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Abstract

The selection of the minimum number of sensors within a network to satisfy a certain estimation

performance metric is an interesting problem with a plethora of applications. The problem becomes

even more interesting in a distributed configuration when each sensor has to decide itself whether it

should contribute to the estimation or not. In this paper, we explore the sparsity embedded within the

problem and propose a sparsity-aware sensor selection paradigm for both uncorrelated and correlated

noise experienced at different sensors. We also present reasonably low-complexity and elegant distributed

algorithms in order to solve the centralized problems with convergence guarantees within a bounded

error. Furthermore, we analytically quantify the complexity of the distributed algorithms compared to

centralized ones. Our simulation results corroborate our claims and illustrate a promising performance

for the proposed centralized and distributed algorithms.
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I. INTRODUCTION

We consider a typical sensor network estimation problem, where the sensors are supposed to estimate a

vector of interest in a linear measurement model. For such a network, we study the problem of selecting

This work was supported in part by NWO-STW under the VICI program (10382) and in part by STW under the D2S2 project
from the ASSYS program (Project 10561). X. Ma was supported in part by NSF Grant No. ECCS-1202286. A portion of this
work is published in IEEE Signal Processing Letters (SPL) and has been presented in the SPL track of the IEEE Conf. on
Acoustic, Speech and Sig. Proc. (ICASSP), May 2014.

˚The authors are with the Faculty of EEMCS, Delft University of Technology, 2628CD Delft, The Netherlands. e-
mails:{h.jamalirad, a.simonetto, g.j.t.leus}@tudelft.nl. Corresponding author: Hadi Jamali-Rad, phone: (+31)152786280, fax:
(+31)152786190, e-mail: h.jamalirad@tudelft.nl.

§The author is with the School of ECE, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA. e-mail:
xiaoli@gatech.edu.

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

July 19, 2015 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2460224, IEEE Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING 2

the minimum number of sensors within the network, so that a given mean squared error (MSE) estimation

performance is satisfied. This generic problem is of great interest in several practical application domains

including radar and target tracking [1], event detection [2], and energy-efficient network management

[3], to name a few. A straightforward solution to this problem is a combinatorial approach considering

all possible combinations of all possible sizes of candidate sensors to satisfy the constraint, which is

numerically intractable for a large number of sensors and thus motivates a more intelligent and structured

approach. The problem becomes even more challenging when a distributed context is considered, where

each sensor should itself decide about its state of being selected (active) or not (inactive).

A related sensor selection problem has been studied in [4] where elegant convex relaxations are designed

for primal and dual problems. Also, in [2] the same problem with a different optimality (selection)

constraint is considered for event detection in sensor networks. However, instead of optimizing different

performance metrics and fixing the number of sensors as in [2] and [4], we minimize the number of

sensors given a performance constraint, which is generally more practical from a design perspective.

Interestingly, this enables us to exploit the sparsity embedded within the problem and propose sparsity-

aware solutions. From this angle, our approach is closer to what is proposed in [5] for selecting reliable

sensors, also called “robust sensing”. However, we consider a different constraint from the one in [5],

and we do not need the sensors to be activated and take measurements for solving the selection problem;

we only need them to know their regression coefficients. Worthy of being mentioned, is the work of [1],

wherein both ideas (minimizing the number of sensors and minimizing the performance constraint) are

considered for a multiple-radar localization architecture. The problem is formulated within a combinatorial

optimization framework as a knapsack problem. Notably, in all the aforementioned studies, a distributed

approach has not been considered.

The problem of distributed sensor selection is of crucial importance because in many practical network

configurations, it is impossible to establish a central processing unit to gather all the information and

make centralized decisions. Even if possible, this centralized process may drain significantly on the

communication and energy resources [6], [7]. The alternative approach is to make decisions using in-

network distributed processing [6]. A decentralized implementation of [4] is proposed in [8]; however,

the heuristic assumption of two “leader” nodes violates the classical definition of a distributed approach.

In [9], two distributed implementations of [4] based on a truncated Newton algorithm are proposed.

In [10], we have explored the sparsity embedded within the problem and have proposed a relaxed

sparsity-aware sensor selection approach. We have also presented a reasonably low-complexity distributed

implementation of the centralized algorithm such that each sensor can decide itself whether it should
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contribute to the estimation or not. Compared to [10], the work of [9] deals with a slightly different

problem and also requires the private sensor information to be broadcast whereas the proposed approach

in [10] avoids that. Moreover, the distributed approach of [10] is considerably more efficient in terms of

complexity compared to [9]. Finally, another relevant problem, but of a different nature, is considered in

[11], where a distributed algorithm is designed to identify the sensors containing relevant information by

a sparsity-aware decomposition of the measurement covariance matrix.

In [10], we have only considered the case where the noise experienced by the sensors is uncorrelated.

This might be a justifiable assumption in some cases, but in general, the noise experienced by the sensors

can be correlated. Particularly, as it is pointed out in [12] and [13], since the measurement noises of

different sensors may depend on a common parameter (as is the case in our problem formulation), the

sensors can observe correlated noise. Another example occurs when the unknown vector of interest is

observed by sensors in a common noisy environment, such as noise generated by a jammer. In such cases,

the measurement noises of the sensors are often correlated. This motivates us to extend our previously

proposed algorithms to be able to operate in a more practical (and more general) framework of correlated

noise.

In [14], a modified version of [4] has been proposed to handle correlated noise; however, as we

discussed earlier, the problem formulation in these works is different than ours. A particular case where

we can handle correlated noise in our problem is when we consider clusters of sensors with correlated

noise and assume that the inter-cluster noise correlation is negligible, as we have proposed in [15]. This

intuitive approach necessitates considering some sensors as “cluster heads” with higher processing power.

In practice, such clusters (with zero inter-cluster correlations) can not always be defined. Furthermore,

cluster heads impose extra constraints and violate the homogeneity of the sensor network. Thus, we would

like to develop a generalized approach by dropping the cluster assumption. In this paper, we extend our

basic idea in [10] by presenting the following main contributions.

i) First, we modify the proposed distributed approach for uncorrelated noise in [10] by introducing a

novel consensus weighting and conducting a double-consensus, which results in better convergence

properties and robustness against the choice of regressors.

ii) Second, we formulate the centralized problem for the case of correlated noise, as well as propose

an elegant low-complexity distributed implementation of the problem, where we have no clusters

and cluster heads.

iii) Further, we analyze and quantify the convergence behavior of all our proposed distributed algorithms

and prove that we have convergence guarantees (with a bounded error) to the centralized algorithms.
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Fig. 1: Schematic view of 2-D sensor selection

iv) Finally, we investigate the computational and communication complexities involved in the proposed

centralized and distributed algorithms, and promote that it is wise to employ the proposed distributed

approaches.

The rest of this paper is organized as follows. In Section II, we define the problem under consideration.

Section III describes our proposed centralized and distributed algorithms for the case of uncorrelated

noise. Section IV is devoted to our proposed algorithms in order to handle correlated noise. In Section V,

the computational and communication costs involved in the proposed algorithms are investigated and

compared. Numerical results are illustrated in Section VI, and the paper is concluded in Section VII.

II. PROBLEM DEFINITION

We consider a network estimation problem where m sensor nodes distributed over an area of interest

in Rd (d ď m) are supposed to estimate an unknown vector x P Rn. The elements of x can for instance

represent the contribution of a physical phenomenon in different dimensions within the area of interest.

