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Abstract—LOFAR is a low-frequency radio astronomical array
currently under development in The Netherlands. It is designed
to produce synthesis images of the most distant celestial objects
yet observed. Due to high redshift levels, observations must be at
unusually low frequencies (30–240 MHz), over large apertures
(100 km), using thousands of antennas. At these frequencies,
Earth’s ionosphere acts as a random refractive sheet which over
the large aperture induces source direction dependent gain and
phase errors that must be estimated and calibrated out. Current
radio astronomy “self-calibration” algorithms do not address di-
rection dependence and will not work in the LOFAR environment.
This paper presents a formal study of the parameter estimation
problem for LOFAR calibration. A data model is proposed, and a
Cramer–Rao lower bound (CRB) analysis is developed with a new
general formulation to easily incorporate a variety of constraining
signal models. It is shown that although the unconstrained di-
rection dependent calibration problem is ambiguous, physically
justifiable constraints can be applied in LOFAR to yield viable
solutions. Use of a “compact core” of closely spaced array elements
as part of the larger array is shown to significantly improve full
array direction dependent calibration performance. Candidate
algorithms are proposed and compared to the CRB.

Index Terms—Array calibration, Cramér–Rao bound (CRB),
radio astronomy.
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Subband index, bin centered at Hz,
.

Short-term integration (STI) time index, bin
centered at s. .
th column of a matrix

Arbitrary size and identity matrices,
respectively.

selection matrix formed
by deleting columns specified in from .
Arbitrary and matrix of zeros,
respectively.
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vector of ones.
Expected value.

Real and imaginary parts, respectively.

} th element of a matrix.

An estimated quantity.

Transpose and Hermitian transpose,
respectively.

Complex conjugate.

Kronecker matrix product, Khatri–Rao
(column-wise Kronecker) product.
Extract diagonal, or build diagonal matrix.
Column scan a matrix to form a vector.

Element-wise absolute value and phase angle.
Frobenius matrix norm.

I. INTRODUCTION

I N this paper, we study the calibration of a large distributed
sensor array. The problem can be phrased as direction-de-

pendent calibration with fewer reference sources than array el-
ements combined with hierarchical beamforming such that not
all antenna cross correlations are available at a central location.
The reference sources are signals of opportunity that are all si-
multaneously present. Without further assumptions, the array is
not calibratable. As an introduction, we first discuss the instru-
ment and the calibration problem, and then relate this to the ex-
isting literature.

A. The LOFAR Radio Telescope

LOFAR is a low frequency radio astronomical array currently
under development in The Netherlands by a consortium led by
ASTRON. It is designed to produce synthesis images of the
most distant (and thus oldest) celestial objects yet observed. Due
to high redshift levels, observations must be at unusually low
frequencies (30–240 MHz). The current LOFAR design calls for
an instrument consisting of nearly 13 000 relatively wide field of
view small antennas mounted at ground level. These are grouped
into about 72 stations spread in spirals over an area with a diam-
eter of between 100–360 km (depending on funding), as well as
in a more densely populated central core. A possible geometry
is illustrated in Fig. 1. Each station will have 96 lowband an-
tennas (30–90 MHz, dual-polarized dipoles) and 96 highband
“antennas” (110–240 MHz), each consisting of a 16-element
dual-polarized beamformed array. Our analysis will concentrate
on the lowband system.

1053-587X/$25.00 © 2007 IEEE
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Fig. 1. Possible geometry for the full LOFAR array (left) and the compact cen-
tral core (right). Each circle or star represents a LOFAR station which acts as a
single beamformed directional sensor element in the full array. Initial plans are
for five exponentially spaced spiral arms of eight exterior stations each and a
compact core of 32 stations.

The 96 antennas in each remote station are used as a phased
array and are combined in such a way that a beam is formed
into a desired look direction. The resulting output of each beam-
former is similar to the output of a telescope dish pointing into
the same direction, but is obtained without the use of any moving
parts. The beamformer outputs of each station are transported
over optical fibers to a central location, where (similar to ex-
isting synthesis telescopes [3]–[6]) they are correlated to the
outputs of the other stations, and processed into an image.

The design of LOFAR has several challenges, e.g., the sheer
computational complexity, and the requirement to achieve a
dynamic range of over 70 dB between the strongest and the
weakest sources in the final images. The problem which we
consider here is the calibration. As a complete problem, it is yet
unsolved, and has two levels: a station level and a central (full
array) level. This paper focuses primarily on full array calibra-
tion, and we study the accuracy of the calibration parameters
that can be achieved under various model assumptions.1

B. LOFAR Calibration

At the station level, each station is expected to form a well-de-
fined beam into a desired direction–this requires accurate es-
timation of the complex gains of each antenna element in the
station array. Available for this is the observed covariance ma-
trix at each station, based on 1-s observations, and a table of
the brightest sources in the sky, with known powers and lo-
cations. It is further assumed that the antenna elements have
known locations and orientations, and “known” antenna patterns
(as predicted by EM modeling). We estimate that each complex
gain will have an accuracy of only 25 dB (relative to estima-
tion error) [7], and this limits the knowledge and accuracy of
the beamshape, in particular at the side lobes.

At the central level, calibration needs to further determine
the actual beamshape of each station, and take into account
the distortions introduced by the propagation through the iono-
sphere. The ionosphere is the outer layer of Earth’s atmosphere.
Radiation from the sun partly ionizes the atmosphere and the

1We do not study the accuracy of these models and the resulting estimation
bias, nor the effect of the variance of the estimates on the final image. These are
open problems.

