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The results clearly show that the sparse LMS outperforms the stan-
dard LMS, which gives a good estimate for the actual spectrum. Con-
sequently, the periodic property of the source signal can be revealed
based on the estimated spectral peaks. The results also imply that the
proposed sparse algorithms are workable for a practical AR process as
commented in Remark 4.

V. CONCLUSION

In this paper, we have addressed the problem of in-network dis-
tributed estimation for sparse vectors. In order to exploit the sparsity
of the vector of interest, both the ��- and ��-norm are added into the
cost function of the standard LMS, and some sparse algorithms are de-
veloped correspondingly. The mean stability and mean-square conver-
gence of the proposed algorithms have been analyzed, and the rules for
selecting the intensity of the zero-attracting term have been derived.
Results show that the proposed sparse LMS algorithms can reduce the
mean-square errors, whilst slightly speed up the convergence, if suit-
able intensities are selected. The ��-RWLMS and ��-LMS are much
better than the ��-LMS. Moreover, an application of the proposed al-
gorithms in spectrum estimation has been presented. It is worth to point
out that, the proposed methodology for deriving the sparse solutions is
systematic. It can be easily extended to the other distributed algorithms,
such as incremental LMS [13] and diffusion recursive least squares
(RLS) [22].
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Dynamic Multidimensional Scaling for Low-Complexity
Mobile Network Tracking

Hadi Jamali-Rad and Geert Leus

Abstract—Cooperative localization of mobile sensor networks is a
fundamental problem which becomes challenging for anchorless networks
where there is no pre-existing infrastructure to rely on. Two cooperative
mobile network tracking algorithms based on novel dynamic multidimen-
sional scaling (MDS) ideas are proposed. The algorithms are also extended
to operate in partially connected networks. Compared with recently
proposed algorithms based on the extended and unscented Kalman filter
(EKF and UKF), the proposed algorithms have a considerably lower
computational complexity. Furthermore, model-independence, scalability,
as well as an acceptable accuracy make our proposed algorithms a good
choice for practical mobile network tracking.

Index Terms—Anchor-less localization, mobile network tracking, sub-
space tracking.

I. INTRODUCTION

Cost and energy prohibitive global positioning systems (GPS) mo-
tivate researchers to focus on estimating the location of sensor nodes
using their pairwise distances in a cooperative context [1]. Studies on
cooperative network localization can be divided into two main cate-
gories, i.e., anchored and anchorless localization. Anchored localiza-
tion algorithms rely on distance measurements between the unknown-
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location nodes and the anchor nodes, whereas anchorless ones can work
without such information and determine the relative location of the
sensor nodes from pairwise distance measurements. Such a relative lo-
cation map could for instance be useful to determine the distribution of
the nodes, but other applications might require an additional relative or
absolute frame of reference. One popular anchorless localization algo-
rithm for a static network is classical multidimensional scaling (MDS)
[2] or its distributed version [3].

Surprisingly, the problem of cooperative network localization for
mobile sensor networks has not been efficiently solved yet. There are
a lot of studies in the literature on single and multiple target tracking
using the extended and unscented Kalman filter (EKF and UKF) as
well as particle filters (PFs) [4]; however, they are mainly noncooper-
ative classical target tracking approaches. For anchored localization,
studies in [5]–[9] investigate the problem of localizing a mobile target
or network using distance measurements in an MDS-based context. In
[6], for instance, a Jacobian-like mobile network tracking algorithm is
proposed by exploiting the Nyström approximation. However, this ap-
proach is noncooperative.