A schematic view of such a network deployed in order to estimate a wave field in a 2-D area is shown in

Fig. 1. The sensor nodes are equipped with computational and communication capabilities. Note that the
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computational load of a sensor will be less than what would be required for a fusion center. Each node

measures yi “ aTi x`ηi, i “ 1, . . . ,m, where the regressors ai’s P Rn are assumed known (or measured)

and they should span Rn (m " n). The ηi’s are the additive noise experienced by different sensors, for

which we need to know (or estimate) their second-order statistics. Note that, given the spatial distribution

of the sensors, it practically makes sense that the ai’s are different so that we can distinguish the sensors

based on their regressors. Here, we are interested in selecting a priori (without measuring the yi’s) the

minimum number of sensors so that the mean squared error (MSE) of estimating x is smaller than a

desired value γ. Furthermore, we are interested in algorithms that would enable the sensors themselves

to decide their own active/inactive status, without a centralized collection of the ai vectors, i.e., we are

interested in distributed algorithms. The next two sections of this paper, which explain our proposed

algorithms, are respectively derived based on the assumptions that the noise experienced by the sensors

is uncorrelated or correlated.

III. SENSOR SELECTION FOR UNCORRELATED NOISE

In this section, we develop a sparsity-aware sensor selection paradigm, by considering uncorrelated

noise. This is normally the case when the sensors are placed far apart. We derive centralized and distributed

algorithms and investigate the convergence properties of the distributed algorithm.

A. Centralized Optimization Problem

In a centralized setup, all ai’s are transmitted to a central processing unit which allows us to define

the matrix A “ ra1, ¨ ¨ ¨ ,ams
T . Now, we can construct

y “ Ax` η, (1)

where y “ ry1, ¨ ¨ ¨ , yms
T , and η “ rη1, ¨ ¨ ¨ , ηms

T . We consider η „ N p0, Cq, where the covariance

matrix of the measurement noise C is by definition a positive definite matrix. For the centralized linear

measurement model (1) and the maximum likelihood (ML) estimator, the MSE can be expressed as [16,

Lpw,u,Gq “

m
ÿ

i“1

wi ´
n
ÿ

j“1

tr

˜

„ řm
i“1wiãiã

T
i ej

eTj uj



Gj

¸

“

m
ÿ

i“1

wi ´
n
ÿ

j“1

m
ÿ

i“1

tr

˜

„

wiãiã
T
i ej{m

eTj {m uj{m



Gj

¸

“

m
ÿ

i“1

˜

wi ´
n
ÿ

j“1

tr

˜

„

wiãiã
T
i ej{m

eTj {m uj{m



Gj

¸¸

“

m
ÿ

i“1

Lipwi,u,Gq, (9)
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p. 186, eq. 7.47]

MSE “ E
“

}x´ x̂}22
‰

“ tr
`

pAT C´1Aq´1
˘

, (2)

where x̂ is the ML estimate and trp.q stands for the trace operator. Given uncorrelated noise, we have

Erηi ηTj s “ σ2i δpi ´ jq with δp.q denoting the Kronecker delta, and thus C “ diagprσ21, ¨ ¨ ¨ , σ
2
msq. Note

that diagpxq returns a diagonal matrix with the elements of x on its diagonal. Based on this assumption,

the MSE can be reformulated as

MSE “ tr

˜

p

m
ÿ

i“1

ãiã
T
i q
´1

¸

, (3)

where ãi “ ai{σi “ rãi,1, ¨ ¨ ¨ , ãi,ns
T . The associated selection constraint on the MSE can then be stated

as

tr

˜

p

m
ÿ

i“1

wi ãi ã
T
i q
´1

¸

ď γ, (4)

where the variable wi P t0, 1u encodes whether the i-th sensor has to be activated. In practice, only a

few sensors should be activated to satisfy the MSE constraint, which triggers the idea of exploiting the

sparsity embedded within the problem. Therefore, we cast the problem as the following program

minimize
wPt0,1um,u

}w}0 (5a)

s.t.

»

–

řm
i“1wi ãi ã

T
i ej

eTj uj

fi

fl ľ 0, @j, (5b)

}u}1 ď γ, uj ě 0, j “ 1, . . . , n, (5c)

where w “ rw1, . . . , wms
T is the selection vector, u “ ru1, . . . , unsT is a vector of auxiliary variables,

ej is the j-th column of the n ˆ n identity matrix In, and the constraints (5b) and (5c) are a linear

matrix inequality (LMI) representation of the original constraint (4), obtained by using the Schur com-

plement [17]. We denote the global optimizers of (5) as pw˚,u˚q. Since both the cost }w}0 in (5) and

the finite-alphabet constraint on the wi’s are non-convex, we consider the following relaxed version of
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the problem labeled as sparsity-aware sensor selection (SparSenSe)

minimize
wPr0,1sm,u

}w}1 (6a)

s.t.

»

–

řm
i“1wi ãi ã

T
i ej

eTj uj

fi

fl ľ 0, @j, (6b)

}u}1 ď γ, uj ě 0, j “ 1, . . . , n, (6c)

and we denote its optimizers as pŵ, ûq. In [10], we present a detailed equivalence result, i.e., we prove

that in special simplified cases, the number of selected sensors is the same for both the original (5) and

the relaxed problem (6). Note that these simplified conditions in [10] only help to obtain closed-form

expressions in the equivalence proof, which for all of our simulations do not necessarily hold. Yet, in

practice, we always obtain a desirable sparse solution that is close to the optimal one.

B. Distributed Algorithm

In this subsection, we develop a distributed version of SparSenSe based on dual decomposition [18].

First, we construct the Lagrangian of the problem at hand, and then define our dual function. Next, we

investigate the decomposability of the dual function w.r.t. the primal variables of interest for a fixed dual

variable. With this in place, we look at the Slater’s condition for the original problem, and finally, we

propose an iterative solution for the distributed algorithm.

Let us start with some notations. We call Ni the neighborhood set of the i-th sensor, with cardinality

|Ni| “ Ni (either given or to be estimated). Similarly, we define sNi “ Ni Y i with cardinality |N̄i| “

N̄i “ Ni ` 1. We also define the following convex sets to simplify our notations

Wi “ twi | 0 ď wi ď 1u, (7)

U “ tu | uj ě 0, }u}1 ď γu, (8)

and form the Lagrangian of (6a)-(6b) given by (9) (shown at the bottom of this page), where Gj ľ 0, @j,

are appropriately sized dual variables, and G “ rG1, . . . ,Gns. The dual function of L can be given by

qpGq “ min
wiPWi,uPU

m
ÿ

i“1

Lipwi,u,Gq. (10)

Given the special linear structure of the Lagrangian L in (9), the following proposition is in place.

July 19, 2015 DRAFT
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Proposition 1. The dual function of L defined in (10) is decomposable as

qpGq “
m
ÿ

i“1

ˆ

min
wiPWi,uPU

Lipwi,u,Gq
˙

“

m
ÿ

i“1

qipGq, (11)

which can be computed by solving two linear programs (LPs) for each i.

Proof: First, by looking at the structure of the matrix multiplied by Gj in (9), we partition Gj as

Gj “ rGj1,Gj12;G
T
j12,Gj2s, where Gj1, Gj12 and Gj2 are respectively of size nˆn, nˆ1, and 1ˆ1

(i.e., a scalar). Therefore, the minimization problem in (10) reads

qpGq “ min
wiPWi,uPU

m
ÿ

i“1

wi

˜

1´
n
ÿ

j“1

trpãiãTi Gj1q

¸

´

m
ÿ

i“1

n
ÿ

j“1

2 trpejGT
j12q{m ´

m
ÿ

i“1

n
ÿ

j“1

uj trpGj2q{m.

(12)

Note that the middle term can be dropped as it does not contain any of our optimization variables. Since

the wi’s and the auxiliary vector u are independent, we have two LP’s that could be treated separately.