Fig. 2. The problem of LOFAR calibration through ionospheric refraction. Un-
known complex gains through the ionosphere are different for each source at
each station (after [8]).

resulting free electrons slow down electromagnetic waves prop-
agating through the ionosphere. This additional propagation
delay is proportional to the wavelength squared, hence, the
corresponding phase shift is proportional to the wavelength.
At lower frequencies, the effects of the ionosphere are more
severe. Turbulence in the ionosphere causes the electron density
to fluctuate both over time (order 10 s) and space (order 10 km).

Fig. 2 illustrates how ionospheric phase and gain perturba-
tions affect LOFAR calibration. The ionospheric irregularity
scale is smaller than both the full array aperture and individual
station beam field of views, so every station and source direc-
tion requires a unique calibration solution. As with station cali-
bration, bright point-like sky sources with known positions are
used as “calibrator” references for ionospheric phase and gain
estimation.

The initial station calibration should ensure that, within the
main lobe, the beamformer response of each station is suffi-
ciently well known. Ionospheric variation across the field of
view is gradual enough to permit a low order spatial smoothing
model to fit observed perturbations to the known calibrator
levels. The known beam response can aid direction dependent
calibration and can be factored out so ionospheric gain and
phase terms can be isolated.

However, in most observing scenarios there are multiple cali-
brators outside the mainlobe which are brighter than any source
in the beam mainlobe, even after accounting for beamformer
attenuation. Furthermore, sidelobe gain and phase responses
vary rapidly with arrival angle and depend strongly on elec-
tronic instrument calibration variations. Sidelobe response to
calibrators must thus be treated as an unknown random quantity
which contributes to the direction dependent effect. The array
must be accurately calibrated to these bright sources before
their corrupting signals can be removed from the imaging
array covariance data. This means that a LOFAR calibration
algorithm must be capable of joint estimation of independent
complex gain terms for every array element (station) and
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calibrator source combination. Moreover, at least for the first
stages of calibration (used to remove bright sidelobe sources)
this must be accomplished without the luxury of a known beam
response. The algorithms and analysis presented here address
this general case, where known beampatterns are not exploited.

At this stage in the LOFAR development, there is significant
uncertainty about how self-calibration algorithms will perform.
The radio astronomy community has a wealth of experience in
successful synthesis array self-calibration at higher frequencies
[3]–[5], [9]. But neither the theoretical or practical bounds on
calibration accuracy are well understood for arrays with thou-
sands of antennas spread over a hundred kilometers in the pres-
ence of strong ionospheric perturbation. It is not clear whether
extensions of existing algorithms will be adequate, and it is
likely that new approaches and algorithms will be required [10].
For some observing conditions a sufficiently accurate calibra-
tion may be beyond fundamental limits of parameter estima-
tion uncertainty. We propose to answer some of these questions
with a thorough Cramér–Rao lower bound (CRB) analysis to de-
termine limiting estimation error variance levels under various
model assumptions.

In summary, compared to existing telescopes, LOFAR cali-
bration has the following complications.

• The station beamshapes have significant side lobes; strong
sources in the side lobes can dominate weak sources in the
main lobe.

• Existing telescopes can calibrate assuming there is one or
only a few bright sources in the field of view. For LOFAR,
each omnidirectional antenna can see the full sky.

• Each station observes each source through a different patch
of the ionosphere. It is easy to see from this that, without
further assumptions, the array is not calibratable.

C. Self-Calibration Methods

In the radio astronomy literature, “self-calibration” (or
Selfcal) refers to the calibration of a telescope array using
existing sky signals as reference sources [3], [5]. It is assumed
that these sources have known position and are relatively
intense; also the telescope locations/orientations are perfectly
known. The parameters to estimate are the direction-inde-
pendent electronic gains and phases, and the noise powers.
Techniques for this have been proposed and are widely used for
higher frequency synthesis arrays [11]–[14], and the estimation
statistics are well understood [9]. As a refinement, Selfcal
is often combined with the well-known CLEAN algorithm
for deconvolution [15], [16], i.e., a technique to iteratively
estimate the location of the sources and their powers. Gen-
eralized Selfcal refers to the poorly studied case where both
direction-independent complex gains and direction-dependent
propagation effects need to be calibrated [17].

In the array signal processing literature, “self-calibration”
(or autocalibration) refers to a much wider class of algorithms,
namely calibration using noncooperative sources. Typically, the
location of the sources is considered unknown [cf. Direction of
Arrival (DOA) estimation]. The additional parameters which
need to be estimated can include the direction-independent
complex antenna gains or receiver channel mismatch (and more
generally the antenna coupling), e.g., [18], [19]. Much less

studied are direction-dependent gains, which may include the
individual antenna response, beamshape, and angle-dependent
propagation effects [20]. The latter case quickly leads to gen-
eral models, e.g., to consider the array response matrix to have
known gains and unknown phases [21], [22].

A related class of papers (not immediately relevant for
LOFAR) also considers estimating or updating the antenna
locations along with the other parameters. Many calibration
techniques essentially assume the presence of only a single
calibration source, or even require a set of calibration sources
which can be switched on or separately selected at will. This
gives access to the individual uncalibrated array response vec-
tors. Self-calibration as an extension whereby DOA estimation
(and, hence, source separation) is alternated with estimating
the nuisance parameters. A problem rarely considered in array
processing is to assume that many sources are simultaneously
present, but that the source covariance matrix is known [23],
[7]. This is a relevant assumption in radio astronomy, and
LOFAR in particular.

