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Abstract. Accurate timing analysis of digital integrated circuits is be-
coming harder to achieve with current and future CMOS technologies.
The shrinking feature sizes lead to increasingly important local process
variations (PV), making existing methods like corner-based static timing
analysis (STA) yield overly pessimistic results. In this paper we propose a
general purpose statistical circuit simulator for accurate timing analysis.
A statistical simplified transistor model (SSTM) is used as the simula-
tor’s building block, allowing accurate simulation of sequential circuits
while fast statistical analysis is achieved by solving a system of random
differential equations (RDE), thus avoiding time-consuming Monte Carlo
simulations. The conducted experiments show the accurate calculation of
crossing time statistical moments for several sequential cells using 45 nm
CMOS technology.

1 Introduction

CMOS technology nodes below 45nm are currently the state of the art in the
semiconductor industry. As the transistor feature sizes are continuously being
reduced, process variations (PV, typically random deviations from the intended
nominal values) have an increasingly significant impact on chip performance
and cannot be ignored by the design and verification tools. This fact is specially
critical when dealing with synchronous designs which have to meet strict timing
constraints.

Circuit transient simulation is the most accurate way to check a circuit’s
timing compliance (also known as Dynamic Timing Analysis, DTA). However,
DTA’s exponential time complexity has made Static Timing Analysis (STA) [1,
2], which is a linear time complexity technique, the standard timing verification
tool for the last 20 years. STA is typically used along with corner analysis,
which calculates a best/worst case scenario for each parameter that may affect
the circuit’s performance, thus providing conservative bounds for each circuit
delay. In this sense, this method can be seen as an inter-die PV set up, i.e.
all the transistors on the same die are supposed to be affected in the same way.
However, if this assumption is not true, as it is in the case of local within-die PV,
different correlations between path delays will cause highly pessimistic estimates



or even optimistic estimates, depending on the circuit’s topology [3]. Besides, as
transistor features shrink with each technology node, the number of parameters
and hence corners to take into account are too big to keep these kinds of methods
attractive in terms of runtime.

Statistical STA (SSTA) was created to deal with STA’s shortcomings by
modeling the gate delay as probability distributions instead of deterministic data,
which can handle adequately spatial correlations. Accurate timing estimates are
expressed now, in terms of timing yield, i.e. the probability of a circuit to meet
timing constraints. However, while STA algorithms require deterministic sum
andmax/min operations, their statistical counterparts are, in general, not trivial,
specially in the presence of spatial correlations [4]. Some approximations to this
problem assume normal distributions expressed in a first order canonical form.
Then, sum operation becomes trivial while max/min is mainly approximated
by forcing its output to be also a normal distribution in canonical form, whose
coefficients are computed using a probabilistic based weighting [5] or a linear
time upper bound [6].

Timing analysis tools use mainly gate-level delay models for standard cells
characterization since they are the basic building blocks for most circuits and
simplify their analysis. Simple LUT-based models, like the Non-Linear Delay
Model (NDLM), assume a saturated input voltage ramp and capacitive load.
However these assumptions do not hold for modern circuits with increasing cross-
talk noise and complex resistive wire interconnections, therefore making NLDMs
not an accurate timing model any more. In [7], a noise aware Current Source
Model (CSM) is presented for combinational cells using a voltage controlled
current source, modeled as a 2D-LUT with input and output voltages as the
table indices, and a linear output capacitance. Transient simulation with this
model allows accurate timing analysis for arbitrary input signals and loads. This
model was extended in [8] to cope with the increasing importance of device
parasitics and, later in [9], to provide statistical timing analysis by extended
Monte Carlo generated LUTs to characterize the CSM’s PV sensitivities.

Up to this point, all the proposed models have been focused on combinational
logic cells, but none or very few of them deal with sequential cells, although
these elements constitute an essential part of timing analysis, thus requiring a
really accurate characterization. Clock to output delay (TCLK-O) is computed
by typical STA tools using simple NLDMs, under the assumption of stable input
signals before and after the clock edge (e.g. setup and hold times). Some efforts
have been done to improve this method’s accuracy, like exploiting setup and
hold times interdependence [10], but this approach still leads to pessimistic and
inaccurate timing estimates, specially if within-die PV are present.

