, the optimal
scaling factors for the parametric ITD and IID model can be
found by solving the following optimization problems:

minimize
αs(ω)

∥∥αs(ω)∆τττ −∆TT
s (ω)

∥∥2
2
, (25)

minimize
βs(ω)

∥∥βs(ω)∆εεε−∆ITs (ω)
∥∥2
2
. (26)

Through minimizing the objective functions in Eq. (25) and
Eq. (26) (which respectively refer to the square of ℓ2-norm
for the difference between αs(ω)∆τττ and ∆TT

s (ω) and the
difference between βs(ω)∆εεε and ∆ITs (ω)), the optimal scaling
factors αs(ω), βs(ω) for the ITD and IID model can be
obtained for each subject.

With regard to Eq. (25) and Eq. (26), least squares method
is adopted to calculate the optimal scaling factors. The optimal
scaling factors αs(ω) and βs(ω) for each subject are given by

αs(ω) =

c
Na∑
j=1

(θj + sin θj) ·∆T T
s (θj , ω)

γ
Na∑
j=1

(θj + sin θj)
2

,

βs(ω) =

Na∑
j=1

∆ITs (θj , ω) · sin θj

Na∑
j=1

sin2θj

.

(27)

However, using the αs(ω) and βs(ω) from each specific
subject for sound source localization is complex in practical
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Fig. 4. The changing trends of the scaling factors for ITD (a) and IID (b)
model in terms of frequency and subject.

situations. Fortunately, averaged parameters over the on-the-
shelf subjects in the HRTF datasets are enough for an expected
azimuth localization accuracy. Then, the generalized scaling
factors αg(ω) and βg(ω) are obtained by calculating the
expected (averaged) values of αs(ω) and βs(ω) over all the
subjects, which are utilized to build a generalized parame-
tric model.

Fig. 4 shows the changing trends of the scaling factors for
the ITD and IID model in terms of frequency and subject,
respectively. In Fig. 4, the grey curves represent the scaling
factors of different subjects, and the two black solid curves
denote the averaged results. It can be seen that the αs(ω) and
βs(ω) for each subject follow the similar changing trend in
terms of frequency. Therefore, the generalized scaling factors
calculated by least squares method can represent their depen-
dence on subjects well. Here, the obtained generalized scaling
factors are applied to the parametric ITD and IID model in
Eq. (24), which can improve the adaptability of our method
for different artificial heads. The generalized parametric model
is then formulated as

∆TP(θ, ω) = αg(ω)γ
θ + sin θ

c
,

∆IP(θ, ω) = βg(ω) sin θ.
(28)

B. Correct phase unwrapping factor estimation

With the online measured ITD and IID in Section III-A,
their corresponding azimuth can be estimated based on the
generalized parametric model formulated in Eq. (28). In this
section, the ITD-based and IID-based azimuth estimations
in [24] are used to find the correct phase unwrapping factor.
Firstly, the above generalized parametric model is used to
estimate azimuths based on the online measured ITD and
IID. Then, the obtained ITD-based and IID-based azimuth
estimates are combined to find the correct phase unwrapping
factor, which is used to unwrap the measured ITD. In order to
retrieve the azimuth from the binaural cues, it is necessary
to inverse the generalized parametric model. In detail, the
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parametric azimuth estimates from the online measured ITD
∆Tp(ω) and IID ∆I(ω) can be respectively computed by

θ̂PT,p(ω) = f−1
( c

γαg(ω)
∆Tp(ω)

)
, (29)

θ̂PI (ω) = arcsin
∆I(ω)

βg(ω)
, (30)

where f−1(·) is the inverse function of f(θ) = θ+sin θ. Since
f−1(·) is difficult to be calculated directly, a polynomial ap-
proximation of f−1(·) over the interval of interest is achieved
by a Chebyshev series, which is formulated as

f̂−1(z) =
z

2
+

z3

96
+

z5

1280
. (31)

Here, θ̂PT,p(ω) and θ̂PI (ω) are rough azimuth estimates, be-
cause the ∆τ(θ) and ∆ε(θ) in Eq. (23) are defined with an
approximation model of human head. However, the azimuth
estimations based on Eq. (29) and Eq. (30) are computationally
efficient for the direct mapping between binaural cues and
azimuth, so they are only used to determine the correct phase
unwrapping factor.