On the other hand, in [10] an anchorless localization scheme for mo-
bile network localization based on the theory of factor graphs is pro-
posed in which each node requires knowledge about its own movement
model as a probability distribution, which is not so simple to acquire in
a real application. In [11] and [12], cooperative network localization al-
gorithms based on the EKF and the UKF are developed which incorpo-
rate the locations of the nodes as well as their velocities in a state-space
model. Although velocity measurements of the nodes aid cooperative
network localization, it requires the use of costly Doppler sensors, and
hence, we avoid using it here. Inspired by the elegance of MDS lo-
calization, we propose to use two novel subspace tracking algorithms
(Section II) to track the variations in the signal eigenvectors and cor-
responding eigenvalues of the time-varying double-centered distance
matrix. We show that this leads to a dynamic MDS paradigm which en-
ables us to track the relative locations of a mobile network using only
pairwise distance measurements. The absolute locations of the mobile
nodes can then be recovered by the help of an absolute frame of refer-
ence provided by a few anchor nodes. In order to circumvent the lim-
itations of the classical MDS, we then also propose an extension for
partially connected mobile networks (Section IV). A detailed compu-
tational complexity analysis as well as the posterior Cramér–Rao bound
(PCRB) derivation (Section III) together with extensive simulation re-
sults (Section V) illustrate that the proposed algorithms are scalable,
acceptably accurate and have a much lower computational complexity
compared to algorithms based on the EKF [11] and the UKF [12].

II. DYNAMIC MULTIDIMENSIONAL SCALING

In this section, we formulate the problem of cooperative network
localization and develop the dynamic MDS idea.

A. Problem Formulation

We consider a network of � mobile wireless sensor nodes, living
in a �-dimensional space �� � ��. Let ���� be the actual coordi-
nate vector of the �th sensor node at the �th snapshot of the mobile
network, or equivalently, let �� � ������ � � � ������ be the matrix of
coordinates. Let us consider an environment with line-of-sight (LOS)
conditions between the nodes and let us assume that time of flight (ToF)
and/or received signal strength (RSS) information is already converted
into noisy distance measurements as ������ � ������ � 	����� , where
������ � ����������� is the noise-free Euclidean distance and 	����� �
� ��� 
��������� is the additive white noise both at the �th snapshot. The
problem considered herein can now be stated as follows. Given the
pairwise noisy distance measurements ������ at each snapshot of the
mobile network, determine the location of the mobile nodes and keep

their track (up to a translation and orthogonal transformation). In case
of a network with fixed nodes, the squared noisy distance measure-
ments ������� between the nodes can be collected in a distance matrix
�� , i.e., ������� � ������� , after which the double-centered distance
matrix can be calculated as �� � �			��			�
 using the centering op-
erator 			 � �� � ���

�
� , where �� denotes an � �� identity matrix

and �� represents an � � � vector of all ones. For the �th snapshot of
the mobile network, the well-known MDS approach [2], [3], [5] then
finds the locations as the solution to �
� ��

���� ��� ����� , where the
minimum is taken over all � � � matrices �� and ���� denotes the
Frobenius norm. The solution can be found by means of the eigenvalue
decomposition (EVD) of �� , which can be expressed as

�� � ����� ���� �
������ �

� ������

�
�
���

�
�
���

(1)

where���� and����, respectively, represent the��� and�����
��matrices containing the orthonormal eigenvectors corresponding to
the signal and noise subspace of �� , and ������ and ������ , respectively,
contain the eigenvalues corresponding to the signal and noise subspace.
The MDS estimate of the location matrix up to a translation and orthog-
onal transformation can then be expressed as

��� � ���
����

�
���� (2)

In the noiseless case, ��� � �����			, where ��� is an arbitrary orthog-
onal transformation and 			 translates the nodes such that their center of
gravity is at the origin. Although the above procedure can be carried
out for every snapshot of the mobile network, the complexity of com-
puting the EVD in (1) can be quite intensive for large� [13], especially
when the nodes have to be monitored continuously. The idea behind the
proposed dynamic MDS materialized by two subspace tracking algo-
rithms is that in order to calculate the location of the nodes using (2),
we only need to update the� signal eigenvectors in���� and their cor-
responding eigenvalues in ������ [14], [15]. This can be done by more
efficient iterative approaches as follows.