In the presence of arbitrarily shaped input waveforms, the main challenge of
sequential cell timing analysis is to determine the conditions for the input signal
to change the state of the output. For a typical latch design, this situation will
take place when the capturing signal becomes inactive and its internal node has
gone beyond the induced feedback loop’s meta-stability point [11]. Translating
this scenario to gate-level models, such as CSMs, is not trivial. Combinational



cells can be easily modeled as their input fluctuations can be accurately trans-
lated to the output node, despite the fact that certain situations, such as multiple
input simultaneous switching (MISS), can lead to significant errors [12]. On the
contrary, feedback loops make the output node of sequential cells independent
of the input nodes at the capturing signal inactive period, losing their charac-
teristic input/output relationship, thus needing additional control mechanisms.
Besides, unintended transitions in the stored value can be also considered as a
MISS event, which CSMs are not able to model correctly. A CSM for sequential
cells can be found in [8] where it is shown how a combinational CSM can be ex-
tended for sequential cells using a transmission gate based latch as an example.
In particular, the cell is analyzed at its different modes of operation, extracting
their respective CSMs and combining them into a quite complex CSM. Finally
a D flip-flop CSM is also presented by connecting two complementary latches in
series.

In this paper, we propose a general purpose statistical simulation engine for
digital circuits which extends the previous work presented in [13, 14] by including
the analysis of sequential circuits. By using our statistical simplified transistor
model (SSTM), a BSIM4-like transistor model [15], CSM’s main limitations are
avoided and higher accuracy is achieved at the expense of a slightly longer run-
time. Additionally, since our simulation engine works at the transistor level, there
is no difference in how sequential and combinational circuits are treated during
the simulation. Sequential circuits are only treated in a special way when the
initial guess of the DC solution is generated, due to their inherent combinational
feedback loops. PV is captured by our SSTM by computing the different sensitiv-
ities to physical parameters for the selected process variables. A fast non-Monte
Carlo statistical timing analysis method is used to find the statistical output
arrival times by solving a system of random differential equations (RDE).

2 Simulation Engine

The typical work flow of any general purpose circuit simulator, like SPICE or
SPECTRE, starts with the circuit description, as a text file listing all the dis-
crete components within the circuit. This text file is then analyzed for correctness
and translated into a mathematical representation. To perform transient anal-
ysis, the simulation engine must solve a system of linear ordinary differential
equations (ODE) by successive discretization and linearization of the circuit’s
mathematical representation. DC analysis provides the circuit’s initial operating
point, thus ensuring a unique solution for the problem.

The proposed simulator, whose work flow is shown in Fig. 1, is composed
of two main parts, a deterministic part and a statistical part. The deterministic
part follows the simulation flow described before and, in this sense, is very similar
to other SPICE-like circuit level simulators. On the other hand, the statistical
part analyzes the circuit’s response under PV, for which additional input data
is required, similar to what a Monte Carlo loop would need. Our method calcu-
lates the sensitivities of the voltage waveforms, which are now characterized as



stochastic processes, with respect to PV by solving a system of RDEs. Finally,
the stochastic waveforms are processed to determine the statistical moments of
the different timing parameters of interest like the crossing times at different
voltage levels.

2.1 Statistical simplified transistor model (SSTM)

The proposed circuit simulator uses a LUT-based statistical simplified transistor
model (SSTM), which includes a voltage controlled current source (Ids) and five
non-linear parasitic capacitances (Cgs, Cgd, Cgb, Cdb and Csb). However, Cdb

and Csb are further approximated as linear capacitors in view of their limited
voltage dependence and relative small capacitance value. All these values are
obtained running several DC SPECTRE simulations for both NMOS and PMOS
transistors, using an accurate BSIM-4 transistor model [16].

The generated LUTs are accessed using the transistor voltages Vgs and Vds

(Vsb is also used for Ids to take into account body biasing) as indices, in steps
of 100mV (50mV for Ids values). This fine grain voltage characterization allows
us to use low order methods to compute off-grid values, such as bilinear inter-
polation (trilinear if body biasing) or 0-order extrapolation for out-of-bounds
values.

Additional LUTs are constructed to capture the SSTM’s parameters sensitiv-
ities to PV by first running the same characterization process for different values
of the process parameters, like the transistor length, the oxide thickness or the
threshold voltage. Finally, finite differences with respect to the each parameter
nominal value are applied to obtain the sensitivities LUTs.