One aspect of LOFAR which is more general than the pre-
ceding scenarios is the hierarchical partitioning into stations (or
subarrays). In [24] and [25], DOA estimation of partly calibrated
arrays with calibrated subarrays are considered. The model in
[25] is general and matches the LOFAR context, except that i)
the cross correlations between all antenna pairs are observed;
ii) the subarrays are perfectly calibrated (for LOFAR this is
only approximately the case); and iii) the source locations are
unknown.

In summary, the LOFAR calibration problem can be consid-
ered as novel in array signal processing.

The paper is organized as follows. Section I-C gives the data
model and problem statement. Section II derives the relevant
CRBs. Section III proposes calibration algorithms, under var-
ious model assumptions and parameter constraints. Section IV
shows simulation results. Section V concludes the paper. Prior
conference publications providing partial results are in [1]
and [2].

D. Signal Model

Each LOFAR station forms steered beams in 1-kHz-wide sub-
bands which track selected deep space objects while their ap-
parent positions shift due to Earth’s rotation. A station beam is
treated as a single directional element in the full LOFAR array
for processing at the central location; there is no access to the in-
dividual elements. Assume all station beams in all subbands for
the stations are steered to the same point in the celestial
sphere and that the observed signal is dominated by known,
bright calibrator point sources. The observed array sample
vector for the th subband centered at frequency is

(1)

where is the signal from the th calibrator source at time
sample and frequency is the array response vector
for this source, and is the noise sample vector. and

are baseband complex envelope representations of zero
mean wide sense stationary white Gaussian random processes
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sampled at the Nyquist rate. Elements of are statistically
independent, as are signals from the sources.2 For simplicity
of presentation all wave propagation is assumed to be nonpo-
larized. In practice, however, antennas are grouped into orthog-
onal linear polarization pairs so full Stokes parameter outputs
are available to enable observing polarization-specific scientific
phenomena. Additionally, calibration parameter estimates must
track the effect of ionospheric Faraday rotation. The nonpolar-
ized results presented in this paper are instructive, and extension
to a more realistic model is straightforward using Jones matrix
notation (cf. [26]), a dual-polarized vector in place of ,
and extending each array response vector to be a two
column matrix.

Due to Earth’s rotation, the geometrical delay component of
changes slowly with time, which is a critical feature ex-

ploited in synthesis imaging. Calibrator locations and intensities
are known accurately from catalogues compiled in previous sky
surveys. During calibration all other space signals are neglected
due to their relative weakness, but of course their presence can
bias the calibration solution.

Let be the number of time samples in a short-term integra-
tion (STI) interval. We assume that is (relatively) con-
stant over such an interval, so that, for the th interval,
is wide sense stationary over . A
single STI autocovariance is defined as

(2)

where has size ,

Here, is the variance of the th calibrator source. Noise is
assumed to be independent but not identically distributed across
the array, and the noise variances are unknown. In the radio
astronomy literature, elements of are called “visibilities”
[3]. Each visibility represents the interferometric correlation
along the baseline vector between the two corresponding array
elements. The corresponding short term integration sample
covariance estimate is

The array response matrix can be factored into the
product of a phase matrix due entirely to the propaga-
tion delays associated with the array and source geometry, and
a complex calibration gain matrix which includes both

2The subband processing in the actual instrument is slightly more subtle than
presented here. The stations use 200-kHz subbands. At the central location these
signals are time-shifted to compensate for the geometric delays in the look direc-
tion, and subsequently split into 1 kHz bins. As a result the narrowband model
(1) holds for sources in the look direction, but may not quite hold for sources far
outside the field of view. These sources will experience some phase smearing.
This effect is not considered in the data model.

source direction dependent ionospheric perturbations and elec-
tronic instrumentation gain errors

(3)

In the astronomical literature, the columns of , denoted by
, are often called the “Fourier kernel” and

are given by

where is the speed of light, is the position vector for
the th array element (station beam) and is a unit length
vector pointing in the direction of source during STI snapshot

. Since , and the source power levels are all known to
high accuracy for tabulated calibration sources, and
are treated as known quantities.

E. Direction Dependent Calibration Formulation

The problem at hand is to estimate given over
a range of and . is in general a full matrix
of independent unknown complex gain parameters whose ele-
ments must be estimated to calibrate the array for imaging. A

real parameter vector containing all unknown
terms is defined as

(4)

where is the th column of gain matrix
is the th column of phase matrix , and

. In contrast to LOFAR, the conventional synthesis
imaging calibration problem at higher frequencies does not
suffer from direction dependent ionospheric perturbations so in
this case has the same gain vector for each source,
and (3) becomes [9]. In either case is a
nuisance parameter which must be jointly estimated with .

Self-calibration can be viewed as a covariance fitting problem.
Substituting (3) into (2) and explicitly showing dependence on

yields the visibility measurement equation (ME) [27]

For a single STI and subband [one ] the least squares
calibration solution follows immediately as

(5)

Direct solution of (5) is not computationally practical. Fur-
thermore it will be shown that without further constraints is
not identifiable through a single . The estimation problem
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is ill posed and (5) yields ambiguous solutions due to source di-
rection dependence. Fortunately the physics of LOFAR permit
imposing structural constraints on individual snapshots
and/or across a range of time-frequency bins to regularize the
problem, as will be shown in sections to follow.

It should also be mentioned that a maximum likelihood (ML)
formulation of the LOFAR calibration problem is also easily
expressed along the lines of the result in [9]. But, as is often
the case, the ML approach does not yield a computationally
tractable algorithm for this problem.

II. A FRAMEWORK FOR CRB ANALYSIS

This section presents a general framework for CRB analysis
of the source direction dependent calibration gain estimation
problem. The approach allows for simple adaptation to a wide
range of physically justifiable model assumptions, parameteri-
zations, and signal constraints.