To this end, we can obtain some rough azimuth estimates
using the ITD and IID computed from the dereverberated
signals (in Section II). The candidate estimate computed by
Eq. (30) is unique, while multiple solutions are resolved from
Eq. (29) due to different phase unwrapping factor p. Hence, in
order to make use of the accurate ITD information for sound
localization, the correct phase unwrapping factor p̂ need to be
determined first. It is solved by matching the azimuth estimates
from ITD and IID:

p̂ = argmin
p

|θ̂PT,p(ω)− θ̂PI (ω)|. (32)

Based on the correct phase unwrapping factor p̂ selected by
Eq. (32) and the measured ITD ∆Tp(ω), the unwrapped ITD
∆Tp̂(ω) are prepared for the following localization process.

V. SOUND SOURCE LOCALIZATION

To help illustrate the proposed localization algorithm, some
azimuth estimates based on ITD, IID and their combination are
presented in Fig. 5. In this figure, two-dimensional histograms
as functions of azimuth and frequency are used to describe
the results, where the color represents the normalized distance
of a candidate azimuth (i.e., the darker, the more likely).
We illustrate four different azimuthal cases, i.e., −30◦, 0◦,
30◦ and 65◦. The first row of panels is only based on ITDs
through Eq. (29). It can be seen that the ITD-based azimuth
estimation becomes more and more ambiguous with increasing
frequency. The second row of panels shows similar histograms
only based on IIDs through Eq. (30). It can be seen that
although there is no ambiguity for this case, it has a larger
standard deviation than the azimuth estimates based on ITD,
especially at low frequencies. It can be concluded that the
ITD-based estimates are more ambiguous at high frequencies
and IID-based localization has a larger standard deviation at
low frequencies.

Although both ITD and IID are functions of azimuth,
they can also be related to each other. A joint evaluation of
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Fig. 5. Histogram of azimuth estimates for four different azimuth angles, i.e.,
−30◦, 0◦, 30◦ and 65◦, (a)-(d), respectively. First row: based on ITD only.
Second row: based on IID only. Third row: based on the joint estimate of
ITD and IID. Bottom row: normalized marginal distance distributions of the
localized azimuths.

these quantities is proposed in [24] to improve the azimuth
estimation. The IID-based estimation is just used to correct
ITD extraction, and the final estimation is decided by the
corrected ITD. The third row of panels in Fig. 5 shows the
results based on the joint estimation of ITD and IID through
Eqs. (32, 29), and it is much better than the ITD-based or IID-
based case. As the definitions of ∆τ(θ) and ∆ε(θ) in Eq. (23)
are not absolutely accurate but computationally efficient, the
above rough azimuth estimates from ITD and IID are used
to determine the correct phase unwrapping factor. Since the
azimuth estimates from ITD and IID are complementary over
frequency, both of their estimates should be considered for
the final azimuth determination. These motivate us to adopt
the template matching to combine both ITD and IID for a
precise azimuth estimation.

Template matching is introduced to take raw estimates from
both ITD and IID into account for a precise azimuth estima-
tion, which is used to improve the localization accuracy of
the SSL system for noisy and reverberant environments. More
specifically, the normalized distances between the unwrapped
ITD and the averaged ITD templates are computed. Similarly,
the normalized distances between the measured IID and the
averaged IID templates are also computed. Then, the obtained
normalized distances from ITD and IID are combined over
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Fig. 6. Flowchart of the proposed method. The upper part is an offline process generating templates to train generalized parametric model. The lower online
localization estimates azimuth through reverberation weighting, generalized parametric mapping and template matching. Here, rectangle box denotes a value
and rounded rectangle box represents a function.

frequency for a precise azimuth estimation (similar thoughts
can also be found in [18], [25], etc).

