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Abstract

To accurately match a finite-impulse response (FIR) graph filter to a desired re-
sponse, high filter orders are generally required leading to a high implementation
cost. Autoregressive moving average (ARMA) graph filters can alleviate this
problem but their design is more challenging. In this paper, we focus on ARMA
graph filter design for a known graph. The fundamental aim of our ARMA de-
sign is to create a good match to the desired response but with less coefficients
than a FIR filter. Our design methods are inspired by Prony’s method but using
proper modifications to fit the design to the graph context. Compared with FIR
graph filters, our ARMA graph filters show better results for the same number
of coefficients.

1 Introduction

Graph signal processing (GSP) extends classical digital signal processing to signals con-
nected with the topology of a graph [1], [2]. More and more concepts and tools from
classical signal processing are transferred to the field of GSP, including the uncertainty
principle [3], graph wavelets [4], graph signal classification [5], graph signal recovery
[6],[7], and graph signal sampling [8].

Depending on the definition of the graph frequency and the graph Fourier transform
(GFT) [1], [2], many different kinds of graph filters have been designed as linear opera-
tors acting upon a graph signal. Similar to traditional digital signal processing, graph
filters amplify or attenuate the graph signal at different graph frequencies. Graph filters
have been used for many signal processing applications [9]. Traditionally, graph filters
are expressed as a polynomial in the so-called graph shift matrix (e.g., the adjacency
matrix, the graph Laplacian, or any of their modifications), resulting in a so-called
finite-impulse response (FIR) graph filter [10], [12]. However, to accurately match
some given filter specifications, FIR filters require high filter orders leading to a high
implementation cost.

An alternative filter approach is the so-called infinite impulse response (IIR) graph
filter [13]. Compared with FIR graph filters, characterized by a polynomial frequency
response, IIR graph filters have a rational polynomial response, which brings more
flexibility to their design. As such, IIR graph filters have the potential to fit compli-
cated filter specifications with small degrees. As a particular instance of IIR graph
filters, autoregressive moving average (ARMA) graph filters have been introduced in
[14] [15]. ARMA graph filters were introduced as universal filters that do not depend
on the particular topology of the graph, although in this paper we will design them
for a particular graph in mind. Note that ARMA graph filters are capable of not only
shaping the graph signal in the graph frequency domain, but also in the regular tempo-
ral frequency domain, in case the graph signal is time varying [15]. And although our



proposed designs can be used in that context, we will only focus on the graph domain
in this paper.

Although ARMA graph filters show great promises, their design is challenging. This
paper tries to tackle this issue for known graphs, which means that we only have to
match the ARMA graph filter to the desired response in a set of known frequencies. We
will present two design procedures, both inspired by Prony’s method. The first design
transforms the problem from the graph frequency domain to the coefficient domain (as
done in the classical Prony’s method). However, in contrast to the regular time do-
main, in the graph domain, this transformation is generally not optimal and does not
lead to a good solution. Our second design shows that staying in the graph frequency
domain preserves the optimality of the solution and also simplifies the problem. We
conclude the paper by showing some simulation results for our two ARMA graph filter
design procedures based on a known graph. They illustrate that in some cases, the
FIR filter can be outperformed for the same number of filter coefficients.

2 FIR Graph Filter

Consider an undirected graph G = (V,E), where V is a set of N nodes and E is the set
of edges. We indicate with M the symmetric graph shift matrix, which could be the
adjacency matrix, the graph Laplacian or any of their modifications. An eigenvalue
decomposition of M leads to M = UΛUT , where UT is the graph Fourier transform
(GFT) matrix and Λ is a diagonal matrix with on the diagonal, the graph frequencies
λn.