B. Perturbation Expansion-Based Subspace Tracking

In this subsection, we will present the perturbation expansion-based
subspace tracking (PEST) algorithm. The idea is that in a mobile net-
work the new location of a node can be considered as a perturbation
of its previous location. Correspondingly, the double-centered distance
matrix�� can also be modeled as a perturbed version of���� ��� �
���� �����. Now, if the movement of the nodes satisfies the prop-
erty that the invariant subspace (here, the signal subspace) of the next
(perturbed) double-centered distance matrix �� does not contain any
vectors that are orthogonal to the invariant subspace of the current
����, then the two bases respectively spanning the signal and noise
subspace of the next double-centered distance matrix follow the ex-
pressions [16]

��	
��� � ������� � �������	� (3)

��	
��� � � �������	

�
� � ������� (4)

where	� is a coefficient matrix, ����� represents an orthonormal basis
spanning the same subspace as the matrix of eigenvectors ���� , and
��	
��� is an unorthonormalized version of ����� . Observe that in (3) and

(4), different from the expressions in [16], we do not necessarily have
the matrices of eigenvectors ���� on the right-hand side. In order to
keep the computational complexity as low as possible, we will resort
to a first-order approximation to compute 	� . However, since we will
continuously use first-order approximations, we cannot assume that
������� and ������� in (3) and (4) are orthonormal bases exactly span-
ning respectively the signal and noise subspaces of ����. And thus,
the first-order approximation of 	� in [16] does not hold anymore,
and we need to derive a new 	� . The value of 	� should satisfy the
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necessary and sufficient condition for ���
��� and ���

��� to be bases for
the perturbed signal and noise subspaces. Thus, we need

���
�����

���
��� � �� (5)

We can expand (5) by substituting (3) and (4) as follows:

�� ��������
�
� � ��������

�
��� ������� � ����������

� ���
���
�������

������� ���
���
�������

���������

� ���
�������

������� � ���
�������

��������� � �� (6)

Now by using �� � ���� ���� we can rewrite (6) as

���
���
�������

���������

��� �����

���
���
��������

�������

��� �����
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��������
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��������� � �� (7)

Note that for small perturbations, �� in (7) will be close to a zero
matrix. Thus, by neglecting the second-order terms, we obtain

���
���
���������

������� � ���
��������

�������

� ���
���������

�������

���

� ���
���������

�������

���

�� � �� (8)

Different from the derivations in [16], the third and fourth terms in (8)
are close but not equal to zero due to the successive first-order approx-
imations as explained earlier. It is notable that (8) is linear in the ele-
ments of �� and can easily be solved w.r.t �� .

However, this requires a����� matrix inverse calculation which
is undesirable due to its high complexity. Therefore, we confine our
approximation of �� to the first three terms in (8). By defining

��������� � ���
���������

�������� (9)

this results in

�� � ���
�������

�������
����
��

������ (10)

To avoid updating ���
��� in (3), we use the property that

�������
���
����� � �������

���
����� � �� . Together with (10), this

allows us to rewrite (3) as

���
��� � ������� � ��� �������

���
��������

�������
����
��

������ (11)

Now, to be able to use the above formula in an iterative fashion
we can normalize it using any orthonormalization process like
Gram–Schmidt (GS) factorization. We call the orthonormalized result
����� . As can be seen from the above derivations, ����� is an approx-
imation of the orthonormal basis which spans the same subspace as
its corresponding signal eigenvectors in ���� . However, to be able to
calculate the relative locations using (2), we have to find the matrix of
eigenvectors ���� . To this aim, we look for a transformation matrix
�� to map ����� to ���� as follows:

����� � ������� (12)

Note that since ����� and ���� are isometries, �� will be a unitary
matrix according to the definition in (12). To be able to estimate the
locations using (2), we also need to calculate ������ , which depends on
the value of ���� and �� as ������ � �

�
���������. From (9), and

using (12), we finally obtain

������� � ��������
�
���������� � �

�
���������� (13)