In detail, the normalized distance between the unwrapped
ITD ∆Tp̂(ω) and the averaged ITD templates ∆T̄ T (θj , ω) for
each azimuth θj can be calculated by

DT (θj , ω) =
|∆Tp̂(ω)−∆T̄ T (θj , ω)|

max
θj

(|∆Tp̂(ω)−∆T̄ T (θj , ω)|)
. (33)

Similarly, the normalized distance between the measured IID
∆I(ω) and the averaged IID templates ∆ĪT (θj , ω) for each
azimuth θj is obtained by

DI(θj , ω) =
|∆I(ω)−∆ĪT (θj , ω)|

max
θj

(
|∆I(ω)−∆ĪT (θj , ω)|

) . (34)

Since ITD is robust at low frequencies and IID is reliable
at high frequencies, they are complementary to each other
for azimuth estimation. Therefore, the normalized distances of
ITD and IID are combined at each frequency to overcome the
unreliable estimates. Specifically, DT (θj , ω) and DI(θj , ω)
are multiplied and summed over frequency to obtain hybrid
normalized distances. In this way, the hybrid distances become
smaller at the ground-truth direction. This kind of combination
can sharpen the curve of hybrid distances at the ground-truth
azimuth (as shown in the fourth row of panels in Fig. 5),
such that the source direction is more recognizable. Finally,
the precise azimuth estimate θ̂ is found by minimizing the
hybrid distances:

θ̂ = argmin
θj

∑
ω
{DT (θj , ω) ·DI(θj , ω)}. (35)

In Fig. 5, the fourth row of panels shows the corresponding
distance distributions for the four different azimuths, it can be
seen that the correct estimation is achieved for all the cases.

The flowchart of our method is illustrated in Fig. V,
which includes two modules, i.e., offline training and online
localization. In the offline training process, the generalized
scaling factors and the averaged ITD and IID templates
are extracted from training data. With regard to the online
localization process, binaural signals are firstly processed by
reverberation weighting. The generalized parametric model

and template matching are then used to achieve and refine
azimuth estimation. The online localization process is briefly
summarized in Algorithm 1.

VI. EXPERIMENTS AND ANALYSES

This section evaluates the effectiveness of the proposed
method under complex acoustic conditions. Firstly, simulated
experimental scenario and setup are shown in Section VI-A.
Then, the evaluations of our method in simulated environments
are presented in Section VI-B. Finally, Section VI-C evaluates
the localization performance of our method in a realistic
indoor environment.

A. Experimental setup

The CIPIC HRTF database [32] used in this paper is
collected by the U. C. Davis CIPIC Interface Laboratory. It
contains HRTFs for 45 different subjects, which include 27
males, 16 females, and KEMAR with large and small pinnae.
The HRTFs are measured at source-to-sensors distance of 1 m
with 25 different azimuths and 50 different elevations, such
that 1250 directions for each subject are considered in total.

Fig. 7. Simulation scene and parameters of experimental environments. The
average radius of heads in the CIPIC datasets is 7 cm approximately.