A graph filter G is a linear operator that acts upon a graph signal x, leading to the
output y = Gx. A finite impulse response (FIR) graph filter of order K, or FIR(K)
in short, can be expressed as a K-th order polynomial in M:

G = g(M) =
∑K

k=0
gkM

k, (1)

where gk are the FIR filter coefficients. This means that G is diagonizable by the GFT
matrix UT , i.e., UTGU = g(Λ), and the filter indeed reshapes the spectrum of the
input:

ŷ = UTy = UTGUUTx = g(Λ)x̂,

where x̂ and ŷ represent that GFT of the input and output signal, respectively. The
frequency response of the filter at frequency λn, n = 1, 2, . . . , N , is thus given by

ĝn = g(λn) =
K∑
k=0

gkλ
k
n. (2)

Define now the N × (K + 1) Vandermonde matrix ΨK+1 as the N × (K + 1) matrix
with entries [Ψ]n,k = λk−1n . Then stacking the filter coefficients gk in the (K + 1) × 1
vector g and the frequency response ĝn in the N × 1 vector ĝ, we have

ĝ = ΨK+1g. (3)

From [11] we know that if the graph is known and if the graph frequencies are distinct,
the filter coefficients can be computed as

g = Ψ†K+1ĝ, (4)



where A† is the pseudo-inverse of the matrix A.

It is well known (and clear from (3) and (4)) that for a known graph of N nodes
with N distinct graph frequencies, a finite impulse response (FIR) graph filter of order
K = N − 1 can exactly represent any desired response. In that case, the Vander-
monde matrix ΨK+1 = ΨN is a square invertible matrix. However, for large (i.e., more
than 100 nodes) graphs, which are regularly encountered in real applications (e.g., a
temperature prediction system containing hundreds of cities), the computation of the
FIR filter coefficients could be numerically infeasible because of the ill-conditioning of
the related system matrix ΨN . This issue is usually resolved by reducing the order of
the FIR filter below the number of nodes of the graph (K < N − 1), at the cost of a
reduced accuracy. But for large graphs, this still leads to large FIR filter orders which
are costly to implement. In this work, we introduce another approach to resolve these
problems of FIR filters.

3 ARMA Graph Filter

In order to achieve a better accuracy with a smaller order filter, we apply an autore-
gressive moving average (ARMA) filter to the signal living on the known graph G.
Note that for an ARMA filter, it has been shown [14] that working with a translated
version of the normalized graph Laplacian leads to the best stability conditions, but
we will make abstraction of this here and simply work with a general shift matrix M.
From now on, we also assume that all graph frequencies λn are distinct.

For an ARMA(P ,Q) graph filter, the graph frequency response at frequency λn, n =
1, 2, . . . , N , can be written as

ĝn = g(λn) =

∑Q
q=0 bqλ

q
n

1 +
∑P

p=1 apλ
p
n

. (5)

For future use, we also define a = [1, a1, . . . , ap]
T and b = [b0, b1, . . . , bq]

T as the
ARMA filter coefficients. Note that because the graph and thus the graph frequencies
are known, we can always write ĝn for all n = 1, 2, . . . , N as an (N − 1)-th order
polynomial in λn with fixed coefficients:

ĝn =
∑N−1

k=0
gkλ

k
n, (6)

or in other words, the ARMA(P ,Q) graph filter can always be written as an FIR(N−1)
graph filter if the graph is known. As before, the FIR filter coefficients gk can be stacked
in the N×1 vector g and the frequency response ĝn in the N×1 vector ĝ. The relation
between ĝ and g is then given by ĝ = ΨNg, where ΨN is defined as before but with
K replaced by N − 1.

Now assume that we are given a prescribed frequency response ĥn, which can again be
related to a set of N FIR filter coefficients hk through

ĥn = h(λn) =
∑N−1

k=0
hkλ

k
n. (7)

As before, we respectively stack hk and ĥn into h and ĥ, which are related by ĥ = ΨNh.
The problem statement in this work is then to find the ARMA coefficients a and b,
resulting in a frequency response ĝ that best represents the desired frequency response
ĥ.