From (13), �� and ������ can be calculated by the EVD of ������� . Note
that, our main goal for using perturbation expansion was to avoid com-
putationally intensive EVD calculations, while here we require it again.
However, the point is that ������� is a���matrix (the number of dimen-
sions � is in practice at most 3), which is very small in size compared
to the��� double-centered distance matrix�� for large scale sensor
networks. The overall PEST algorithm is summarized in Algorithm 1.
Increasing the measurement interval decreases the computational cost
but introduces larger perturbations, which leads to a degraded result.
To heal this degradation, we can divide ��� in � proportional parts
and run the PEST algorithm � times in each snapshot by successively
applying these partial perturbations as shown by the following mea-
surement update equation:

���� � ���� � �
���

�
� � � �� 	 	 	 � ��

We call this modified algorithm the modified PEST.

C. Power Iteration-Based Subspace Tracking

Power iterations can also be used to efficiently calculate an invariant
subspace of a diagonalizable matrix (like ��) [13]. Power iterations
are normally used in an iterative manner till an acceptable accuracy is
reached. Depending on the initial guess, the number of iterations can
be large, which in turn leads to a high computational complexity. Ad-
ditionally, an inappropriate choice of the initial guess can sometimes
lead to instability and divergence problems [13]. To avoid both prob-
lems (complexity and divergence) in mobile network localization, we
propose to do just one iteration in each snapshot of the mobile network
and use the previous estimate of the orthonormal basis as the initial
guess for the next estimate. This leads to a scheme that tracks the de-
sired invariant subspace in a similar fashion as PEST, and we call it
power iteration-based subspace tracking (PIST). Here, instead of using
(11) as for the PEST, an unorthonormalized version of ����� can be cal-
culated using

���
��� � ��

�������� (14)

Note that the resulting ����� after orthonormalization will again be an
orthonormal basis spanning the desired signal subspace. Thus, the same
EVD calculations as in (13) for PEST are required to obtain the matrix
of eigenvectors. The overall PIST algorithm is summarized in Algo-
rithm 1. We emphasize that the proposed algorithms are anchorless
in the sense that the relative position of the mobile nodes (also called
network configuration in this context) can continuously be calculated
without requiring any anchor nodes. However, determining the abso-
lute location of the nodes (removing the unknown translation and or-
thogonal transformation) requires a coordinate system consisting of at
least � � � anchor nodes with known locations. Hence, if recovering
the absolute locations is also of interest, e.g., for comparison purposes,
then a possible additional step can be implemented for every snapshot
of the mobile network.

Algorithm 1: PEST/PIST

1: Start with an initial location guess

2: for � � � to � (movement steps) do

3: Calculate ���
��� using (11) (for PEST) or (14) (for PIST)

4: GS orthonormalization ����� � 	
� ���
����

5: Calculate ������� ,�� and ������ using (9) and (13)

6: Calculate ���� using (12)

7: Location estimation using (2)

8: end for
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TABLE I
COMPUTATIONAL COMPLEXITY

III. ANALYSIS OF THE PROPOSED ALGORITHMS

In the following, we analyze the computational complexity and at-
tainable accuracy of the algorithms under consideration.