An enclosure of (10 m × 6 m × 3 m) is simulated using
the Roomsim toolbox [42] based on image method [43]. The
head is placed at the position (6, 2, 1.5) m. A Chinese pop
musical signal sampled at 44.1 kHz, which consists of human
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Algorithm 1: Binaural sound source localization
Input: yi(n), i = l, r
Output: Estimated azimuth θ̂

1 Templates: ITDs, IIDs, scaling factors
2 Apply STFT to yi(n) using Hamming window;
3 Compute the late reverberation weighting gains GL

i (κ, ω)
based on spectral subtraction rule;

4 Suppress the late reverberation
Ỹi(κ, ω) = Yi(κ, ω) ·GL

i (κ, ω);
5 Compute the early reverberation weighting gains

GE
i (κ, ω) based on the coherence of binaural signals ;

6 Suppress the early reverberation
Ŷi(κ, ω) = Ỹi(κ, ω) ·GE

i (κ, ω);
7 Extract binaural cues ∆Tp(ω) and ∆I(ω) from the

dereverberated binaural signals using Eq. (17), Eq. (18);
8 Estimate crude ITD-based azimuth θ̂PT,p:

θ̂PT,p(ω) = f−1
(

c
γαg(ω)∆Tp(ω)

)
;

9 Compute crude IID-based azimuth θ̂PI :
θ̂PI (ω) = arcsin∆I(ω)

βg(ω) ;
10 Determine the correct phase unwrapping factor p̂:

p̂ = argmin
p

|θ̂PT,p(ω)− θ̂PI (ω)| ;

11 Determine ∆Tp̂(ω) by unwrapping the online measured
ITD ∆Tp(ω) with p̂;

12 Compute the normalized distance based on the

unwrapped ITD: DT (θj , ω) =
|∆Tp̂(ω)−∆T̄T (θj ,ω)|

max
θj

(|∆Tp̂(ω)−∆T̄T (θj ,ω)|) ;

13 Compute the normalized distance based on the measured

IID: DI(θj , ω) =
|∆I(ω)−∆ĪT (θj ,ω)|

max
θj

(|∆I(ω)−∆ĪT (θj ,ω)|)
;

14 Precise azimuth estimation:
θ̂ = argmin

θj

∑
ω {DT (θj , ω) ·DI(θj , ω)};

15 return θ̂

voice and instrumental activities that always exist, is utilized
as the sound source signal, and it has no silence. Since the
major focus of this paper is azimuth estimation, the elevation
angle is set to 0 degree and the sound source is positioned at
variable horizontal angles with respect to the head. The subject
#21 (i.e., Kemar head) in the CIPIC HRTF database is used for
evaluation. The simulation scene and detailed parameters are
illustrated in Fig. 7. The source can be seen in the far field with
source-to-sensors distance of 1 m. The additive diffuse noise
is white Gaussian noise. The binaural signals are enframed
by a Hamming window of 256 samples with a frame shift
of 128 samples. Note that the values of the online extracted
ITD and IID are limited in the ranges [-1, 1] ms and [-40,
40] dB, respectively. If the extracted ITD or IID is beyond
these ranges, the current binaural cues are regarded as invalid
and disregarded.

B. Experiments in simulated environments

1) Evaluation of reverberation weighting: First of all, we
investigate the effect of the reverberation weighting on sound
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localization performance. In this part, different reverberation
times varying from 0 s to 0.6 s at an interval of 0.1 s are
considered for the simulated environment.

The azimuth estimation results with and without reverbe-
ration weighting at different reverberation times are shown in
Fig. 8. The results are averaged over 100 trails with a tolerance
of 0◦. It can be seen that the reverberation weighting improves
localization accuracy, particularly in strong reverberant envi-
ronments, e.g., the cases when TR ≥ 0.3 s. Nevertheless, the
result without reverberation weighting is a little better when
TR = 0 s, because reverberation weighting would bring a
little distortion to the original binaural signals. More detailed
localization results can be found in Fig. 9, where the sound
source is fixed at θ = 0◦. The six subplots illustrate the
results at different reverberation times. It can be observed that
though the reverberation time increases to 0.6 s, the proposed
method achieves an accuracy of nearly 40%, and the false
results are judged as the directions around 0◦. Therefore, the
reverberation weighting is helpful to sound localization in
reverberant environments.
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TABLE I
THE LOCALIZATION ACCURACIES OF AZIMUTH θ AT DIFFERENT REVERBERATION TIMES