The optimization problem is also separable in the wi’s which allows us to write the following LP

min
wiPWi

m
ÿ

i“1

wi

˜

1´
n
ÿ

j“1

trpãiãTi Gj1q

¸

”

m
ÿ

i“1

min
wiPWi

wi

˜

1´
n
ÿ

j“1

trpãiãTi Gj1q

¸

. (13)

Then, we focus on u, that is

min
uPU

´

m
ÿ

i“1

n
ÿ

j“1

uj trpGj2q{m. (14)

The key point is that since the local problems are in fact the same for all i’s, we can swap the sum and

minimization operators leading to

min
uPU

´

m
ÿ

i“1

n
ÿ

j“1

uj trpGj2q{m ”

m
ÿ

i“1

min
uPU

´

n
ÿ

j“1

uj trpGj2q{m, (15)

which is an LP, and thus the claim follows.

Note that in (10) and (11), we try to decompose the global problem into local problems, and to

this aim, we reformulate the Lagrangian and corresponding dual function as the summation of local

Lagrangians Lipwi,u,Gq and dual functions qipGq. Given a certain value of G, the functions qipGq and

their subgradient with respect to (w.r.t.) G, called Q and defined later on, can be computed locally, for

instance using the MATLAB optimization function linprog, by solving the resulting LPs in and at each

sensor [18].

Whenever γ is large enough so that we expect sparse solutions in terms of ŵ, Slater’s condition holds
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for (6), which can be formulated as the following proposition.

Proposition 2. Slater’s condition holds for (6), for sufficiently large γ.

Proof: For sufficiently large γ, we can always find a pair pw, uq that strictly satisfies (6b) - (6c).

Therefore, the original `1-regularization (6) leads to the dual optimization problem

maximize
G1ľ0,...,Gnľ0

m
ÿ

i“1

qipGq, (16)

with zero duality gap. This convex optimization program can be solved iteratively in a distributed fashion

using a few possible algorithms. For instance, we can use proximal-based methods, such as the dual

averaging scheme of [19] with a variable step-size, or the simpler dual subgradient of [18] with a fixed

step-size. The latter method has the advantage of providing a recovery mechanism for the primal solution,

i.e., we recover ŵ while computing G, which is in fact our goal. Furthermore, the subgradient method

of [18] has the benefit of employing a fixed step-size which yields a simpler implementation. That is

why we opt to employ the dual subgradient method of [18]. In order to implement the dual subgradient

of [18], each sensor requires a copy of the subgradient of qpGq w.r.t. Gj , @j, i.e., each sensor requires

a copy of Q “ rQ1, . . . ,Qns. Given that Wi and U are compact and convex, we can define such a

subgradient as

Qj “

m
ÿ

i“1

∇Gj
qipGjq “ ´

»

–

řm
i“1 w̄iãiã

T
i ej

eTj ūj

fi

fl . (17)

where the w̄i’s and the ūj’s are optimizers of

qpGq “ min
wiPWi,uPU

m
ÿ

i“1

Lipwi,u,Gq. (18)

Note that the dimension of Q is the same as that of G. The need for this global parameter can be

circumvented by using the method of [20] where the sensors have different local copies of both G and

Q, say Gi and Qi, and they run an inexact consensus procedure for ϕ times (ϕ P N`). In particular, to

solve (16), we will consider the following inexact subgradient update. We call the i-th sensor version of

G at iteration t, Gi,t. We start with a given initial condition Gi,0
j for each sensor, and then @ t ě 0 we

have

Vi,τ“0,t
j “ Gi,t

j ` αmQi,t
j , for j “ 1, ¨ ¨ ¨ , n, (19)
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where α is the step-size. Next, we run ϕ times a consensus procedure as

Vi,τ,t
j “

m
ÿ

p“1

rZsi,pV
p,τ´1,t
j , (20)

and finally a projection over the cone of positive semidefinite (PSD) matrices as

Gi,t`1
j “ Pľ0

!

Vi,ϕ,t
j

)

, for j “ 1, ¨ ¨ ¨ , n. (21)

In (20), Z P Rmˆm indicates a proper sensor-wise consensus matrix whose weights have been defined

using a Metropolis weighting, i.e.,

rZsi,p “

$

’

’

’

&

’

’

’

%

1{pmaxtN̄i, N̄puq if p P sNi

0 if p R sNi, p ‰ i

1´
řm
l“1rZsi,l if i “ p.

(22)

If we execute (20) for ϕ Ñ 8, we recover the procedure of [18], whereas if ϕ is limited we intro-

duce an additional error in the distributed optimization procedure. Our proposed distributed SparSenSe

(called DiSparSenSe) algorithm is summarized in Algorithm 1, where we denote the primal optimizer of

DiSparSenSe at iteration t as ŵt.

Remark 1. It is worth highlighting that in this paper we have modified our previously proposed

distributed algorithm in [10] in the consensus averaging step from two aspects. First, here we apply a

double-consensus on both G and Q instead of only a consensus on Q in [10]. Second, instead of a

simple consensus averaging in [10], here we propose a symmetric consensus matrix Z. We illustrate in

Subsection VI-A that these refinements lead to a smoother and faster convergence of DiSparSenSe.

C. Convergence Properties of DiSparSenSe

We would like to highlight that DiSparSenSe will converge to the solution of SparSenSe with an error

floor dependent on α and ϕ. This can be proven extending the ε-subgradient argument discussed in [18]

and [20], as is briefly summarized in this subsection and is detailed in Appendix A. We investigate both

primal and dual convergence problems in Appendix A. For the latter, we prove that there exists a finite

ϕ̄ ą 0 such that if ϕ ě ϕ̄ the sequence of dual functions tqpGi,tqu generated by DiSparSenSe converges.

Based on this, we prove that the convergence of the running average primal sequence tŵtu (as defined

in step 2 of the algorithm) can be formulated in terms of a constraint violation, and an upper and lower

bound on the primal function. The results in Appendix A, (64)-(65), show that the running average primal
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Algorithm 1 DiSparSenSe
Initialization: Gi,0

j “ In`1, w0
i “ 0, @i, j.

Input: Gi,t
j , ŵti , @i, j.

aaaa

1- Dual optimization (LP): Compute, in parallel at each
sensor i, the value of qipGi,t

q, its derivative Qi,t using
(17), and the related optimal primal variables w̄ti .
2- Primal recovery: Update method of [18]:

ŵt`1
i “ t ŵti{pt` 1q ` w̄ti{pt` 1q.

3- Consensus:
For τ “ 1 to ϕ

aaaa

˛ Send Gi,t and Qi,t to the neighboring sensor
nodes;
˛ Perform, in parallel, one consensus step as

Vi,τ,t
j “

m
ÿ

p“1

rZsi,pV
p,τ´1,t
j ,

which is initialized as in (19).
End
4- Dual recovery: Update each sensor’s dual variable as

Gi,t`1
j “ Pľ0

!

Vi,ϕ,t
j

)

,@j.

Output: Gi,t`1
j , ŵt`1

i , @i, j.

function is upper bounded as

}ŵt}1 ď }ŵ}1 `
nG2

2tα{m
`

αm p
?
nQ` τq2

2
` τm

?
nG ` mψ2pα,Q, ϕq. (23)

and it is lower bounded as

}ŵt}1 ě }ŵ}1 ´
9nG2

2tα{m
´

αm p
?
nQ` τq2

2
´ τm

?
nG ´ mψ2pα,Q, ϕq, (24)

where Q is an upper bound on the norm of the dual subgradient Qi,t
j , and ψ2 is a non-negative function

monotonically increasing with α and decreasing with ϕ, and τ is a non-negative scalar depending on ϕ.