A. CRB for Unconstrained Calibration Parameters

Consider a set of array samples ( stations) observed over a
time-frequency domain spanning frequency bins
and nonoverlapping sample STI time windows.
Stack these samples into an data matrix

...
...

...
...

...
...

Initially we consider the unstructured case where parameter vec-
tors from each time-frequency bin are distinct with no
functional relationship and must all be estimated. These are
stacked into a large parameter vector

(6)

The corresponding stacked sample covariance is
. The underlying data model is given in (1).

Due to Nyquist sampling of narrow passbands selected from
the underlying continuous time broadband random signals, both

and are statistically independent with respect

to bin indices and . All nonzero correlations are spatial
(i.e., with respect to station index ) and are due to phase
delay across the narrowband array. Thus, the true covariance

has block diagonal form

. . .

. . .

and depends on through (2), (3), and (4).
Consider an estimate of based on an observation . The

CRB on the error variance for any unbiased estimator is given
by the diagonal elements of

evaluated at the true value of . Here, is the Fisher informa-
tion matrix, which for Gaussian data can be expressed as [28]

(7)

where the Jacobian is defined as

The matrix is usually very large. However the
sparse block diagonal structure for in turn makes sparse
and simplifies evaluation of (7). Thus, has the same block
diagonal structure as , with diagonal blocks given by

and

With no assumed structure relating parameters across time or
frequency, the subblocks of are uncoupled and the CRB for
some can be computed from independently from the
other parameters. The entries are evaluated as follows.

B. Closed Form for General Fisher Information

Using the parameter ordering from (4) each can be par-
titioned into block form as shown in (8) at the bottom of the page.

. . .
. . .

...

. . .
. . .

...

(8)
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The closed form representation for these submatrices is shown
in the Appendix to be

(9)

(10)

(11)

(12)

(13)

(14)

where all terms have implied subscripts and

Since and are nonzero, is coupled with the pa-
rameters of interest and should be jointly estimated.

As will be shown later, in the general case considered here
is singular. Without introducing constraints on the pa-

rameters, the array is not calibratable.

C. CRB for Constrained Parameters

The following sections discuss some scenarios where the
degrees of freedom in can be reduced by physically justifiable
constraining models. These impose structure in which is key
to solving the calibration problem. At this stage in LOFAR
development, there is much activity in identifying appropriate
models of ionospheric perturbation effects which can be incor-
porated into self-calibration algorithms. For example, when the
ionosphere is relatively time stable, may vary smoothly
over and according to some low order interpolation func-
tion. In such cases, a lower dimensional parameter vector can
represent all the required degrees of freedom over the entire
domain of and .

Let where is some functional relationship
describing a constraint on corresponding to an appropriate
physical model. It is assumed that is an overdetermined pa-
rameterization and that the underlying distribution for is
fully determined by . Under these conditions, the Fisher infor-
mation computed for yields the CRB.

Define the constrained Fisher information matrix as

(15)

where

(16)

which follows by the chain rule since . can be
partitioned as

where

(17)

is common to all time-frequency bins and is not indexed by
or . Specifying the establishes the required structural

constraints. Equation (15) can now be written as

and since is block diagonal

(18)

With (18), one may compute a CRB for the constrained param-
eter vector using the unconstrained general form Fisher ma-
trices given by (8) and constraint Jacobians from (17).

As an illustrative example, consider the simplest time-fre-
quency smoothing function where calibration parameters are
constant over . In this case, we can choose

, and . To avoid a singular an in-
trinsic bulk phase ambiguity must be resolved with an additional
constraint. Since due to its Hermitian product form is un-
affected by multiplying any column of by a unit modulus
scalar, can only be known to within one arbitrary phase
factor per column. The excess degrees of freedom in can
be removed by eliminating the first element of each phase vector

in . This constraint is imposed by setting

where is the number of coefficients in , and
the selection matrix is formed by deleting the columns from

with indices . This
eliminates from the station phase parameter for each of
the calibrator sources, forcing the first row of to be real. It
follows that:

(19)

The resulting bounds are evaluated in Section IV, along with the
performance of the estimation algorithms presented next.

III. CALIBRATION METHODS

A. Single Snapshot Calibration

Above approximately 400 MHz, it is possible for conven-
tional astronomical synthesis imaging arrays to estimate cali-
bration gains from a single “snapshot” STI sample covariance
realization [9], [3]. This is useful for startup of a tracking
calibration algorithm or to make quick look snapshot images.
In general this is not possible for LOFAR due to directionally
dependent ionospheric perturbations.
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To illustrate this fact note that for any unitary matrix
, (2) can be rewritten as

(20)

where . Since , it is not
visible in . However, (20) has the same structure as (2) but
with a different effective array response, . Thus, each choice
of leads to a different calibration solution , namely (using

),

(21)

where denotes element-wise inverse. This shows that,
without adding constraints, is not identifiable from a single

. (This problem is not present in the classical direction-
independent calibration problem, where , or

[9].)
Next, we introduce a physically justifiable constraint based

on the unique LOFAR array geometry which resolves this am-
biguity so that with sufficient signal-to-noise ratio (SNR) a cal-
ibration can be computed already from a single snapshot .
Subsequently, in Section III-C, we consider multiple snapshots
and make assumptions on the time evolution of the ionosphere.