Reverberation time 0.1 s 0.3 s 0.5 s
Tolerance 0◦ 5◦ 10◦ 0◦ 5◦ 10◦ 0◦ 5◦ 10◦

our method 91.03% 93.41% 97.26% 46.84% 54.16% 71.04% 29.47% 37.26% 46.86%
Parisi et al. [30] 85.38% 90.36% 95.39% 38.93% 46.24% 59.34% 22.26% 27.85% 38.59%

Raspaud et al. [24] 83.27% 86.51% 90.12% 29.54% 35.65% 42.19% 15.73% 19.31% 25.87%
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Fig. 10. Localization accuracies of different azimuths θ = (a) −15◦; (b) −80◦; (c) 80◦ at different reverberation times where tolerance = 0◦.

2) Azimuth estimation in reverberant environments: In this
part, several related methods are compared with the proposed
method under different reverberant conditions. The compa-
rison methods include the works proposed by Raspaud et
al. [24] and Parisi et al. [30], because they have similar
localization framework or reverberation-preprocessing stage
with the proposed method. Table I compares their azimuth
estimation results in terms of localization tolerance and rever-
beration time. It can be seen that the proposed method achieves
higher localization accuracies than the other two methods. For
example, the accuracy of our method is improved by about
10% and reaches 71.04% for the case when TR = 0.3 s with
10◦ tolerance. With regard to the localization resolution, it
should be clarified that the tolerance 0◦ does not mean without
error, but error < 5◦ instead, and the tolerance 5◦ indicates
error < 10◦. The resolution is determined by the offline
HRTFs measurement, i.e., how to divide the localization space
of interest.

Generally, Raspaud’s method is more effective in anechoic
environments, but its performance degrades rapidly when
reverberation time increases. In fact, Raspaud’s method obtains
the worst results in the environments with strong reverberation,
because the extraction of ITD and IID by Raspaud’s method is
deteriorated by the influence of reverberation. Parisi’s method
performs somewhat better than Raspaud’s via using cepstral
prefiltering. In Parisi’s method, the cepstral prefiltering is used
to dereverberate the binaural audio for valid time difference.
Compared to Parisi’s method, the proposed method achieves
better results at various reverberation times. The reason is that
the reverberation weighting can achieve better dereverberation
than cepstral prefiltering, so that the binaural cues are better
preserved. In addition, the template matching can integrate the
robust azimuth estimations of ITD and IID across frequency
bands. Moreover, the generalized parametric mapping impro-
ves the reliability of the azimuth estimates based on ITD and

IID through finding the generalized scaling factors for non-
specified subjects.

Some more detailed comparisons are shown in Fig. 10,
where three azimuths (i.e., −15◦,−80◦, 80◦) are separately
estimated by the above three methods at different reverbe-
ration times. It can be seen that our method outperforms
the others, especially under strong reverberant conditions.
Since the extraction of binaural cues is influenced by the
reverberation, Raspaud’s method becomes ineffective in the
reverberant environments. With the generalized parametric
mapping and template matching, our method can obtain more
precise joint estimates of ITD and IID, thus our method is
more robust and generalized than Parisi’s approach.

TABLE II
THE LOCALIZATION ACCURACY VERSUS NORMALIZED TIME

CONSUMPTION OF LOCALIZATION PROCESS

our method Parisi et al. [30] Raspaud et al. [24]
Accuracy 68.53% 64.02% 63.86%

Norm.-time 1.0 0.93 0.91

In order to compare the computational complexities of the
localization processes in different methods, we measured the
time consumption of Matlab implementations of the three
algorithms that are compared in this section. Table II compares
the localization accuracy with 0◦ tolerance versus the time
consumption. The execution times are normalized by that
of the proposed method, such that the proposed method is
regarded as the benchmark. The results are obtained under
the condition with a reverberation time of 0.2 s, and same
binaural cues extracted from the binaural signals preprocessed
by reverberation weighting, are given to localization processes
of the three comparison methods. From Table II, the time
consumption of the proposed method is slightly higher than
methods in [24] and [30] because of the azimuth refinement
through template matching, but the localization performance
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TABLE III
THE LOCALIZATION ACCURACIES OF AZIMUTH θ AT DIFFERENT SNRS