To sum up, these lower and upper bounds on the primal function indicate a convergence rate of Op1{tq

for the running average primal sequence to a bounded region around the optimal primal cost }ŵ}1 (the

solution to SparSenSe). The width of this region depends on α and ϕ.

IV. SENSOR SELECTION FOR CORRELATED NOISE

In this section, we develop a sparsity-aware sensor selection paradigm, by considering a correlated

noise. This normally happens for neighboring sensors in a dense network. We derive centralized and

distributed algorithms and investigate the convergence properties of the distributed algorithm.

July 19, 2015 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2460224, IEEE Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

A. Centralized Algorithm

Similar to the uncorrelated case in Subsection III-A, we can construct (1) and compute the MSE of the

ML estimator as in (2). However, given correlated noise, different from the case of uncorrelated noise,

C is not diagonal and can even be a full matrix if all the sensors experience correlated noise. Thus, the

non-diagonal elements rCsi,j , i ‰ j, should also be incorporated within our selection procedure. In order

to handle these non-diagonal elements, we define a symmetric PSD selection matrix W “ wwT , where

w is our selection vector as defined earlier. Notice that based on this new definition of W, rCsi,j will

only be incorporated if both wi and wj are non-zero at the same time. A possible selection constraint

can then be stated as

tr
`

pAT rW dC´1sAq´1
˘

ď γ, (25)

where d stands for the Hadamard product. Note that since wi P t0, 1u, we have diagpWq “ w,

where diagpXq returns a vector containing the diagonal elements of X. Again, by exploring the sparsity

embedded within the problem, it can be cast as the following optimization program

minimize
W,u

}diagpWq}0 (26a)

s.t.

»

–

AT rW dC´1sA ej

eTj uj

fi

fl ľ 0, @j, (26b)

}u}1 ď γ, uj ě 0, j “ 1, . . . , n, (26c)

W ľ 0, (26d)

rWsi,j P t0, 1u, rankpWq “ 1. (26e)

Similar to the derivations in Subsection III-A, the constraints (26b) and (26c) are a more suitable

representation of the original constraint (25). We denote the global optimizers of (26) as pW˚,u˚q.

Clearly, the problem in (26) is non-convex due to its objective (`0 norm), and the first and the third terms

in (26d) (finite-alphabet constraint on the elements of W and rank-1 constraint, respectively). Delving

LpW,u,Gq “

m
ÿ

i“1

wii ´
n
ÿ

j“1

tr

˜

„ řm
i“1

ř

kPĎNi
wik c̃

´1
ik ai a

T
k ej

eTj uj



Gj

¸

“

m
ÿ

i“1

˜

wii ´
n
ÿ

j“1

tr
ˆ„ ř

kPĎNi
wik c̃

´1
ik ai a

T
k ej{m

eTj {m uj{m



Gj

˙

¸

“

m
ÿ

i“1

Lipwi,u,Gq.(35)
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deeper in (26) reveals a problem on our way to distribute it in the next subsection, and that is the positive

semidefiniteness constraint on W in (26d). Positive semidefiniteness is a global constraint and cannot be

decomposed into corresponding sub-constraints, as we desire in the next subsection. That is why we use

the following lemma and replace (26d) with the following sufficient condition

W P Dm, WT “W, (27)

where D “ tX | rXsi,i ě
ř

j‰irXsi,j ,@iu denotes the set of diagonally dominant matrices.

Lemma 1. A symmetric diagonally dominant matrix with real non-negative entries is PSD.

Proof: The proof follows from Greshgorin’s circle theorem [21].

Finally, we relax the three non-convex terms to obtain

minimize
W,u

trpWq (28a)

s.t.

»

–

AT rW dC´1sA ej

eTj uj

fi

fl ľ 0, @j, (28b)

}u}1 ď γ, uj ě 0, j “ 1, . . . , n, (28c)

0 ď rWsi,j ď 1, W P Dm, WT “W. (28d)

We call this algorithm SparSenSe-C to distinguish it from SparSenSe, and we denote its optimizer as

pŴ, ûq. A final step to recover ŵ from Ŵ is to apply a Choleskey decomposition and a possible

randomization to compensate for the relaxed rank-1 constraint. Alternatively, we can simply consider

ŵ “ diagpŴq, which is what we do in this paper.

B. Distributed Algorithm

In this section, we develop a distributed version of SparSenSe-C. In order to derive a distributed

algorithm, we follow the same steps as described in the beginning of Subsection III-B, i.e. constructing

the Lagrangian, defining a dual function, investigating its decomposability for a fixed dual variable, and

pŵs`1
i , ûs`1q “ argmin

wiPĎWc
i ,uPU

Lipwi,u,Gq `
ÿ

kPNi

λsikpwik ´
wsik ` w

s
ki

2
q `

ÿ

kPNi

ρ

2

›

›

›

›

wik ´
wsik ` w

s
ki

2

›

›

›

›

2

2

.

(39)
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finally proposing an overall distributed algorithm.

In regards to the correlated noise, our general approach towards the problem is to decompose it so that

the i-th sensor can estimate the i-th row of W. Looking at SparSenSe-C, we clearly observe that the

non-diagonal elements of C´1 complicate the derivation of a distributed algorithm compared to the case

of DiSparSenSe. The more non-diagonal elements, the more coupling terms are introduced, and thus, the

more computational and communication steps are required.

Triggered by the localized nature of many phenomena of interest in practical applications, we define

the following set of noise covariance matrices

C “ tC | C ľ 0, rCsi,j “ 0, if rIm `Asi,j “ 0u, (29)

where A is the adjacency matrix associated with the network connectivity graph with zero diagonal

elements. This means that we consider the nodes to experience correlated noise with their immediate

neighbors. In practice, C P C is a sparse matrix if the network is not highly connected. We can reorder C

using the Cuthill-McKee algorithm [22] to end up with a banded matrix. Note that we need to distribute

C´1 as in (28). One solution is to compute the inverse of such a banded matrix in a distributed fashion

using only local computations at different sensors via algorithms such as “DICI” in [23]. The alternative

solution is to approximate it. Nonetheless, the inverse would not necessarily be a banded matrix. In

general, C “ Cd ` C̄d, where Cd and C̄d respectively stand for the matrices containing the diagonal

and non-diagonal elements of C. We can rewrite

C´1 “ C´1d
`

Im `C´1d C̄d

˘´1
. (30)

Now, for the specific case where the autocorrelation of the noise experienced at each sensor is much

larger than the cross-correlation with its neighbors, we have }Im}F " }C´1d C̄d}F . For such a case, we

can use Taylor’s expansion as

C´1 “ C´1d

ˆ

Im ´C´1d C̄d `
1

2
pC´1d C̄dq

TC´1d C̄d ` ¨ ¨ ¨

˙

,

“ C´1d

ˆ

Im ´C´1d C̄d `
1

2
C´1d C̄2

dC
´1
d ` ¨ ¨ ¨

˙

, (31)

which due to C̄d, C̄2
d, and the next powers of C̄d mandates single-hop, two-hop, and multi-hop com-

munications. To simplify our next derivations, and without loss of generality (see Remark 2), we can

July 19, 2015 DRAFT



1053-587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2460224, IEEE Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING 15

confine ourselves to a first-order approximation as

C̃´1 « C´1d
`

Im ´C´1d C̄d

˘

, (32)

which after reordering is again a banded matrix and easier to be distributed.

To simplify our subsequent notations, let us denote the pi, jq-th element of C, C̃´1 and W by cij , c̃´1ij

and wij , respectively. We also denote the i-th row of W by wi. Next, we define the following convex

set

Wc
i “ twi | 0 ď wik ď 1, wii ě

ÿ

j‰i

wij , wik “ wki,@k P sNi, u. (33)

Note that sensor i only estimates N̄i elements out of m in wi because the rest are known to be zeros.