B. Exploiting the Compact Core LOFAR Geometry

The unknown calibration gains/phases can be attributed to
perturbations due to (a) the propagation through the ionosphere,
and (b) the receiver electronics. The ionosphere mostly intro-
duces propagation delays, i.e., it can be modeled as a random
phase sheet, with gains that are approximately direction inde-
pendent over a station main beam. Similarly, the electronic gains
and phases are independent of the directions to the calibration
sources, but do differ from station to station.

The planned geometry for LOFAR as shown in Fig. 1 includes
a central core of closely packed stations. As shown in Fig. 3,
the core subarray is operating in a regime where the station beam
fields of view overlap on the ionosphere (approximately 300 km
above the array). These beam mainlobe “footprints” are much
larger than, and the total subarray aperture is much smaller than
the ionospheric irregularity scale [8]. Thus each core station ob-
serves a given celestial source through the same patch of iono-
sphere and sees a common gain-phase perturbation, i.e., the core
subarray sees a coherent scene without direction dependence.

Because they are common, the ionospheric phases cancel out
when computing the correlations for the core subarray.
What remains is the direction-independent ionospheric gains,
and the gains/phases of the receiver electronics. The corre-
sponding core gain matrix can be modeled as .

Fig. 3. Calibration scenario for closely spaced LOFAR central core stations.
Due to beam overlap at ionospheric altitude, each station sees the same direction
dependence. (After C. Lonsdale.)

This leads to a calibration problem comparable to the typical
synthesis imaging situation at higher frequencies (or similar to
station calibration).

For the rest of the array, i.e., for the stations
exterior to the core, both the field of view and all interelement
baselines are greater than the ionospheric irregularity scale, as
shown in Fig. 2. For these stations the corresponding gain matrix

is best modeled as a full matrix.
Under these assumptions, (3) becomes

(the implied indices are omitted). To bring all calibration
gain vectors to be estimated into a single indexing scheme, let

refer to the central core, and define

(22)

Here, corresponding to the single core subarray gain vector
is length , while the are length .

The constraint Jacobian, shown in (23) at the bottom of the
page, expresses the relationship between in (22) and in

(23)
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(4). It also constrains the bulk phase ambiguity as does (19), by
setting to omit the phase on the first external station.
Using (23) in (18) for a single snapshot gives

, and yields a closed form CRB for a LOFAR
array with a central core. This has been used to evaluate the
CRB for a wide range of scenarios, and leads to the following
observations:

1) is typically singular when .
2) When the full array, including the fully direc-

tion dependent ionospheric gains in the exterior stations
can be reliably calibrated with a single snapshot sample
covariance.

Currently, the number of central compact core stations is
planned as . Thus, single snapshot calibration ex-
ploiting the core configuration is suitable if represents a
small number of bright calibrator sources, i.e., for initial coarse
calibration.

C. Exploiting Frequency-Time Diversity

We will now consider the use of multiple snapshots. The iono-
spheric parameters are approximately constant over a block of

values covering 10 s and 500 kHz. Due to Earth’s rota-
tion and frequency dependence, varies sufficiently over
this block so that, even if the individual are singular, the
sum in (18) produces a full rank and a relatively low CRB.

For regions larger than a 10 s 500 kHz block, gen-
erally varies smoothly. It is, therefore, unnecessary to compute
independent estimates for each . A low-order smoothing
function can describe the significant variations with fewer pa-
rameters and thus lower estimation error variance. For example,
we can use separate matrix polynomials in and coefficient
vector for the phase matrix an gain matrix and evaluate
them at STI frequency-time bin as follows:

(24)

(25)

and are the gain and phase coefficient matrices, to
be estimated by calibration. To illustrate the notation, consider
a specific example for the phase polynomial

which consists of terms, using powers for as
and for as

.
The dual (gain and phase) polynomial model combined with

the bulk phase ambiguity resolution used in (19) results in the

following constraint Jacobian: [see (26) at the bottom of the
page], where and . It is
straightforward to combine this with the assumption of a cen-
tral core geometry (Section III-B). In this case, is given
by the product of (23) and (26), but using and

.
A least squares solution for can be expressed as

(27)

where

(28)

Although the polynomial model dramatically reduces parameter
degrees of freedom and (26) yields a low CRB, a direct imple-
mentation of (27) is computationally impractical. An iterative
search algorithm is required but its convergence performance is
poor. The continuous phase polynomial is ambiguous
to integer multiples of at every evaluation point, i.e., for every
combination of station , source , and . This introduces
many local minima so that a good initial estimate for is re-
quired. The following two sections present algorithms which
address these problems.

D. The Peeling Algorithm

The current leading candidate algorithm for LOFAR calibra-
tion was introduced in [10] and has been dubbed “Peeling” due
its sequential approach of successively calibrating on one bright
sourceata timefollowedbyremoving(peeling) thatsource’scon-
tribution from the observed sample covariances, . Peeling
is based on three basic simplifying assumptions as follows.

• Joint estimation for parameters of all calibrators sources
can be approximated with a series of single source calibra-
tion problems, in descending order of source brightness.

• Calibration gains vary slowly and smoothly over time and
frequency. Consequently, over some span of frequency
bins and time bins called a “block,” is approxi-
mately constant. This block indexed by includes all
frequency-time (STI) bins in the set

The evolution of the ionospheric gains over several blocks
(a “domain”) is described by a polynomial model as in (28).

• Within a block, the variations in (also known as
fringe rotations) due to Earth’s rotation and frequency
change are large. Source powers are constant over
within a block.

(26)
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Peeling in [10] does not use the central core geometry
assumption.