SNR Environment without noise 20 dB 10 dB
Tolerance 0◦ 5◦ 10◦ 0◦ 5◦ 10◦ 0◦ 5◦ 10◦

our method 93.16% 98.03% 99.85% 89.03% 97.45% 99.31% 69.63% 85.12% 92.13%
IMF [44] 92.16% 96.52% 98.56% 86.49% 96.54% 97.26% 68.58% 81.94% 90.65%

Online Calibration [19] 89.12% 96.76% 99.24% 84.26% 95.92% 98.24% 58.94% 67.52% 75.23%
Hierarchical System [18] 93.90% 98.70% 99.87% 85.64% 97.21% 98.72% 63.64% 79.50% 84.13%
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Fig. 11. Localization accuracies of our method compared with several popular
methods at different SNRs with 5◦ tolerance.

of our method is better through combing the robust estimations
of ITD and IID. Due to the fact that the localization processes
in [24] and [30] are similar, there is small difference among
their time consumption.

3) Azimuth estimation in noisy environments: Some com-
parisons with several state-of-the-art methods, including a
classical Hierarchical System [18], Online Calibration [19]
and Interaural Matching Filter (IMF) [44], are carried out in
the noisy environments without reverberation, i.e., TR = 0
s. In fact, [18] and [19] belong to the hierarchical methods
using different binaural cues. In [44], the IMF was proposed
as a new localization cue, which contains somewhat relative
transfer function information, to achieve a real-time sound
localization in noisy environments. All these methods use
both ITD and IID for sound localization, and the two-step
localization process in our method can also be viewed as a
two-stage hierarchical localization strategy. That is why they
are involved for comparison in this part.

Table III shows the localization results at different SNRs.
It can be seen that our method obtains the best performance
when SNR decreases. In detail, the performance among these
four algorithms has small gaps in the environment without
noise. In this case, the performances of all the methods exceed
89% with a tolerance of 0◦, and over 99% with a tolerance
of 10◦, that means, they have somehow satisfied the accuracy
requirement in the quiet environments. The Online Calibration
gets the worst performance, because it only takes the raw ITDs
and IIDs as localization cues, while the other approaches still
use other additional cues, e.g., IMF, spectral differential cues.
IMF achieves a comparable performance with our method in
most cases, but its performance would be worse in reverberant
environments. For the Hierarchical System, ITD, IID and
spectral cues are involved in three layers, respectively, it thus
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Fig. 12. Localization accuracies of different sound activities with different
tolerances at SNR = 20 dB.

works better than the Online Calibration. However, in the mild
noisy environments (e.g., SNR = 10/20 dB), the proposed
method achieves favourable results compared with others. This
superiority mainly owes to two aspects: 1) the generalized
parametric mapping with generalized scaling factors efficiently
determines the correct phase unwrapping factor to provide an
unwrapped ITD for the subsequent template matching; 2) the
usage of template matching with the averaged ITD and IID
templates can effectively combine the robust estimates from
ITD and IID at different frequency bands. Since ITD and
IID are separately more robust for low and high frequency
bands according to the Duplex theory [10], template matching
helps to provide a more robust localization performance under
the adverse conditions. Therefore, the generalized parametric
mapping and the template matching are effective and reliable
for a specific subject in the training set, which enables the
proposed approach to have better consistency and robustness
in a variable environment.