The banded property of our newly defined C̃´1 in (32) helps us to expand (25) as

tr

¨

˝

´

m
ÿ

i“1

ÿ

kPĎNi

wik c̃
´1
ik ai a

T
k

¯´1

˛

‚ď γ, (34)

and construct the Lagrangian of (28a)-(28b) as (35) (shown at the bottom of this page). Both Gj and G

are defined earlier. Now, the dual function of L can be given by

qpGq “ min
wiPWc

i ,uPU

m
ÿ

i“1

Lipwi,u,Gq. (36)

Given the structure of Wc
i the dual function is not immediately separable. This is because the row-

wise symmetry constraint within Wc
i , i.e., wik “ wki,@k P sNi, cannot be handled only based on local

information available at sensor i; we also need to know the wki’s. That is why we try to restructure the

dual function. An alternative way to write the dual function is to detach and explicitly write the row-wise

symmetry constraint wik “ wki. To this aim, we modify Wc
i as

ĎWc
i “ twi | 0 ď wik ď 1, wii ě

ÿ

j‰i

wij ,@k P sNiu, (37)

and instead of (36), we write

qpGq “ min
wiPĎWc

i ,uPU

#

m
ÿ

i“1

Lipwi,u,Gq |s.t.wik “ wki,@k P sNi

+

(38)

Given a certain value of G, the function qpGq and its subgradient w.r.t. G, called Q and defined later

on, can be computed. Bear in mind that (as in Proposition 1) the minimization and the sum operators
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Algorithm 2 ADMM
Input: ρ, G, λik, wik, @i, k.
For s “ 0 to smax ´ 1

aaaa

1- In parallel at each sensor, solve (39).
2- Each sensor transmits its own estimate ŵs`1

i to its
neighbors.
3- Update λik’s as

λs`1
ik “ λsik ` ρ

pws`1
ik ´ ws`1

ki q

2
End
Output: w̄i “ ŵsmax

i and ū “ ûsmax .

can be swapped for u. The point is that (35) is not strongly convex. Besides, we need to decompose

(38) and solve it in a distributed fashion at each sensor. A possible solution with good convergence

properties under such conditions (in contrast to typical primal or dual decomposition algorithms) is to

employ the alternating direction method of multipliers (ADMM) [24]–[26] for a fixed G. An example

of using ADMM for sensor scheduling can be found in [27].

Algorithm 2 shows the resulting ADMM, where the symmetry is enforced by the second and third

terms of (39) in step 1 of the algorithm. In particular, in step 1, we can readily decompose (39) (shown

at the bottom of this page) into an LP for u and a quadratic program (QP) for wi. To this goal, it is

enough to substitute Lipwi,u,Gq from (35) in (39), decompose the result into respective parts for wi

(resulting in a QP) and u (resulting in an LP). The results can efficiently be solved using the MATLAB

optimization functions linprog and quadprog. This is a straightforward mathematical exercise and details

are omitted in favor of limited space and the similarity to the sequence in the proof of Proposition 1.

In practice, as we also discuss in the next subsection, we only need a few iterations to converge

(smax ă 10). Similar to our analysis in Subsection III-B, the original `1-regularization (28) leads to the

dual optimization problem

maximize
G1ľ0,...,Gnľ0

qpGq, (40)

with zero duality gap. Again, we solve (40) using the dual subgradient method of [18], where each sensor

requires a copy of the subgradient of qpGq w.r.t. Gj as before

Qj “ ∇Gj
qpGjq

“ ´

»

–

řm
i“1

ř

kPĎNi
w̄ik c̃

´1
ik aia

T
k ej

eTj ūj

fi

fl , (41)

where the w̄ik’s and ūj’s are the outputs of the ADMM iterations in Algorithm 2. Similar to Subsec-
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Algorithm 3 DiSparSenSe-C
Initialization: Gi,0

j “ In`1, w0
i “ 0, @i, j.

Input: Gi,t
j , ŵt, @i, j.

aaaa

1- Dual Optimization (ADMM):

aaaa

˛ Initialize Algorithm 2 with ρ, λik “ 0, @i and k P
sNi, Gi,t and ŵi’s.
˛ Use outputs w̄t

i “ w̄i and ūt “ ū to compute Qi,t

using (41).
2- Primal recovery: Update method of [18]:

ŵt`1
i “ t ŵt

i{pt` 1q ` w̄t
i{pt` 1q.

3- Consensus:
For τ “ 1 to ϕ

aaaa

˛ Send Gi,t and Qi,t to the neighboring sensor
nodes;
˛ Perform, in parallel, one consensus step as

Vi,τ,t
j “

m
ÿ

p“1

rZsi,pV
p,τ´1,t
j ,

which is initialized as in (19).
End
4- Dual recovery: Update each sensor’s dual variable as

Gi,t`1
j “ Pľ0

!

Vi,ϕ,t
j

)

,@j.

5- Selection: Estimate the selection vector

ŵt`1
“ diag

´

rpŵt
iq
T , ¨ ¨ ¨ , pŵt

iq
T
s
T
¯

Output: Gi,t`1
j , ŵt`1, @i, j.

tion III-B, the need for a global knowledge of Q is circumvented using an inexact consensus procedure.

The rest of the steps follow the same trend as in DiSparSenSe except that instead of an LP to solve

the dual optimization problem, here we have an extra inner-loop for ADMM. Our proposed algorithm

for distributed SparSenSe in case of correlated noise (we call it DiSparSenSe-C) is summarized in

Algorithm 3, where we denote the primal optimizer of DiSparSenSe-C at iteration t as ŵt.

Remark 2. We would like to highlight that our assumption on the structure of C´1 does not limit

the generality of the proposed solution, i.e., DiSparSenSe-C. In the most generic case where C´1 is

a full matrix, each sensor has to estimate a full row instead of only a few elements (corresponding to

its neighbors) in each row of W. This calls for rounds of multi-hop communications if the network is

connected. Nonetheless, our proposed approach immediately applies.

Remark 3. DiSparSenSe-C can readily be applied to the case of uncorrelated noise. However, if

some knowledge about the nature of the experienced noise is available it makes sense to employ the

corresponding algorithm, especially from a complexity perspective.
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C. Convergence Properties of DiSparSenSe-C

In this subsection, we first investigate the convergence of the ADMM iterations. To this aim, we

compare the solution of ADMM with the corresponding centralized problem at time iteration t for a fixed

Gi,t. We show that in practice, the proposed ADMM iterations converge to the result of the centralized

problem with a modest accuracy, sufficient for our application, within only a few iterations. The related

centralized problem is

minimize
W,u

trpWq´

m
ÿ

i“1

n
ÿ

j“1

tr
ˆ

»

–

ř

kPĎNi
wik c̃

´1
ik ai a

T
k

ej

m

eT
j

m
uj

m

fi

fl Gi,t
j

˙

(42a)

s.t. }u}1 ď γ, uj ě 0, j “ 1, . . . , n, (42b)

0 ď wi,j ď 1,@i, j, W P Dm, WT “W, (42c)

where we denote the solution to the aforementioned problem with pŴt
cent., û

t
cent.q. This convergence

is illustrated in Subsection VI-B for our simulation setup. As a result of this fast dual optimization

convergence, given that the major difference between DiSparSenSe and DiSparSenSe-C is the dual opti-

mization part, the convergence proof of DiSparSenSe-C follows the same path as the one of DiSparSenSe.