Let be a minimal parameterization for the calibration pa-
rameters. Define as the subvector of corresponding to the
parameters for source , i.e., corresponding to the th columns
from and in the polynomial model
(25). The corresponding gain vector for STI bin is given
by the vector polynomial , which is also ob-
tained by retaining only the th columns from and

in (24). No superscript is used in since
all column-wise polynomials are identical except for the source
dependent coefficients in each . Similarly, denotes the
th column of , and contains the geometric phase delays

of source . Finally, will denote the current parameter vector
estimate for a single source .

Assuming the sources are ordered in descending bright-
ness, an pass peeling algorithm based on [10] is given by

1) Initialize: source index , pass index , and
parameter vector for .

2) Update the residuals (peel): Over all covering all
blocks in the domain, subtract from each sample covari-
ance the current best estimates (based on

) of contributions from all except the th source:

is an estimate of the visibility (covariance) matrix
contribution to from source . The term under the
summation is a single source version of (28). The noise
covariance is neglected.

3) Phase center and average: For each , cancel the
phase rotation due to the geometric delay term in the
visibility contribution from source . Then average over

inside a block to attenuate the other, noncen-
tered, sources,

(29)

4) Estimate polynomial coefficients: With some abuse of no-
tation, let the subscript on denote selecting
the frequency-time bin in the center of block ,
and likewise for . Then assume a single-source model
and estimate the polynomial coefficients for source as

is a masking matrix of ones below the diagonal and
zeros elsewhere which is used to avoid fitting to diagonal
terms from . This problem is solved using a general least
squares solver.

5) Iterate for and do this for passes.
We have found that using multiple passes (e.g., ) re-
duces bias in which arises when the averaging over a block
in step 3 produces insufficient attenuation of the non centered
sources. Contamination in the single source fit in step 4 occurs
because has contributions from more than the centered
source. The next section presents a more direct method of re-
ducing this bias.

E. Demixing Calibrator Cross Contamination

The purpose of steps 2 and 3 is to form a single-source ap-
proximation of the problem. Ideally is equal to the true
single source phase centered visibility for sample
at the center of block . Assuming the gains and
source powers are constant within the block gives

(30)

(the additive noise is ignored). Initially, when estimating the pa-
rameters for source there are no available estimates for sources

to , so their contribution cannot be subtracted in step 2.
Averaging in step 3 is then not sufficient to reduce bias down to
the noise level and multiple iterations are necessary.

In this section, we develop an unbiased estimator so
that even on the first pass . The algorithm
works on a per block basis, so for notational simplicity the block
indices will be dropped, and we take the ranges

(a single block).
Consider estimating during the first peeling pass. Esti-

mates for will have been previously com-
puted, and we assume that the corresponding sources are peeled
without bias in step 2. We now seek an estimate which is un-
biased by the presence of sources to in . These
sources have not yet been peeled since at this stage for

. The expected value of entry from
in step 2 can then be expressed as (for )

(31)

where and are constant within a
block. The summation can be written as

(32)

This gives us one equation per pair in the block . To
stack these into a matrix, let

...
. . .

...

(size ) and
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then (31) becomes . If is a “tall” matrix,
which requires (for ) , then it will be left-
invertible. Applying the left inverse to both sides of the equation,
we obtain

(33)

The least squares estimator for given is

(34)

which is shown by (33) to be unbiased. Comparing (30) with
(31)–(32) reveals that the first element of is the estimator we
seek for . Equation (34) is separately computed for

each to yield full matrix for use in Peeling step 4.
A closer look at (34) reveals that it is directly related to the

original peeling approach of phase centering and averaging.
First define

Now we can write

Comparing this matrix equation with the summation of (29) re-
veals that the first element of the term in brackets is equal to the

th element of from (29). The remaining elements
correspond to evaluating (29) for sources to . Thus com-
puting performs an element-wise version
of the Peeling phase centering and averaging step on not just ,
but for all sources to . The multiplication by inversion ma-
trix “demixes” the contributions of the sources into separate
single source problems.

The estimates in step 4 are based on all samples in the
domain. The demixing algorithm works only on a single block.
Therefore demixing is noisier than removing a source by con-
ventional Peeling subtraction. The noise amplification depends
on the condition of . Because of the third assumption of
Section III-D (large fringe rotations within a block) will
be well conditioned. For large blocks, will converge to the
identity matrix.

IV. SIMULATION RESULTS

A. CRB for Constant Calibration Gains and Phases

We first consider estimating calibration parameters over a
small frequency-time block where they can be assumed con-
stant. Fig. 4 illustrates the CRB for a realistic self-calibration
scenario with the full LOFAR geometry of Fig. 1. Station beams
are pointed at right ascension (RA) 54.0 and declination (DEC)
55.1 .3 An accurate model based on the existing LOFAR initial
test station [29] was used for the station beam directional re-
sponse, including sidelobe fine structure. For this 40-MHz ob-
servation, the dB beamwidth is approximately 5 with side-
lobe peak levels typically at dB below the mainlobe.

3RA and DEC are astronomical polar coordinates for fixed locations in the
celestial sphere used to locate deep space objects; the celestial equivalent of
latitude and longitude. See, e.g., http://liftoff.msfc.nasa.gov/academy/universe/
radec.html.

Fig. 4. Calibration CRB levels for constant parameters over small frequency-
time span. Curves are CRB values averaged across array elements (stations) to
provide a representative error level per source. Vertical bars show the range of
phase errors across the 72 stations. Phase error is in radians while gain error is
unitless. “Source 0” corresponds to the compact subarray which does not have
source dependent calibration. Bottom horizontal curves are given as a reference
for the case where calibration parameters are not source direction dependent.