A. Computational Complexity

We define the computational complexity as the number of opera-
tions required to estimate the locations for a single snapshot. For the
sake of simplicity, we do not count the number of additions and sub-
tractions, due to their negligible complexity in comparison with the
other operations. Also, we consider the same complexity for multipli-
cations and divisions, and hence, we present the sum of them as the
number of floating point operations (FLOPS). The results of the com-
plexity calculations for the PEST, the PIST, the EKF, and the UKF
algorithms are summarized in Table I. The last column in the table
presents the maximum number of FLOPS. To calculate this value, we
assume that Gauss-Jordan elimination requiring �� � ��� multipli-
cations is used to calculate the inverse of an��� matrix. Further, we
assume that Newton’s method is used to calculate a scalar square root
(SQRT) which requires 12 multiplications and a Cholesky decompo-
sition is used to calculate a matrix square root which requires �����
multiplications for an ��� matrix [8]. Moreover, a GS orthonormal-
ization process is considered which requires ���� multiplications for
an ��� matrix [17]. For a ��� matrix EVD computation, we con-
sider a maximum number of �� multiplications [17]. As can be seen
in the table, both PEST and PIST have a quadratic complexity in �
while it is of order 5 and 6 in � for the EKF and UKF, respectively. As
can be seen, the considerably lower computational complexity is a sig-
nificant gain for the proposed algorithms, especially for large networks
(large� ). Finally, the Jacobian-like algorithm proposed in [6] although
being noncooperative approximately leads to a complexity order of 3
in � which is still one order of magnitude larger than our complexity.
An advantage of this low complexity is that the central unit of our al-
gorithm can simply be one of the nodes of the network.

B. Tracking Accuracy

To derive the tracking accuracy, let us assume that the nodes move
according to the following state-space model:

�� ��������� ��� ����� (15)

�� ������ � �� (16)

where �� � 	������ 
 
 
 ��
�
���� ��

�
���� 
 
 
 � ��

�
����

� is a column vector of
length ��� containing the locations and velocities at the �th snapshot,
and �� � 	������� ������� 
 
 
 � ���������

� is the column vector of pair-
wise distance measurements of length ��� � 
��� at the �th snap-
shot. Next, ���� is a deterministic observation function which relates
the locations of the nodes (inside ��) to their corresponding pairwise
distances and���� is an optional control input at the ��� 
�th snap-
shot [18]. Further, �� and �� are vectors with zero mean Gaussian

entries with standard deviation (std) ���� and �������� , respectively.
For the sake of clarity, we denote the elements of the state vector as
�� � 	��	��� �

�
����

� , where �	�� of length �� represents the vectorized
version of the locations and ���� of length �� represents the vec-
torized version of the corresponding velocities. The lower bound on
the mean squared error (MSE) of estimation for any discrete-time non-
linear filtering problem can be computed via the posterior Cramér–Rao
bound (PCRB) [19]. For our problem, i.e., estimating the locations in
the state vector �� using all the previous and current measurements
��� 
 
 
 � �� , the lower bound on the MSE covariance matrix (matrix of
the state error) of any unbiased estimator is given by

�	��� � ���	��� � ���
� � � �

��

� (17)

where ��� stands for statistical expectation and ��� is the state estimate.
The recursive PCRB derived in [19] for updating the posterior Fisher
information matrix ���� for our model expressed by (15) and (16) boils
down to

�� � 	�������
��

������
�
�

��

�	�� ������
�


��

� 	�� ������ (18)

where	� and
� respectively represent the exact covariance matrices
of the process (movement) and measurement noise�� and �� , and the
gradient�� ����� should be calculated using the true locations. Since
we basically estimate the locations of the nodes and not their velocities,
the PCRB of our location estimates is given by

PCRB� �


�

���

	���� ���� (19)

which we average over different Monte Carlo (MC) realizations of the
movement process. It is worth mentioning that the MSE of our loca-
tion estimates will correspond to the errors on the absolute locations
and not on those up to a translation and orthogonal transformation. As
mentioned earlier, the absolute locations can be recovered by consid-
ering 	 anchor nodes with known locations. Now, if we compute (18)
for the location estimates of our anchorless network, �� ����� and
correspondingly 	�� ������

�
��� 	�� ������ will be rank deficient
with a rank of at most �
 � � � 
 (due to the unknown transla-
tion and orthogonal transformation in every snapshot). To resolve this
problem, we try to obtain a bound by reformulating (18) for a network
with 	 anchor nodes, and modify the process and measurement models
as

��� � ���������� � ��� � ����� (20)