Therefore, we can prove similar expressions as (64)-(65), for DiSparSenSe-C. The formal proof is almost

identical to the one of DiSparSenSe, and thus, we omit it in this paper due to space limitations.

V. COMPLEXITY ANALYSIS

Let us investigate the computational and communication complexities of the proposed distributed algo-

rithms (DiSparSenSe and DiSparSenSe-C) compared to the centralized ones (SparSenSe and SparSenSe-

C). A deeper look into the steps of Algorithm 1 reveals that step 2 requires the solution of an LP problem

whose computational complexity is Opn3q, where Op.q denotes the order of complexity. Besides, the

communication cost involved in step 3 is OpϕNin
3q because n square matrices of size n`1 are broadcast

to Ni neighbors for ϕ times. Furthermore, step 4 requires n singular value decompositions, each of which

requires a computational complexity of Opn3q. Thus, the total computational complexity of DiSparSenSe

is Opn4q per sensor per iteration which is considerably lower compared to the computational complexity

of SparSenSe which is Opm3q (m " n). The communication cost of DiSparSenSe is OpϕNin
3q per

sensor per iteration which is reasonably low as it is independent of m.
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TABLE I: Complexity Order Comparison

Algorithm Comp. complexity Comm. complexity

SparSenSe Opm3
q ´

SparSenSe-C Opm3
q ´

DiSparSenSe Opn4
q OpϕNin

3
q

DiSparSenSe-C Opn4
` smaxpN

3
i ` n

3
qq OpNipϕn

3
` smaxqq

DiSparSenSe-C involves almost the same computational and communication costs as compared to

DiSparSenSe. The main difference is step 1 of Algorithm 3, i.e., ADMM, which requires the solution

of smax local QP problems with dimension Ni and local LP problems with dimension n, resulting in a

total complexity of OpsmaxpN
3
i `n

3qq. ADMM also calls for an extra communication cost of Opsmax Niq

because of step 2 of Algorithm 2. Thus, the total computational cost of DiSparSenSe-C is Opn4 `

smaxpN
3
i `n

3qq and its communication cost is OpNipϕn
3` smaxqq, both per sensor per iteration. Table I

summarizes the discussed complexities of both centralized and distributed algorithms. From the table, we

observe that the computational and communication complexities of DiSparSenSe-C are relatively larger

than those of DiSparSenSe due to replacing a simple LP with ADMM iterations in order to handle the

correlated noise.

VI. NUMERICAL RESULTS

In this section, we investigate the performance of the proposed algorithms. First, we would like to see

whether SparSenSe and SparSenSe-C actually select a few sensors (i.e., a sparse solution) which satisfies

the MSE constraint. Then, we consider these centralized algorithms as our selection performance metric

beyond which we cannot perform, and investigate whether their corresponding distributed algorithms

(namely, DiSparSenSe and DiSparSenSe-C) select the same sensors or not.

To this objective, we consider a medium-scale network with m “ 50 sensors to estimate a parameter

of interest x of dimension n “ 2. The regression matrix A P R50ˆ2 is drawn from a zero-mean unit-

variance Gaussian distribution N p0, 1q. For DiSparSenSe and DiSparSenSe-C we assume that the sensors

are connected based on a random connectivity graph G with average node degree of 5. Further, we set

the SNR to 10dB and γ “ 0.1. We can consider a sensor as active by defining thresholds based on

our estimation error floor (a complicated function of α and ϕ) coming from our convergence analysis in

Appendix A. A simpler alternative, a rule of thumb, would be to consider a sensor as active if wi ą α{10,

and this is what we consider in our simulations.
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Fig. 2: Selected sensors for the uncorrelated case

In order to quantitatively assess the performance of the distributed algorithms, we define an equivalence

metric to investigate the normalized level of similarity between the selected sensor sets by the centralized

and distributed algorithms. To this aim, we define Sc as the set of indices of the selected sensors by the

centralized algorithms and Sd as the set for the corresponding distributed algorithms. This helps us to

define an equivalence metric between the distributed and centralized algorithms as

ξ “ 1´ |Sc X Sd|{maxt|Sc|, |Sd|u, (43)

which means that if Sc ” Sd, then ξ “ 0. The centralized problems are solved using CVX [28], and for

the distributed ones we implement them using the aforementioned MATLAB optimization functions.

A. Case of Uncorrelated Noise

In case of uncorrelated noise, for the sake of simplicity of our simulations, we assume that the noise

experienced at different sensors has the same σ “ 1{
?

SNR.

In the first simulation, depicted in Fig. 2, we plot ŵ estimated by SparSenSe and ŵt estimated by

DiSparSenSe for ϕ “ 5. As can be seen, only 3 sensors (out of 50) are activated by SparSenSe to satisfy

our MSE constraint, which verifies the fact that ŵ is sparse. Note that for t “ 70 many different sensors
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Fig. 3: Equivalence metric ξptq

are activated by DiSparSenSe. However, as expected, by increasing the number of iterations (from t “ 70

to t “ 300), the same sensors as for SparSenSe are activated by DiSparSenSe and the magnitude of the

related ŵti’s gradually gets closer to the values estimated by SparSenSe. However, as is clear from the

figure, it is not necessary to attain the magnitudes estimated by SparSenSe to be able to make a decision

about the selected sensors. This result illustrates the fact that our distributed implementation (as expected

from our convergence analysis) converges to the solution of the centralized algorithm.

The next simulation result which is illustrated in Fig. 3, investigates the convergence of DiSparSenSe

over 100 independent Monte Carlo realizations of A (leading to 100 different subsets of sensors to be

selected) for ϕ “ 5, and α “ 0.1 and 0.05. We also plot the standard deviation (std) of our estimates

with dashed lines. As can be seen, for both values of α we converge to the correct solution with an error

floor. The convergence is faster for α “ 0.1 as is expected from our convergence analysis, (64)-(65),

because the second terms on the right-hand-side of both expressions (the ones 91{t) vanish faster with

a larger α. Fig. 3 also illustrates the effect of varying ϕ for α “ 0.1, where reducing ϕ from 5 down to

1 leads to a larger error floor. This can also be justified using our explanations in Appendix A.

Notice that Fig. 3 depicts a smoother convergence compared to our initial results in [10]. As we
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Fig. 4: Convergence of ADMM iterations

discussed earlier in Subsection III-B (Remark 1), this is due to our modified consensus weighting and

the double-consensus. We also observe in our simulations that these modifications bring about a more

robust performance against the choice of A.

B. Case of Correlated Noise

In case of correlated noise, similar to the previous subsection, we assume that the noise experienced

at different sensors has the same σ “ 1{
?

SNR and on top of that a certain level of correlation with the

neighbors defined by the following correlation coefficient

µ “ }Im}F {}C
´1
d C̄d}F . (44)

For the next simulations, except the last one, we consider 5% correlation with the neighbors per sensor,

i.e., µ “ 0.05. For the ADMM algorithm, we set ρ to 0.1 and initialize the λik’s with zeros.

Let us start by investigating the convergence of ADMM, based on our explanations in Subsection IV-C.

The result is illustrated in Fig. 4 where we plot the primal convergence norm }Ŵt´Ŵt
cent.}

2
F vs. s (the

number of ADMM iterations) averaged over 50 iterations t. Here, }¨}F stands for the Frobenius norm. As
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Fig. 5: Selected sensors for the correlated case

can be seen from the figure, in practice, ADMM converges relatively fast within only a few (smax ă 10)

iterations. Note that this is partly due to the fact that the solution of DiSparSenSe-C is actually sparse,

and hence, for many i and k P sNi, wik “ wki “ 0. This means Ŵt is almost automatically symmetric

and only a few ADMM iterations would suffice to converge to a feasible solution.