TABLE I
TEN BRIGHTEST CALIBRATOR SOURCES

The brightest radio sources after beamforming are
included in the simulation. Table I lists their locations, taken
from the standard 3C and 4C radio survey catalogues [30], and
apparent SNRs computed from tabulated flux values. Sources
3, 7, 8, and 10 are seen within the beam mainlobe. Random
“true” calibration parameters were generated using Gaussian
gain magnitudes with a mean of 1.0 and standard deviation of
0.3, and phases uniformly distributed in the range .

The curves marked with a diamond in Fig. 4 show the CRB
as function of source index for calibration on a single STI snap-
shot, using the central core configuration ( central core
stations). The CRB is computed using (18), with constraint Ja-
cobian from (23). The “asterisk” curves show the same
for frequency bins and time snapshots,
covering 110 STI snapshots on a sample grid with one second
by 50–kHz spacing. (As with all results in Section IV, we as-
sume narrowband array operation with frequency bins suffi-
ciently narrow that no phase smearing occurs in visibility es-
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timates. The 50–kHz bin spacing exceeds the narrowband limit,
so we assume individual bins are more narrow, but selected at
widely separated frequencies to reduce computational burden).
The resulting region of 10 s by 500 kHz is considered to be the
maximum span that can be assumed to have constant calibra-
tion parameters. In both the single snapshot and 10 s 500 kHz
cases, the use of the direction independent calibration model for
the central core leads to low calibration error bounds for the
first few sources. The error increases with the source index, as
the source SNR decreases, and after the sixth source (third for
middle single STI curves) unacceptable phase errors of more
than one radian are encountered. Useful calibration for the re-
maining sources requires a region larger than 10 s by 500 kHz.

The top curves show the bounds for central core sta-
tions, modeling the other 24 core stations as external stations.
Since this is smaller than , the calibration error becomes
extremely large. The horizontal curves at the bottom are pro-
vided as a reference, and represent CRB values for the same
10 source case but where calibration parameters do not depend
on source direction, i.e., only one complex parameter must be
estimated for each station. This represents the conventional syn-
thesis imaging problem at higher frequencies where ionospheric
interaction is not strong or the aperture is smaller. The compar-
ison illustrates the relative difficulty of direction dependent cal-
ibration, particularly for weaker sources.

B. CRB for Polynomial Calibration Variation

Large STI regions are needed to improve the CRB perfor-
mance with direction dependent calibration. The parameters are
not constant over such regions but vary smoothly, and the poly-
nomial calibration models discussed in Section III-C will be
used. To reduce the sizable computational and memory require-
ments, a “thinned” LOFAR array is used in all simulations to
follow. Every second element from Fig. 1 was included, with

stations covering the 100-km aperture and with a cen-
tral core of stations.

In the first experiment, shown in Fig. 5, a basic setup without
central core assumption is used, so an independent frequency-
time polynomial is applied for each source-station combination.
A first order in both time and frequency 2-D polynomial model
was used, and

, with randomly selected “true” polynomial
coefficient matrices and . The same 10 calibrator sources
and beam steering direction as in the previous section were used
in this simulation. CRB values were computed using (18), now
with the frequency-time constraint Jacobian from (26).

Fig. 5 presents CRB results for four linear in frequency gain
and phase coefficients, i.e., entries of and corresponding
to source 3 and core station 2 and the respective source 3 entries
from outer station 35. An important feature is that the CRBs are
unacceptably high unless the estimation domain covers several
seconds and/or a few hundred kilohertz. This is because suffi-
cient frequency-time diversity due to fringe rotation in is
needed to overcome the multiple source ambiguity discussed in
Section III-A.

The scenario of Fig. 5 was repeated for Fig. 6 with the fol-
lowing changes: 1) the central core direction independent model
was applied, by combining (23) and (26); 2) the scene contained

(a)

(b)

Fig. 5. Normalized CRB for polynomial coefficients as a function of total fre-
quency-time span. The direction independent compact core model was not used.
Decibel level is normalized to the single source CRB over the same frequency-
time span. STI sample spacing is 1.0 s by 2.0 kHz, beginning at 40 MHz. (a)
Normalized CRB for the gain, (Y )[2; 3], and phase, (T )[2; 3], coefficients
from the linear-in-frequency polynomial term for station 2 (in the central core)
and source q = 3. Curve families cover CRB dependence on time domain size
from 1 to 10 s in 1 second increments. The 1–s gain curve is off the plot scale
above. (b) CRB for (Y )[35; 3] and (T )[35;3], at station 35 in an outer array
arm.

only the first five sources from Table I; and 3) the 2-D fre-
quency-time polynomial was first order in frequency, and zero
order in time: .
This scenario will be used without change in all following exper-
iments to exploit the central core and to reduce computational
burden in simulations which involve many Monte Carlo random
trials.

Comparing Figs. 6 and 5(a) it is apparent that the central core
model significantly reduces estimation error variance and the
need for large time domain span. Other experiments (not shown)
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Fig. 6. Normalized CRB for linear in frequency coefficients (Y )[2; 0], gain,
and (T )[2;0], phase, when using the direction independent compact core
model, corresponding to station 2 and “source” q = 0 in the indexing scheme
of (22). Note that when using the compact core direction independent model,
error variance on time domain span is minimal.

indicate that the reduction from 10 to five sources and use of
a zero-order-in-time polynomial model were minor factors in
this CRB reduction. This suggests that a self-calibration algo-
rithm should exploit the central core model if array geometry
and ionospheric structure support it.