4 ARMA Filter Design

Optimally, we would try to minimize the error between ĝ, which is parameterized by
a and b, and ĥ, or in other words, we would try to solve

min
a,b

∑N

n=1

∣∣∣∣∣ĥn −
∑Q

q=0 bqλ
q
n

1 +
∑P

p=1 apλ
p
n

∣∣∣∣∣
2

. (8)

But since that is a difficult problem to solve, as in Prony’s method, we choose to solve
the related (yet not equivalent) problem

min
a,b

∑N

n=1

∣∣∣ĥn (1 +
∑P

p=1
apλ

p
n

)
−
∑Q

q=0
bqλ

q
n

∣∣∣2 . (9)

Following a similar idea as in Prony’s method, we use (7) to expand ĥn in (9), resulting
in

min
a,b

∑N

n=1

∣∣∣ (∑N−1

k=0
hkλ

k
n

)(
1 +

∑P

p=1
apλ

p
n

)
−
∑Q

q=0
bqλ

q
n

∣∣∣2.
Using some simple algebra, this can be transformed into the following least squares
(LS) problem, written in matrix form as

min
a,b
‖ΨN+PHa−ΨQ+1b‖2, (10)

where H is the (N + P )× (P + 1) Toeplitz matrix expressed by

H =


h0 . . . 0
...

. . .
...

hN−1 . . . h0
...

. . .
...

0 . . . hN−1

 .

Note that the two terms in this LS problem are nothing more than the frequency
response of the concatenation of the filter h and a on the left and the frequency response
of the filter b on the right. More specifically, defining â = ΨP+1a and b̂ = ΨQ+1b as
the frequency responses of the graph filters a and b, we can also write (10) as

min
a,b
‖ĥ ◦ â− b̂‖2, (11)

where ◦ represents the element-wise Hadamard product.

Again, following Prony’s approach, we now try to transform the problem (10) from
the frequency domain to the filter coefficient domain. This can be done by observing
that the matrices ΨN+P and ΨQ+1 can both be written as a function of the frequency
transformation matrix ΨN as

ΨN+P = ΨN [IN ,T], ΨQ+1 = ΨN

[
IQ+1

0(N−Q−1)×(Q+1)

]
,



where T is some N × P transformation matrix that can be computed from the first
equation since both ΨN and ΨN+P are known. So defining

H̄ = [IN ,T]H, b̄ =

[
IQ+1

0(N−Q−1)×(Q+1)

]
b =

[
b

0(N−Q−1)×1

]
,

we can rewrite (10) as
min
a,b
‖ΨNH̄a−ΨN b̄‖2, (12)

Multiplying both terms with Ψ−1N (note that this corresponds to a loss of optimality),
we finally transform the problem from the frequency domain to the filter coefficient
domain:

min
a,b
‖H̄a− b̄‖2. (13)

Since b̄ has N−Q−1 zeros at the bottom, we can use the bottom N−Q−1 equations
of (13) to solve for a. The vector b can then be estimated using the top Q+1 equations
of (13). Alternatively, we can use (12) (or (10)) after plugging in the estimate for a.

In the time domain, this works well since ΨN then simply is the discrete Fourier
transform (DFT) matrix, which is well-conditioned and even unitary up to a scale. In
the general graph domain, however, ΨN can be very badly conditioned, especially for
large graphs. So computing the desired filter coefficients hk (and thus the matrix H)
as well as the transformation matrix T, is numerically infeasible. Moreover, since ΨN

is generally far from a scaled unitary matrix, the problems (12) and (13) are far from
equivalent. Hence, we need to tackle this problem in a different way.

The basic idea is not to expand ĥn in (9), and to rewrite it in matrix form as

min
a,b
‖[ΨP+1 ◦ (ĥ⊗ 11×(P+1))]a−ΨQ+1b‖2, (14)

where ⊗ represents the Kronecker product. Then, instead of trying to move from the
frequency domain to the filter coefficient domain, in order to exploit the finite order of
b, we simply project out this term using the orthogonal projection matrix

P⊥ΨQ+1
= IN −ΨQ+1Ψ

†
Q+1, (15)

which is generally well-conditioned. Staying in the frequency domain not only pre-
serves the optimality of the LS problem, but also simplifies the solution procedure. By
multiplying the objective function in (14) with P⊥ΨQ+1

we obtain the equivalent problem

min
a
‖P⊥ΨQ+1

[ΨP+1 ◦ (ĥ⊗ 11×(P+1))]a‖2, (16)

which can be used to solve for a. The vector b can be estimated using (14) after
plugging in the estimate for a.