In the next simulation, we plot ŵ and ŵt respectively estimated by SparSenSe-C and DiSparSenSe-C

for ϕ “ 10 in Fig. 5. As can be seen, only 3 sensors (out of 50) are activated by SparSenSe-C to

satisfy our MSE constraint. Similar to the case of DiSparSenSe, by increasing the number of iterations

from t “ 30 to t “ 200, the same sensors as for SparSenSe-C are activated by DiSparSenSe-C and

the magnitude of the related ŵti’s gradually gets closer to the values estimated by SparSenSe-C. This

result clarifies the fact that our distributed implementation (as expected from our convergence analysis)

converges to the solution of the centralized algorithm within a bounded error.

The simulation results depicted in Fig. 6 investigate the convergence of DiSparSenSe-C over 100

independent Monte Carlo trials for ϕ “ 10, and α “ 0.01 and 0.005. As can be seen from the figure,

for both values of α we converge with an error floor. Similar to the case of DiSparSenSe in the previous

subsection, the convergence is faster for the larger α “ 0.01, as is also expected from our convergence
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Fig. 6: Equivalence metric ξptq

analysis. However, we observe here that with α “ 0.005 we also get a better equivalence performance

compared to α “ 0.01. Fig. 6 also illustrates the effect of varying ϕ for α “ 0.005 where reducing ϕ

from 10 to 3 leads to a larger error floor. This can be justified using our convergence results, similar to

our explanations for DiSparSenSe in the previous subsection.

Finally, we attempt to investigate the effect of our assumptions (on approximation of C̃´1 and the

diagonally dominant surrogate of positive semidefiniteness) for different correlation regimes (different µ).

To this aim, we consider the following four problems. P0: the original problem in (26) (fed with C´1)

which is non-convex and should be solved via exhaustive search, P1: the relaxed problem SparSenSe-C

in (28) (fed with C̃´1), P2: the relaxed problem SparSenSe-C in (28) (fed with C´1), P3: the relaxed

problem with PSD constraint replaced with diagonal dominance (fed with C´1). Notably, we have already

shown that our distributed algorithms converge to the same solution as the centralized ones, and that is

why for this simulation we do not plot them.

The results for the number of selected sensors are depicted in Fig. 7 for µ “ 0 to 0.7, and for 100

independent Monte Carlo trials. Note that, µ “ 0 corresponds to the uncorrelated case (SparSenSe), and

µ “ 0.7 represents a highly correlated case. As can be seen, increasing the amount of correlation leads
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to selecting more sensors in all the relaxed problems P1 to P3, which is due to the `1-norm relaxation.

On the other hand, the original centralized problem P0, keeps on selecting only 2 sensors for γ “ 0.1.

Remember that decreasing γ leads to selecting more sensors by P0, and increases the sensitivity to the

correlation effect. An important observation to highlight is that the overall gap between P0 and the other

three algorithms is due to the `1-norm relaxation.

Another observation is that the results of P2 and P3 coincide even in terms of the indices of the selected

sensors, which is omitted in this figure. This confirms the validity of our proposition on replacing positive

semidefiniteness with diagonal dominance. More interestingly, even our proposal to adopt C̃´1 (leading

to the transition from P2 to P1) does not considerably affect the performance of the selection algorithm.

To be more specific, P1 (SparSenSe-C) still selects a sparse number of sensors, and more importantly,

this number is almost the same as for the other related problems (P2 and P3).

VII. CONCLUSIONS

We have proposed a framework for sparsity-aware sensor selection in centralized and distributed

fashions for cases where the noise experienced by different sensors is either uncorrelated or correlated.

In favor of the limited space, we have omitted the possibility of imposing different budget constraints
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(such as power budget) on the sensors. Our initial results show that involving such constraints into our

optimization problems would lead to the selection of different subsets of sensors. Another direction

to be investigated is the case of time-varying regressors. We are currently considering dynamic sparse

reconstruction algorithms to handle this problem.

APPENDIX A

CONVERGENCE ANALYSIS OF DISPARSENSE

In this appendix, we analyze both primal and dual convergence properties of DiSparSenSe1. First of

all, since the sets Wi and U in (7) and (8) are compact, the subgradient Qi,t
j is bounded by a certain

finite bound Q [20] as

}Qi,t
j }F ď Q, j “ 1, ¨ ¨ ¨ , n, i “ 1, ¨ ¨ ¨ ,m, t ě 0. (45)

For the consensus matrix Z in (22), we can show that

Z “ ZT , Z1m “ 1m, ρ
´

Z´
1m1

T
m

m

¯

ď ν ă 1, (46)

where ρp¨q returns the spectral radius and ν is an upper bound on the value of the spectral radius. In

the following, we assume that the dual variable estimates Gi,t
j ’s are bounded by a convex compact set

(comprising the zero element) as

}Gi,t
j }F ď G, j “ 1, ¨ ¨ ¨ , n, i “ 1, ¨ ¨ ¨ ,m, t ě 0, (47)

for a certain finite positive constant G. Nonetheless, if this is not the case, we can always project them

into such a bounded set, which will not considerably affect our subsequent convergence analysis [18].

A. Dual Objective Convergence

Let us start our convergence analysis in the dual sense by the following theorem.

Theorem 1. Let q̂ be the optimal dual value of SparSenSe (10), i.e.,

q̂ “ max
G1ľ0,...,Gnľ0

m
ÿ

l“1

qlpGq. (48)

1A generalization of this proof for a wider class of optimization problems can be found in [29].
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Then, there exists a finite ϕ̄ ą 0 such that if ϕ ě ϕ̄ the sequence of dual functions tqpGi,tqu generated

by DiSparSenSe converges as

lim sup
tÑ8

qpGi,tq ě q̂ ´mψ1pα,Q, ϕq, i “ 1, ¨ ¨ ¨ ,m, (49)

where ψ1 is a non-negative function of ϕ, α, and Q.

Proof: The proof is based on Theorem 2 of [20]. The trick is to first rewrite the steps of DiSparSenSe

in a more compact way. To this aim, we define the vectors gi,tj “ vecpGi,t
j q and hi,tj “ vecpQi,t

j q. Next,

we define the convex set G as

G “ tgi,t|Gi,t
j ľ 0, j “ 1, ¨ ¨ ¨ , nu. (50)

This helps us to rewrite the updates in DiSparSenSe (21) as

gt`1 “ PG
“

pZInpn`1qq
ϕpgt ` αmhtq

‰

, (51)

where

gt “ rpg1,t
1 q

T , ¨ ¨ ¨ , pg1,t
n q

T , ¨ ¨ ¨ , pgm,t1 qT , ¨ ¨ ¨ , pgm,tn qT sT , (52)

ht “ rph1,t
1 q

T , ¨ ¨ ¨ , ph1,t
n q

T , ¨ ¨ ¨ , phm,t1 qT , ¨ ¨ ¨ , phm,tn qT sT , (53)

where b stands for the Kronecker product. Note that now we can see DiSparSenSe as a subgradient

method to minimize the function ´qpgq, exactly as the recursion (8) in [20], and apply Theorem 2 of [20].

To do so, we first have to make sure their main assumptions hold. Assumptions 1, 2, and 4 of [20] hold in

our case since the subgradient is bounded, the consensus matrix Z verifies the properties of Assumption 2,

and Assumption 4 holds given that }Gi,t
j }F ď G, @i, j. Let us also define vi,tj “ vecpVi,ϕ,t

j q. Now, the

term
›

›

›
vi,0j ´

1

m

m
ÿ

p“1

vp,0j

›

›

›
(54)

is bounded since we initialize the algorithm with a fixed Gi,0
j “ G0, @i, j, and also because the

subgradient is bounded. Given this, Theorem 2 of [20] yields the claim.