��� ������� � ��� (21)

where ��� , ��� , and ����� are ���� � 	� � 
 vectors calculated by
removing the elements corresponding to the locations and velocities of
the anchors from �� , �� and ����, respectively. Therefore, ����� will
be a �����	�������	�matrix relating the previous modified state
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vector ����� to the next one ��� . For the modified measurement model,
��� is an ���� � ����� ������ � � vector similar to �� but the noisy
distance measurements �������� between the � anchors are removed (���
denotes the cardinality). The indices of the removed distance measure-
ments are contained in

��� � ��� ��� �
���� ��

�
� �� 	 	 	 � ��� ��� �

���� ��

�

� �� � � � � �� �� 	 	 	 � �� � �

The modified sequence of the posterior FIM can then be obtained as

��� � ��� � �


�
����
���

�



�

�

��

� ���� �������
� ����

� ���� �������

where ��� is the ��������������� process noise covariance ma-
trix corresponding to ��� . The modified measurement noise covariance
matrix ��� will be a ���� � ����� ������ � ���� � ����� ������
diagonal matrix similar to �� but corresponding to ��� . Further,
��� ������ is a ���� � ����� ������ � ���� � �� matrix similar to
�� ����� but it is calculated by taking partial derivatives from the
remaining ��� � ����� ����� distance measurements with respect to
the ���� � �� elements in the modified state vector ��� .

IV. EXTENSION TO PARTIALLY CONNECTED NETWORKS

The derivations of the proposed algorithms in Section II are based on
the assumption that all the pairwise distance measurements are avail-
able. However, this assumption is not valid for many practical mobile
scenarios where the nodes only have a limited communication range.
Therefore, we also consider a simple finite-range model where the dis-
tances can be measured only if they are below a certain communication
range ��, otherwise they cannot be measured and they are considered
missing links. To tackle this problem, there has been a lot of research
in the literature to reconstruct the squared distance matrix	� or corre-
spondingly its double-centered version 
� by exploiting their specific
properties like rank and inertia [20], [21]. However, we are interested
in a low-complexity algorithm which also fits to our proposed dynamic
MDS model. To this aim, we propose to include an additional inner iter-
ative procedure (iterating 	 times in each snapshot) to account for the
missing links. In each snapshot, we first construct 
	� from the mea-
sured noisy 	� as

� 
	����� �

�	����� � ��� 
� measured
� 
	�������� ��� 
� missing � � 
	������� � ���
���� ��� 
� missing � � 
	������� � ���

(22)

where the link between nodes � and 
 is denoted by ��� 
�. As is clear
from (22), we fill the missing links with their corresponding previously
recovered distance estimates, if their value is larger than ��; otherwise
we just fill the missing links with �� since we know that they should be
larger than ��. We then use the modified squared distance matrix 
	� to
calculate 

� , which we feed to the PEST or the PIST to calculate the
signal eigenvectors and corresponding eigenvalues. Then the relative
locations of the nodes are used to recalculate a new set of pairwise dis-
tances and to construct a temporary squared distance matrix�� similar
to 
	� . Then, we modify 
	� by updating the distances corresponding
to the missing links from the recently calculated �� as

� 
	������
� 
	����� � ��� 
� measured

� 
	��������� ��������� 
	������� � ��� 
� missing
(23)

where � � ��� �� is a smoothing gain. This gain avoids divergence of
the algorithm for cases where the signal subspace is affected due to a
large number of missing links. Now, a new 

� can be calculated from

the recently updated 
	� which can be used for the next (inner) iter-
ation in the same snapshot. The final 
	� from the inner loop will be
transferred to the next snapshot. The modified iterative algorithm for
partially connected networks is shown in Algorithm 2. Note that these
	 inner iterations scale the computational complexity of the algorithms
by at most a factor 	 . Since in practice 	 � ��, this does not increase
the order of complexity of the modified algorithms for networks with
� � ��. It is noteworthy that different from ranging, communica-
tion between each node and the central unit can be accomplished by
multi-hop communications.