More detailed localization accuracies of the four algorithms
at different SNRs are illustrated in Fig. 11 where tolerance =
5◦. The proposed method performs with obvious superiorities
under these noisy conditions. For high SNRs, there are small
gaps among the four methods. For low SNRs, our method and
IMF achieve comparable performances, which are much better
than the other two methods. In the strong noisy environments
(e.g., SNR < 5dB), the performances of the Hierarchical
System and Online Calibration degrade rapidly. In these cases,
they cannot calculate the correct ITD, because it is difficult
for the classical GCC-PHAT [7] to extract the notable spectral
peak that marks the correct time delays.

4) Sound Activity Localization: In order to evaluate the
robustness of our method to different types of sound sources,
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(a) (b)

Fig. 13. Sound localization in realistic environment. (a) Experimental scene
of realistic environment. (b) The dummy head used for binaural recording.

we test five different sound activities under the noisy condition
where SNR = 20 dB. These activities include clapping hands,
knocking on a door, telephone ringing, screaming and glass
smashing, which are common in people’s daily life. These
sound activities are recorded in an office environment, which
are convolved with the simulated BRIRs to generate binaural
signals. The localization results of these activities are shown
in Fig. 12, we can see that they are well localized in the
horizontal direction. For instance, when the tolerance is 0◦,
the azimuth estimation accuracy is higher than 85%. Note
that the localization performance of screaming is slightly
worse than the other four. This phenomenon is caused by
the sounding property that the intensity of screaming mainly
converges to the high frequency bands, which makes harder for
ITD estimation. As stated before, ITD is more ambiguous in
the high frequency bands because of the phase unwrapping.
Fortunately, these localization results are good enough and
acceptable for the practical applications, which also verifies the
robustness and adaptability of the proposed method to different
types of sound sources.

C. Localization in realistic environment

In order to testify the proposed method in a more realistic
setting, the KU1001 dummy head is used to collect the binaural
signals. The dummy head is positioned in an office as a typical
indoor environment, and its setup is shown in Fig. 13(a). The
Fig. 13(b) shows the structure of the dummy head, which is a
replication of human head, equipped with microphones within
the “ears”. The sound signal is collected by the two “ears”
and transferred to a computer through an ICON2 mobile sound
card with a sampling frequency of 44.1 kHz. The experimental
office room is of dimensions (6 m × 5 m × 3 m). Since the
walls and roof of the room are made of painted concrete and
the floor is resilient, the reverberation time of this room is

1https://www.neumann.com/?lang=en&id=current microphones&cid=
ku100 description

2http://www.iconproaudio.com

TABLE IV
THE AVERAGE LOCALIZATION ACCURACIES OF AZIMUTH θ COMPARED

WITH SEVERAL POPULAR METHODS IN REALISTIC ENVIRONMENT

Tolerance 0◦ 5◦ 10◦

our method 84.60% 87.41% 89.36%
Parisi et al. [30] 81.43% 83.58% 87.26%

Raspaud et al. [24] 76.28% 77.57% 81.93%
IMF [44] 80.13% 82.26% 85.65%

Online Calibration [19] 71.29% 74.52% 75.34%
Hierarchical System [18] 77.21% 79.67% 83.49%

40 30 20 10 0 10 20 30 40
80

85

90

95

100

Azimuth [degree]

L
o

c
a

li
z
a

it
io

n
 a

c
c

u
ra

c
y

 [
%

]

0
°
 tolerance

5
°
 tolerance

10
°
 tolerance

20
°
 tolerance

Fig. 14. The average localization accuracies of our method for different
tolerances and directions in realistic environments.

around 0.3 s. The SNR of this environment is about 20 dB. The
KU100 dummy head is placed at the center of the room. The
distance between sound sources and the head is set to 1 m. A
sound source moves from -40◦ to 40◦ at an interval of 10◦. For
each direction, 20 groups of audio data are recorded, which are
from the speech data of 10 males and 10 females in the TIMIT
database [45]. The average length of these audios is 2 s. As
the focus of this work is azimuth estimation, both the heights
of microphones and sound sources are set to 1.5 m, namely
they are on the same horizontal plane. Since the distance
between two ears of this dummy head is 18 cm, which is
similar to the average distance between the two ears in the
CIPIC HRTF database, the previous models and templates are
directly used here.