2.2 Circuit description and MNA system generation

A simplified SPICE-like netlist format has been defined for two different levels
of abstraction (gate-level and transistor-level). The circuit is usually specified
using the gate-level format, so the simulator’s first step analyzes the circuit’s
topology and translates the gate-level format into the transistor-level using a
simple parsing program.

Being aware that non-linear devices are present within the circuit, an initial
guess for the DC solution is computed. Since the circuit has been described us-
ing logic gates, this initial DC guess can be easily found using a breadth-first

Fig. 1: Statistical simulator detailed overview



traversal algorithm along with basic boolean algebra, leaving only the gate’s
internal nodes as true unknowns. This algorithm works well if the circuit can
be expressed as a directed acyclic graph (DAG) with logic gates and wires as
vertices and edges respectively. Any combinational circuit is a clear example
of these kinds of circuits. However, sequential circuits introduce combinational
feedback loops, thus leading to cyclic graphs. To solve this problem, combina-
tional feedback loops are identified and annotated during the circuit’s topology
analysis. This information is then used to resolve the loop’s nodes initial values
before the algorithm starts.

Modified nodal analysis (MNA) [17], the most common technique for system-
atic circuit analysis, is used by the simulator to set up the circuit’s mathemati-
cal description. Here, the circuit’s transistor-level description and the SSTM are
combined to build the set of equations which define the circuit’s behaviour, with
output node voltages and device controlling branch currents as the system un-
knowns. Assuming inductor-less interconnection wires and output node voltages
as the only system unknowns which need to be computed, the general MNA
system is simplified, leading to the following system of ODEs:

C(t)v̇(t) +Gv(t) − i(t) = 0 (1)

with C(t) the capacitance matrix, G the conductance matrix, v(t) and v̇(t) the
voltages and their time derivatives, and i(t) the input current sources.

In practice, only systems of linear ODEs can be efficiently solved by a com-
puter program. However, the system in (1) contains non-linear elements intro-
duced by the SSTM in C(t) and i(t). The general approach to solve such systems
is to approximate every non-linear component by a linear equivalent and iterate,
using a Newton-like algorithm, until the approximation error is small enough.
To handle this problem, our simulator separates each of these matrices into a
constant value part and a time dependent part. While the former is kept in a
matrix format, the latter is stored in a transistor indexed data structure. During
the DC and transient analysis the linearized system is constructed for each time
instant and Newton-like iteration by extracting, from each transistor data struc-
ture, the required values of their non-linear parameters. In this sense, Jacobian
matrices, needed for Taylor expansion of non-linear elements, are also stored in
the same way.

2.3 DC solver and transient analysis

The MNA system in (1) is further simplified by removing the time dependent
terms and, along with the initial guess found during the gate-level translation,
is now used to find the circuit’s exact DC solution, yielding the following system
of equations in V0 = v(t0):

GV0 − I0 = 0 (2)

The system in (2) is still non-linear due to the transistors’ current source con-
tribution to the output nodes. Therefore, a Newton-like iterative method can
be used to solve this system, provided that the initial guess is close enough to



the final solution. Although this is usually true for our computed initial guess,
additional convergence strategies are used to ensure the algorithm is able to find
a solution. In particular, our simulator adds large resistors to ground at every
output node to deal with potentially isolated nodes due to non-linear devices
and limits node voltage variations from two consecutive iterations thus solving
the problem of non-convergent oscillating solutions (known as Gmin and voltage
damping respectively).

The circuit’s time response under nominal process conditions, p0, can be
found by solving the MNA system described in (1) with the initial conditions
obtained in (2). The resulting initial value problem can be rewritten as:

F (v̇,v, t,p0) = 0, with v(to) = V0 (3)

To find the solution to this system of non-linear ODEs, an implicit linear mul-
tistep (LMS) method with variable time step (tstep) is used, based on a simple
predictor-corrector method. Polynomial extrapolation is first used to calculate
an initial guess for the solution at the new time instant tk+1 = tk + tstep (pre-
diction) while a Newton-like iterative algorithm along with a the desired LMS
method (backward Euler, BE or trapezoidal rule, TR), which can be chosen at
the beginning of the simulation, is then used as the correction method. If con-
vergence is achieved in a limited number of iterations, Milne’s principal local
truncation error (PLTE) estimate is computed for accuracy check and a new
time instant and tstep are decided upon this. Otherwise the predicted solution is
rejected and tstep is reduced for a new loop iteration [18].