Algorithm 2: Extension to Partially Connected Networks

1: Start with an initial location guess

2: for 
 � � to � (movement steps) do

3: Construct 
	� from 	� using (22)

4: Calculate 

� from 
	�

5: for � � � to 	 do

6: Use PEST/PIST to estimate locations from 

�

7: Calculate new pairwise distances and construct ��

8: Update 
	� using (23)

9: Calculate a new 

� for the next (inner) iteration

10: end for

11: end for

V. SIMULATION RESULTS

We consider a network of � mobile sensors, living in a two-dimen-
sional space �� � ��. The mobile nodes are considered to be moving
inside a bounded area of 100� 100 squared meters determined by its
vertices located at (0,0)m, (0,100)m, (100,0)m, and (100,100)m. Note
that our proposed algorithms are blind to the movement model, but for
the sake of comparison we consider a modified random walk process
where 


 � ��� � 
��, with �� the measurement interval and 
 �
������� � ������ � ������ � ������ �. We set �� � ��� � ���

� �
� ,

where we assume that ��� is a vector with i.i.d. zero-mean Gaussian
entries with std �� . This movement model does not guarantee that
the mobile nodes stay inside the bounded area. To make this happen
without greatly violating the predefined movement model in favor of
the model-based algorithms (the EKF and the UKF), we propose to
slightly change the movement pattern so that each time a node gets
closer than a threshold ��� � � �� to the borders of the covered area,
we gradually decrease the velocity of that particular node with a cen-
tripetal force. The center of the area is � � ���� ��� �. Let us define
the �� � �� diagonal matrix ���� � ����������, where ���� is
given by

�������

�

�� ��������	������������������
��� ���� � ���� �

���
� ��������	������������������

�� ��������	����������������
��� ���� � ���� �

���
� ��������	����������������

with � � �� �� 	 	 	 � � . This equation investigates whether or not the
nodes are closer to the borders than the threshold. Now, the velocity of
the nodes in the next step will be computed as

�
�� � �����
���� ����� ���

������� ������
������� � �	����

�������� � �	�����

��

(24)
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Fig. 1. Tracking of a single realization from erroneous initial locations.

where the third term ����� is the �� � � nonzero vector in the op-
tional control input ����� � ��� ���

����
� �, which imposes a cen-

tripetal force directed towards the center of the area �. Note that the
elements of the ���� matrix are 0 for the nodes that have passed
the threshold, and therefore only the third term pulls them back into
the area. For those nodes that have not passed the threshold, the ele-
ments of ���� are close to 1 since � is chosen to be a large integer
�	 � � � �	, and therefore (24) acts very close to the classical
random walk ����� � ������ 
 ���� for those nodes. Inspired by the
CRB for range estimation in additive white Gaussian noise, following
[7] and [9], for a realistic free-space model we introduce a constant
� � ���������

�

������� , which punishes the longer distances with larger
measurement errors. For a quantitative comparison, we consider the
positioning root mean-squared error (PRMSE) of the algorithms at the
�th snapshot, which is defined by

PRMSE� �

�

���

	


��
	�
����



(25)

where 	
���� represents the distance between the real location of the
�th node and its estimated location at the�th MC trial of the �th snap-
shot. All simulations are averaged over 
 � �		 independent MC
runs where in each run the nodes move in random directions starting
from random initial locations. For the sake of comparison, we also sim-
ulate the cooperative network localization method of [11] based on the
EKF and also the algorithm in [12] based on the UKF modified to our
setup. Fig. 1 illustrates a realization of the mobile network �� � ��
were for the sake of clarity only the PEST is plotted (we show in the fol-
lowing simulations that both algorithms have very close performances).
For all simulations, to be able to plot and/or evaluate the results based
on the absolute locations, we resolve the unknown translation and or-
thogonal transformation of our location estimates by considering 
 � �
anchor nodes. In general, for all the simulations, we initialize the algo-
rithms with random erroneous locations. Here, for the sake of visibility,
we initialize the algorithm close to the borders of the covered area,
which is far from the real initial locations. As is clear, convergence is a
matter of a few steps. During our simulations we observed that random
initializations lead to divergence of the EKF in many of its runs, while
the UKF and (even better) our proposed algorithms are robust against
erroneous initializations.