Fig. 14 shows the average accuracies of azimuth estimation
using our method with different localization tolerances. It can
be seen that the localization accuracy reaches over 85% with
5◦ tolerance, which benefits from the proposed generalized
parametric mapping and the joint estimation of ITD and IID
improved by the template matching. Besides, our method
obtains higher accuracies for the directions in front of the
head, while its performance declines with increasing azimuth
(absolute value). This phenomenon is due to that the shield
of human head makes the ITD estimation with larger error at
lateral directions.

The performances of different methods in the realistic
indoor environment are compared in Table IV. Based on their
models and templates under the above simulated condition, the
localization accuracies with different tolerances are obtained.
It can be seen that when both noise and reverberation are pre-
sent, our method performs much better with different toleran-
ces as compared to other approaches. Using the reverberation-
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Fig. 15. The average localization accuracies of different activities in different
directions with 5◦ tolerance.

preprocessing part, the method in [30] obtains second-best
performance, which is much better than [24]. Both [24] and
[30] only adopt ITD for final sound localization, so they work
worse than the proposed method. The performance of IMF
is slightly lower than [30], because reverberation disturbs the
extraction of IMF. Since spectral cues are used in Hierarchical
System, it works better than Online Calibration. It can be
concluded that the methods with reverberation-preprocessing
part work better than those without it, which also verifies the
effectiveness of reverberation weighting. Besides, the effective
combination of robust estimates from ITD and IID makes our
method more reliable against noise and reverberation.

In order to testify the adaptability of our method in the
natural indoor environments, the aforementioned five different
sound activities emitted by a loudspeaker, are recorded through
the KU100 artificial head with the identical setup. Their recor-
ded binaural audio are used to evaluate the proposed method.
The average localization results for these sound activities are
shown in Fig. 15. It shows that the accuracy of knocking is
best, and that of screaming is worst, which is consistent to
the results presented in Section VI-B4. Therefore, these real
experiments reveal that the generalized parametric mapping
and the template matching are effective and reliable for sound
localization in a realistic environment.

VII. CONCLUSIONS AND FUTURE WORKS

In order to achieve a reliable azimuth localization in the
realistic environments including noise and reverberation, we
proposed a novel sound source localization method based on
reverberation weighting and generalized parametric mapping
in a binaural context. The reverberation weighting effecti-
vely suppresses the influence from the indoor reverberation,
and precisely preserves interaural time/intensity difference
for the following sound localization. Binaural cues, namely
frequency-domain ITD and IID, are extracted from the dere-
verberated signals. The azimuth estimation is refined by com-
bining them together through a two-step localization process
with the generalized parametric model and template matching.

The proposed generalized parametric mapping optimizes
the nonlinear mapping relationships between ITD/IID and
azimuth, which builds a generalized parametric model through

finding the generalized scaling factors by solving a least squa-
res problem. The generalized parametric model is computati-
onally efficient and improves the adaptability of the proposed
method to different artificial heads. The two-step localization
process effectively refines azimuth estimation based on the
generalized parametric model and template matching. Through
achieving rough azimuth estimation based on the generalized
parametric model, the correct phase unwrapping factor is
quickly determined to unwrap ITD. The template matching
effectively combines the robust raw estimates from the un-
wrapped ITD and the online measured IID across frequency to
achieve a precise azimuth estimation. Besides, it also indicates
the dependence between ITD and IID. Experiments in both
simulated and realistic environments demonstrate the effective-
ness and adaptability of our method for various types of sound
sources, environments as well as artificial heads. Since the
proposed method only considers the azimuth information of a
single sound source, the future work may focus on elevation
estimation and multi-sound source localization.
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