2.4 Statistical Solver and crossing time statistical analysis

As a consequence of PV affecting the different circuit’s elements, the resulting
voltage waveforms become stochastic processes. Under these new conditions,
Equation (3) becomes a system of non-linear RDEs:

F (v̇,v, t,p) = 0, with v(to) = V0 + δV0
(4)

In (4), p represents the vector of PV, expressed as p = p0+ξ, with ξ the vector
of random deviations of the process parameters from the nominal conditions, a
vector of random variables with zero mean and σ standard deviation. Finally
δV0

represents the deviation of the initial conditions due to PV.
Intuitively, the solution of (4) will be close to the deterministic solution found

for (3), vn(t) [13]. Therefore, if small deviations are assumed, a first order Taylor
expansion around vn(t) is a valid approximation of (4), resulting in a system of
linear RDEs in the new variable y(t) = v(t)− vn(t), the voltage deviation from
the nominal solution:

M(t)ẏ(t) +R(t)y(t) +Q(t)ξ = 0 (5)

with M(t), R(t) and Q(t) the partial derivatives of F with respect to v̇, v and
p respectively. A system like this has a unique solution in the mean square [19]:

y(t) = Φ(t, t0)y0 −

∫ t0

t

Φ(t, u)Q(u)ξ du = α(t)ξ (6)



with Φ(t, t0) the solution of the equivalent homogeneous system. As can be seen
in (6) the output voltage deviations y(t) are proportional to ξ, with α(t) the
sensitivities of the voltage deviation waveforms with respect to ξ. Using this
relationship, the equivalent system of linear ODEs in α(t) is constructed from
(5). The simulator can solve this system by using simplified TR integration
method, and the stochastic voltage waveforms can finally be expressed as:

v(t) = vn(t) + y(t) = vn(t) +α(t)ξ (7)

Finally, to perform timing analysis, the circuit delay is computed as the difference
between the voltage crossing times, tη. These crossing times are defined as the
time instant each signal reaches a target voltage value, usually expressed as a
percentage of the supply voltage. In the presence of PV, the voltage crossing time
of a signal v(t) is also a random variable which can be expressed in a similar
way as (7):

tη = tηNOM
+ βtη

ξ, with βtη
=

∂tη

∂ξ
(8)

For small deviations, the sensitivity vector βtη
can be approximated with its

value at the nominal crossing time tηNOM
of the signal v(t) as follows [20]:
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3 Experimental results

As we pointed at the beginning of this paper, our main concern is the accu-
rate timing analysis of sequential circuits under PV using our non-Monte Carlo
statistical simulator. In order to test our simulator accuracy, three different
sequential circuits, with an increasing level of complexity, were selected: i) a
high level-active transparent latch (DLH X1, 16 transistors); ii) a positive-edge
master-slave D flip-flop (DFF X1, 28 transistors); and iii) a custom sequential
circuit (SEQ X1, 90 transistors). The first two circuits are an obvious choice
since they are the most common sequential elements used in synchronous de-
signs. The last one, shown in Figure 2, tries to recreate a more realistic scenario
with launching and catching flip-flops, combinational logic and a more elabo-
rated wire model rather than a simple capacitor to ground, which introduces
non-zero skew in the clock network. In addition to this, MISS is also present at
the circuit’s combinational gate since its input signals have similar delays and
are captured at the same clock edge. All the circuits have been built using the
Nangate 45nm Open Cell Library as reference [16]. Figure 3 shows the internal
structure of the tested D-flip-flop. Details about transistor sizing can be found
at the library documentation.



Fig. 2: Sequential test circuit (SEQ X1)

We analyzed the proposed test circuits using our statistical simulator, imple-
mented in MATLAB, and comparing the results against BSIM4-based SPEC-
TRE 10K Monte Carlo simulations. This experiment was repeated for different
values of load capacitance, ranging from 5 to 25 fF, and 100ps transition time
piecewise linear functions as input signals. Transistor’s length (L) and threshold
voltage (Vth) were modeled as global non-correlated normal distributions to sim-
ulate PV with 0.5 nm and 0.04V standard deviations from their nominal values
respectively. Trapezoidal rule (TR) integration method was used to ensure the
best possible accuracy.