C. Peeling Calibration Performance

A full implementation of the peeling algorithm was run using
synthesized array receiver data to compare its performance with
the corresponding CRB. When fully operational, LOFAR will
be calibrated in real time using a super computer. However,
given existing computational resources and the need to run
many Monte Carlo trials, the thinned array five-source scenario
of Fig. 6 was used here.

A first order in frequency, zero order in time, 2-D polynomial
was applied both for generating the simulated array data, ,
and in the peeling algorithm parameter model. The “true” pa-
rameter matrices were randomly generated. The frequency-time
STI bin size is 2 kHz by 1 s, with . The
Peeling block size is 100 kHz by 10 s, and with

, the total domain covers 40.0 to 41.0 MHz and 10 s.
Peeling used iterations.

The generated array data had a central core , and
the CRB analysis takes this into account. Thus the CRB evalu-
ation uses the product of (23) and (26) as the constraint Jaco-
bian, . However, the current version of Peeling does not
include specific provision to exploit the central core model, so
it generates distinct calibrations for each source-station combi-
nation, even though they should be direction-independent and
thus identical for all sources for each central core station. As
final estimate for the core array calibration parameters, only the
parameters derived from the brightest source are used.

Fig. 7 shows the CRB and Peeling estimation error sample
variance averaged over 100 Monte Carlo trials. It is seen that

Fig. 7. Peeling algorithm performance comparison with the CRB. Estimation
domain size is 10 s by 1.0 MHz, with 1 s by 2 kHz STI sample spacing. Source
index q = 0 represents the central core subarray, whose calibration polynomial
coefficients do not depend on source direction. The horizontal axis parameter
index for elements of ��� is ordered as in (25).

Peeling closely approaches the CRB performance bound for
the central core array and the two brightest sources

. Peeling error variance is somewhat higher than the
CRB for the three weaker sources . This suggests
that there is value in continued research to develop improved
calibration algorithms. The plotted results are encouraging, but
need to be verified on the full array and with a larger number of
sources.

D. Peeling With Demixing

Performance of the combined Peeling with Demixing
procedure was evaluated by computer simulation with the
same models and parameter settings as used in Fig. 6 and
Section IV-C. Fig. 8 compares the average bias error magnitude
for single pass conventional Peeling with the bias from Peeling
with Demixing. Estimation error variance (not shown) was ac-
ceptably low and at the same level with and without demixing.
The figure shows that demixing significantly reduced bias error.

Without demixing, Peeling requires passes to pro-
duce bias levels comparable to one pass of Demixed Peeling.
This demonstrates the theoretical correctness of the approach
described in Section III-E. However, its practical utility is some-
what questionable: With our current implementation in Matlab
it takes 3.31 times as long to complete a single demix pass
as to complete three passes of the regular peeling algorithm.
Since both performance and complexity depend on the number
of sources and other system parameters and assumptions, it is
hard to predict how this works out in the actual LOFAR system.

V. CONCLUSION

Calibration algorithm development for LOFAR is ongoing
and is critically important if the system is to achieve its ambi-
tious scientific goals of observing the very weak signals gen-
erated during the early evolution of the universe. Interaction



VAN DER TOL et al.: LOFAR RADIO ASTRONOMICAL ARRAY 4509

Fig. 8. Comparison of bias error in estimating polynomial parameter ��� ; 0 �

q � 5 for Peeling alone, and Peeling with Demixing. One peeling pass was
performed in each case. The plot illustrates the lower bias error performance
of the demixing algorithm. Without demixing (not shown in this plot) three to
four passes of Peeling were needed to achieve the bias levels of the lower curve.
Ten Monte Carlo trials were used to compute average error magnitude. In all
other details the algorithm and source parameters were identical to those used
in Fig. 7.

with the ionosphere at low frequencies makes this self-calibra-
tion problem significantly different and more difficult than what
has been encountered in existing radio synthesis imaging instru-
ments. It also leads to new challenges in array signal processing.

The main point of the paper was to derive and present the
machinery for answering fundamental questions about cali-
bratability for LOFAR, and in particular to assess the previously
open issue of whether it is even theoretically possible to achieve
self-calibration. The most significant finding is that without
making assumptions on the ionospheric structure, LOFAR
cannot be calibrated, but with some modeling assumptions
(e.g., frequency-time polynomial smoothing) and sufficient
frequency-time diversity from large estimation domains, direc-
tion dependent calibration is possible. CRB analysis revealed
no “show stopping” theoretical limitations on the ability to
calibrate LOFAR. A central core configuration gives a signifi-
cant reduction in the number of unknown parameters and thus
greatly enhances the calibration performance.

The Peeling calibration algorithm was implemented and com-
pared to the CRB using simulated data. The results indicate that
at least for the limited scenarios evaluated, Peeling appears to
be a viable candidate. Further algorithm development to reduce
computational complexity and estimation bias due to multiple
sources is warranted. Next steps will also include algorithm de-
velopment to directly exploit the central core direction inde-
pendent calibration model in Peeling, study of new methods to
achieve more effectively reduced cross-source interference bias
at the start of Peeling, and evaluation of ionospheric data and
physical models to determine appropriate smoothing functions
over time, frequency and space with a reduced number of param-
eters. To complete the picture, further studies also need to point
out: i) the accuracy of these models (model mismatch, which
translates into bias) and ii) the consequences of parameter vari-
ance on the dynamic range of the image.

APPENDIX

Here, we derive the closed form expressions for in (8)
which are shown in (9)–(14). Subscripts and are dropped
for notational simplicity.

Define the Jacobians

The following expressions are useful in computing the partial
derivatives:

where and . The
Jacobians can then be evaluated as

An expression is derived here for as given in (15), the
other blocks are derived similarly.
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