5 Numerical evaluation

Similar to [15], for our numerical simulations, we will adopt the translated normalized
Laplacian as the symmetric graph shift matrix M = I−Ln, where Ln is the normalized
graph Laplacian. Due to Sylvester’s matrix theorem, the eigenvalues of M which can
be seen as shifted graph frequencies are within (-1,1]. As shown in [15], such a choice



does not change the filtering and improves the stability region of the ARMA filters in
case they are implemented as in [14], [15].

The fundamental aim of our ARMA filter design is to create a good match to the
desired response, but with less coefficients than an FIR filter with a similar match or
to obtain a better match than an FIR filter with the same number of coefficients. For
small graphs (N=20), the Vandermonde matrix is well-conditioned. Thence, an FIR
filter with order N − 1 can perfectly match any desired response. And also FIR filters
with smaller orders work well in that case. In general, we observed that for small
graphs, an FIR filter generally outperforms an ARMA filter with the same number of
coefficients. However, for larger graphs, this is not always true. To test our ARMA
filter design methods, we generate two scenarios with connected graphs by randomly
placing (i) 30 nodes and (ii) 100 nodes in a squared area, where two nodes are neigh-
bors if and only if they are close enough to each other (we choose 20% of the maximum
distance as the condition for selecting neighbors). We test both design methods. The
first one is based on (13), whereas the second one is based on (16).
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Figure 1: ARMA filter design method (13) for a 30-node and 100-node graph.
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Figure 2: ARMA filter design (16) for a 30-node and 100-node graph.

In Figure 1, we adopt the first method and show a comparison between the ARMA
filter and FIR filter for the same number of coefficients. For a graph with 30 nodes,



an FIR filter (28) is applied for the first step. We choose the order of the FIR filter
close to the number of nodes which gives a good performance for this graph. The
ARMA filter design starts by fixing a specific order P � N and then searching for
the Q that leads to the best fit. Only the number of filter orders Q smaller than
K − P need to be investigated. The MSE between the desired response and ARMA
filter response is used as evaluation index. Given the initial condition P = 3, the best
performance comes from ARMA (3, 16). For this graph with 30 nodes, the ARMA
filter clearly outperforms the FIR filter. The performance comparison of the ARMA
filter with the FIR filter for larger graphs (100 nodes) depends on the selection of P
and Q. Even though the ARMA filter also seems to outperform the FIR filter for 100
nodes, the ARMA filter shows errors. This is due to the fact that the first method
loses optimality when we go from the frequency domain to the filter coefficient domain.

In Figure 2, we focus on the second design method (i.e., (16)), which is appropri-
ate for graphs of any size. We apply our second method on the same graphs as before.
As for the first method, we pick an order P � N and search for Q. Then we com-
pare the resulting ARMA design with a FIR filter of order P + Q. For the graph
with 30 nodes, the ARMA filter almost matches perfectly. For the larger graph of 100
nodes, the performance of the ARMA filter only shows a mismatch around the cutoff
frequency. Clearly, this ARMA filter design shows a better performance than the FIR
filter design with the same number of coefficients.

The two methods only seem to make sense here if Q is larger than P . However, the
stability of the ARMA filter (for an implementation according to [14], [15]) depends on
the initial P and the construction of the graph. For the same graph, when we change
the order P , the best performing ARMA filter may lose stability. Also, for different
graphs and with the same denominator order P the stability is not guaranteed.

6 Conclusion

In this work, we have considered the design of ARMA graph filters when the graph
structure is known. We have seen that Prony’s method cannot be directly applied
but needs some proper modifications in the graph context. The proposed ARMA
filter design outperforms a same-order FIR filter in large graphs with a relatively small
number of filter coefficients. Even though in different scenarios the designed filter leads
to stable implementations according to [14], [15], stability is not guaranteed. Future
work will be based on stable ARMA filter design.
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