Table 1 shows the 50% delay mean and standard deviation relative errors at
the most important nodes for each test circuit nodes. From these results, we can
see that the mean error is, in most of the cases, below 1% and it gets closer to
zero as the load capacitor grows. The worst mean error values are found for the
transparent latch DLH X1, being a consequence of the charge non-conserving
transistor model for the non-linear parasitic capacitors and it gets reduced as
the linear load capacitance grows. Regarding the standard deviation, the results
also show a decreasing trend with higher load values for most of the analyzed
circuits although the relative error here is significantly larger. Again charge non-
conserving capacitive models are the main source of error. Finally, the runtime
improvement achieved with our method compared with Monte Carlo simulation,
is quite significant, as can be seen in Table 2. However, the current simulation
implementation has still some complexity problems dealing with large circuits
mainly due to the fact that sparse matrix techniques have not been applied.

Fig. 3: D flip-flop schematic (DFF X1)



Table 1: 50% delay statistical analysis under PV (rising input data signal)

Load capacitance (fF) Load capacitance (fF)

PV 5 10 15 20 25 5 10 15 20 25

Mean (µ) rel. error (%) Std. deviation (σ) rel. error (%)

DLH X1’s OUTPUT NODE (Q) TCLK-O

L -3.37 -2.29 -1.66 -1.34 -1.10 -9.27 -6.46 -6.31 -4.48 -4.59
Vth -3.86 -2.87 -2.26 -1.97 -1.75 -13.78 -3.16 -1.88 -1.84 -0.83
L&Vth -3.85 -2.86 -2.27 -1.95 -1.75 -12.74 -5.28 -2.28 -2.76 -1.57

DFF X1’s OUTPUT NODE (Q) TCLK-O

L -0.54 -0.37 -0.37 -0.25 -0.16 -7.85 -6.99 -6.68 -3.46 -4.37
Vth -1.05 -0.96 -1.00 -0.89 -0.81 5.07 1.88 1.83 2.05 0.07
L&Vth -1.04 -0.95 -0.49 -0.88 -0.79 -1.04 -0.49 -0.53 1.72 -0.28

SEQ X1’s 1st LAUNCHING DFF OUTPUT NODE (Q1) TCLK-O

L 0.08 0.04 0.03 0.02 0.02 -7.15 -5.34 -4.42 -4.10 -4.24
Vth -0.61 -0.68 -0.71 -0.72 -0.72 1.35 -0.08 -0.42 -0.26 -0.36
L&Vth -0.59 -0.67 -0.69 -0.70 -0.71 -1.04 -0.88 -0.81 -0.49 -0.83

SEQ X1’s CATCHING DFF INPUT NODE (D3) T50%

L 0.13 0.18 0.20 0.20 0.20 -6.18 -5.86 -6.27 -6.71 -6.31
Vth -0.19 -0.15 -0.13 -0.13 -0.12 -6.80 -8.13 -8.86 -9.11 -10.14
L&Vth -0.18 -0.15 -0.13 -0.12 -0.12 -7.42 -8.08 -8.43 -9.03 -9.45

SEQ X1’s CATCHING DFF OUTPUT NODE (Q3) TCLK-O

L -0.51 -0.48 -0.48 -0.48 -0.54 -7.45 -6.33 -5.53 -4.68 -3.40
Vth -1.06 -1.14 -1.18 -1.20 -1.23 5.13 2.68 2.79 1.34 2.41
L&Vth -1.05 -1.12 -1.16 -1.18 -1.20 -0.15 1.07 0.79 0.75 0.62

Table 2: Runtime comparison of the different simulation methods

Simulation method DLH X1 DFF X1 SEQ X1

MATLAB 25 secs. 45 secs. 12 mins.
SPECTRE 10K MC 1800 secs. 2400 secs. 120 mins.

4 Conclusion

In this paper we have presented a general purpose statistical circuit simulator for
accurate timing analysis, which is mandatory for state of the art integrated cir-
cuits verification where random deviations of physical parameters play a relevant
role in the circuit’s behaviour. A statistical simplified transistor model, instead
of gate-level models, along with a fast non-Monte Carlo statistical method al-
low us to accurately simulate any input circuit, thus overcoming the limitations
of gate-level models regarding sequential cells, as can be seen in the conducted
experiments.
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