Notice that due to optimality, qpGi,tq “
řm
l“1 qlpG

i,tq cannot be greater than q̂, and therefore lim inftÑ8 |qpG
i,tq´

q̂| ď mψ1pα,Q, ϕq, i “ 1, ¨ ¨ ¨ ,m, which guarantees convergence of the dual function to a bounded

error floor around its optimal value. The requirement ϕ ě ϕ̄ is not too restrictive, as explained in [20].

Based on the definition of gi,tj and the definition of vi,tj , let us define the two average vectors ḡt and
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v̄t, defined as

ḡt “
” 1

m

m
ÿ

i“1

pgi,t1 q
T , . . . ,

1

m

m
ÿ

i“1

pgi,tn q
T
ıT
, (55)

v̄t “
” 1

m

m
ÿ

i“1

pvi,t1 q
T , . . . ,

1

m

m
ÿ

i“1

pvi,tn q
T
ıT
, (56)

as well as the following two supporting sequences

yt “ PGrv̄
t´1s, dt “ ḡt ´ yt. (57)

For the supporting sequence yt the following lemmas hold.

Lemma 2. The sequence yt is updated with an ε-subgradient method [30] to maximize qpyq, that is

yt`1 “ PG

”

yt `
α

m
h̃t
ı

, (58)

where the vector

h̃t “
m
ÿ

i“1

phi,t ` dt{αq, (59)

with

hi,t “ rphi,t1 q
T , . . . , phi,tn q

T sT , (60)

is an ε-subgradient of qpyq and ε “ mψ2pα,Q, ϕq. Notably, PGr.s stands for projection onto the convex

set G and ψ2 is a positive function of ϕ, α, and Q. Furthermore, dt{α is bounded, i.e., }dt{α} ď τ , for

a certain non-negative scalar τ , and

qipyq ď qpytq ` ph̃tqT py ´ ytq ` ψ2pα,Q, ϕq, @y P G. (61)

Proof: The proof follows from the definition of the supporting sequences yt and dk in (57) and, in

particular, directly from [20, Lemma 5 and Theorem 2] applied to our update sequence (51).

Lemma 3. For the supporting sequence yt the followings hold.

(a)

´

t
ÿ

k“1

ph̃kqTyk ď
}y1}2

2α{m
` t

αm p
?
nQ` τq2

2
. (62)
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(b)

`

t
ÿ

k“1

ph̃kqT ŷ ď
}y1 ´ 2ŷ}2

2α{m
` t

αm p
?
nQ` τq2

2
` t ψ2pα,Q, ϕq, (63)

where ŷ is the optimal dual variable.

Proof: The result is rather standard and applies to any ε-subgradient method. A concise proof for

the case ε “ 0, can be found in [18, Proposition 3-(a)]; extending it to any ε ě 0 is straightforward.

B. Primal Objective Convergence

In this subsection, we investigate the convergence of the running average cost }ŵt}1 to the optimal

value of the primal cost }ŵ}1. Our analysis is formulated in the following theorem.

Theorem 2. Convergence of the primal running average sequence tŵt, ûtu can be formulated as follows.

(a) The running average cost is upper bounded as

}ŵt}1 ď }ŵ}1 `
nG2

2tα{m
`

αm p
?
nQ` τq2

2
` τm

?
nG ` mψ2pα,Q, ϕq. (64)

(b) The running average cost is lower bounded as

}ŵt}1 ě }ŵ}1 ´
9nG2

2tα{m
´

αm p
?
nQ` τq2

2
´ τm

?
nG ´ mψ2pα,Q, ϕq. (65)

where ψ2pα,Q, ν, ϕq is a positive function, monotonically increasing with α and decreasing with

ϕ. The non-negative scalar τ is defined in Lemma 2.

Proof: The proof is an adaptation of Proposition 3 in [18]. Let us start with claim (a). From convexity

of the primal cost } ¨ }1 and the definition of w̄ti as a minimizer of the local Lagrangian functions, we

have for t ě 1,

}ŵt}1 ď
1

t

t
ÿ

k“1

}w̄k}1 “
1

t

t
ÿ

k“1

m
ÿ

i“1

´

qipg
i,kq ´ pgi,kqThi,k

¯

, (66)

where

gi,k “ rpgi,k1 q
T , . . . , pgi,kn q

T sT . (67)

From Lemma 2, since gi,k P G, we have

qipg
i,kq ´ qipy

kq ď phi,kqTgi,k ` pdk{αqTgi,k ´ phi,k ` dk{αqTyk ` ψ2pα,Q, ϕq. (68)
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Next, by summing over i, we obtain

m
ÿ

i“1

qipg
i,kq ď qpykq `

m
ÿ

i“1

phi,kqTgi,k `
m
ÿ

i“1

pdk{αqTgi,k ´ ph̃kqTyk ` mψ2pα,Q, ϕq, (69)

and thus,

}ŵt}1 ď
1

t

t
ÿ

k“1

´

qpykq `

m
ÿ

i“1

pdk{αqTgi,k ´ ph̃kqTyk ` mψ2pα,Q, ϕq
¯

. (70)

We can use Lemma 3-(a) to find an upper bound for the term ´ph̃kqTyk. Besides, since }pdk{αqTgi,k} ď

}dk{α}}gi,k} and we known from Lemma 2 that }dk{α} ď τ , together with }gi,k} ď
?
nG from our

earlier assumption on bounded dual variable estimates, we obtain }pdk{αqTgi,k} ď τ
?
nG. With this in

place, we can rewrite (70) as

}ŵt}1 ď
1

t

t
ÿ

k“1

qpykq `
}y1}2

2tα{m
`

αm p
?
nQ` τq2

2
` mτ

?
nG ` mψ2pα,Q, ϕq. (71)

We known that by optimality qpykq ď q̂, by strong duality q̂ “ }ŵ}1, and }y1}2 ď nG2. Therefore, the

claim (a) follows.

As for claim (b), given any optimal dual solution ŷ, we have

}ŵt}1 “ }ŵ
t}1 ` pŷq

T
´1

t

t
ÿ

k“1

h̃k
¯

loooooooooooooomoooooooooooooon

ω

´pŷqT
´1

t

t
ÿ

k“1

h̃k
¯

. (72)

We also know that,

ω “ }ŵt}1 ` pŷq
T
´1

t

t
ÿ

k“1

m
ÿ

i“1

hi,k
¯

`mpŷqT
´1

t

t
ÿ

k“1

dk{α
¯

ě }ŵt}1 ` pŷq
T
´

m
ÿ

i“1

hi,kpŵkq

¯

´m
?
nGτ. (73)

Furthermore, owing to the saddle point property of the Lagrangian function, i.e.,

Lpŵk, ûk, ŷq ě Lpŵ, û, ŷq “ q̂ “ }ŵ}1, (74)

we can write

}ŵt}1 ` pŷq
T
´

m
ÿ

i“1

hi,kpŵkq

¯

´ m
?
nGτ “ Lpŵk, ûk, ŷq ´ m

?
nGτ ě }ŵ}1 ´ m

?
nGτ. (75)
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We can now find an upper bound for the term pŷqT
`

1
t

řt
k“1 h̃

k
˘

in (72) as in Lemma 3-(b). By substituting

this bound in (72) and by combining it with (73)-(75), we obtain

}ŵt}1 ě }ŵ}1 ´ mτ
?
nG ´

}y1 ´ 2ŷ}2

2tα{m
´

αmp
?
nG` τq2

2
´ mψ2pα,Q, ϕq, (76)

and since }y1 ´ 2ŷ}2 ď 9nG2, the claim follows.
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