Fig. 2 shows the PRMSE performance of the algorithms versus �
for � � �	, �� � 0.1 s, �� � 	�� and at the snapshot � � ��	,
where all the algorithms have converged. We also plot the performance

Fig. 2. PRMSE performance for � � 0.1 s.

Fig. 3. PRMSE performance for � � 1 s.

of classical MDS and the derived PCRB as the performance bounds
of the algorithms. From the figure, the PEST and the PIST perform
very close to each other and attain the classical MDS performance
while they are much more computationally efficient. The EKF per-
forms better than the proposed algorithms in terms of accuracy, and
the UKF is even better than the EKF (closer to the PCRB) but they
both come at the price of a much higher complexity and depend on the
information about the process and measurement models. That is why
if we feed both the EKF and UKF with imperfect measurement noise
covariance (IMNC) information (here, �� with 40% error), the EKF
diverges drastically while the UKF degrades and performs worse than
the proposed algorithms for � � �	 
�. Beyond the computational ef-
ficiency, this is another advantage of our proposed model-independent
algorithms over model-based ones (the EKF and the UKF). Fig. 3 de-
picts the same results as Fig. 2 �� � �	� but for �� � 1 s and �� �
0.5 and 1. Increasing �� boosts the effect of increasing ��. From the
figure, by increasing �� and �� the EKF diverges drastically even with
perfect model information while in a similar situation the UKF is just
degraded for � � 50 dB. The PIST performs superb and the PEST
is a little bit degraded for � � 60 dB, which can be healed by using
the modified PEST as explained in Section II-B. Again we investigate
the model-dependency of the EKF and the UKF by feeding them with
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Fig. 4. Partial connectivity and scalability.

imperfect process noise covariance (IPNC) information, e.g., a scaled
�� is adopted here. The results are interesting since both algorithms
degrade significantly and perform worse than the proposed algorithms
for all �. Notably, the UKF is much more robust against an increase of
��, and the proposed algorithms are even more robust than the UKF,
and this makes them cost-efficient algorithms for practical scenarios.

Finally, Fig. 4 investigates two important issues, i.e., scalability and
tackling partial connectivity. For the sake of clarity, we plot the per-
formance of the PIST for � � 30 dB and the one of the PEST for
� � 50 dB both for �� � 0.1 s. From the figure, the performance of the
algorithms in fully connected networks remains almost the same with
increasing the size of the network up to � � ��� (i.e., scalability).
For partially connected networks, we decrease �� from the maximum
distance in the network ���� � ���

�
� � 141 m to �� � 100, 90,

and 80 m. As can be seen, the performance of the algorithms in par-
tially connected networks (for �� � 100 m) gradually deviates from
that of the fully connected network. In our simulations, we observe
that �� � 100 m and �� � 80 m approximately correspond to, respec-
tively, 30% and 50% misconnectivity in the network which is consid-
erable. Note that decreasing �� further leads to many possible config-
urations which are not rigid anymore and thus in principle there will
be no solution for the reconstruction problem. This might lead to large
estimation errors by our algorithm in cases where the signal subspace
is badly damaged due to the large number of missing links.

VI. CONCLUSION

We have proposed two cooperative mobile network tracking algo-
rithms based on a novel dynamic MDS. We have also extended the
proposed algorithms to operate in more realistic partially connected
networks. The proposed algorithms are model independent. It has been
shown that the proposed algorithms are characterized by a low com-
putational complexity, an acceptable accuracy, and robustness against
the measurement interval of the network, which makes them a superb
choice for practical implementations. As a future work, we will explore
a distributed implementation of the proposed algorithms.
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