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Abstract

We propose two algorithms for anchorless cooperative network localization in mo-
bile wireless sensor networks (WSNs). In order to continuously localize the mo-
bile network, given the pairwise distance measurements between different wireless
sensor nodes, we propose to use subspace tracking to track the variations in sig-
nal eigenvectors and corresponding eigenvalues of the double-centered distance
matrix. We compare the computational complexity of the proposed algorithms
with a recently developed anchorless algorithm exploiting the extended Kalman
filter (EKF) as well as an anchored algorithm exploiting ordinary least squares
(LS). We show that our proposed algorithms are computationally efficient, and
hence, are appropriate for practical implementations. Simulation results further
illustrate that the proposed algorithms have an acceptable accuracy in compar-
ison with the aforementioned algorithms and are more robust to an increasing
sampling period of the measurements.

1 Introduction

Many of the current research efforts on WSN localization have focused on proposing
solutions to derive the location of the nodes using their pairwise distance measurements
in a cooperative context. The aforementioned studies can be divided into two main
categories, i.e., anchorless and anchored localization, where in the former there are no
nodes with known locations (so-called anchors) and determining the relative location of
the nodes is the ultimate goal. One popular solution to find the relative locations of the
nodes based on distance measurements in a fixed network is to use multidimensional
scaling (MDS) or its distributed version for large networks [1]. On the other hand, by
exploiting the availability of the anchor nodes and the knowledge of their locations, a
set of linear equations can be obtained. This is the basis of the so-called weighted MDS
(WMDS) which avoids an eigenvalue decomposition (EVD) and attains the Cramer-
Rao bound (CRB). This idea has been developed in [2] for multiple unknown nodes in
a static network.

The problem of cooperative localization for mobile WSNs is of special interest, and
surprisingly has not been efficiently solved yet. In [3], an anchorless localization scheme
for mobile (dynamic) networks called SPAWN is proposed based on the theory of factor
graphs. In this scheme, each node requires knowledge about its own movement model
as a probability distribution in order to do predictions, which is not so simple to be
acquired in a real application and additionally increases the computational complexity
significantly. In [4], an EKF-based method is developed which incorporates the location
of the nodes as well as their velocities in a state-space model. Although velocity
measurements of the nodes are beneficial to cooperative network localization, it requires
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the use of Doppler sensors, which increases the implementation cost, and hence, we
avoid using them.

Inspired by the simplicity and robustness of MDS localization in fixed WSNs, we
propose an MDS-based cooperative localization for a mobile network. It is worth
mentioning that classical MDS involves an eigenvalue decomposition (EVD) calculation
on a double-centered distance measurement matrix, which has a high complexity for
a large network. For a mobile network, computationally intensive EVD calculations
should be conducted in each snapshot of the mobile network to localize the nodes
in an ad-hoc fashion. To avoid this problem, we propose to use two novel subspace
tracking algorithms to track the variations in the signal eigenvectors and corresponding
eigenvalues due to variations in the double-centered distance matrix. We show that
this can enable us to estimate the next location of the moving nodes in the network
given their previous location estimates.

The main advantages of the proposed algorithms can be described as follows. First,
the proposed algorithms are computationally efficient, and hence, are suitable choices
for practical implementations. Besides, the algorithms have an acceptable position-
ing accuracy and they are more robust to an increasing sampling period (Ts) of the
measurements compared to the other algorithms under consideration. Finally, the algo-
rithms do not rely on the movement model of the nodes (i.e., they are non-parametric)
and can be applied to many practical scenarios. The remainder of this paper is orga-
nized as follows. In Section 2, we present the system model underlying our analysis
and evaluations. Section 3 describes the proposed cooperative localization algorithms
based on subspace tracking. Section 4 compares the computational complexity of the
algorithms under consideration in this paper. Section 5 provides simulation results for
mobile sensor networks with different network parameters. Concluding remarks are
presented in Section 6.

2 System Model

We consider a network of N mobile wireless sensor nodes, living in a D-dimensional
space (D < N). Let {xi,k}

N
i=1 be the actual vector coordinates of the sensor nodes,

or equivalently, let Xk = [x1,k, . . . ,xN,k] be the matrix of coordinates at snapshot k.
By collecting the noisy pairwise distance measurements di,j,k = ‖xi,k − xj,k‖ + vi,j,k
between the nodes in a distance matrix Dk, i.e. [Dk]i,j = d2i,j,k, the double-centered

distance matrix can be calculated as Bk = −1/2ΥDkΥ, where vi,j,k ∼ N (0, σ2
i,j,k)

is the independent and identically distributed (i.i.d.) noise and Υ is the centering
operator [1]. In case of a network with fixed nodes, Bk can be used in the classical
MDS to recover the locations of the nodes Xk (up to a translation and orthogonal
transformation) by means of the EVD as described in [1].

One trivial solution for a mobile scenario is to perform these computationally inten-
sive EVD calculations for every snapshot of the mobile network. Instead, we propose
two low-complexity localization algorithms. The proposed algorithms are anchorless
in the sense that the relative positions of the mobile nodes can continuously be cal-
culated without requiring information about the anchor nodes. Still, determining the
exact location of the nodes (removing the unknown translation and orthogonal trans-
formation) requires a coordinate system consisting of at least D+1 anchor nodes with
known locations. It is assumed that these anchor nodes are equipped with long dis-
tance transmission devices to continuously localize themselves with respect to (w.r.t)
a central coordinate system. Since the number of anchors is generally small compared
to the total number of nodes in a network, this requirement is not intensive from a
computational and power consumption point of view.



3 Proposed Subspace Tracking Algorithms

We start by considering the noiseless case (vi,j,k = 0) and we expect that the presence
of noise will only slightly degrade the performance of the algorithms. In the noiseless
case, the double-centered distance matrix Bk will be a symmetric N × N matrix of
rank D. For the k-th snapshot of the mobile network, the trivial approach is to find
the locations as the minimum of min ‖Bk − X̃T X̃‖2 over all D ×N matrices X̃. The
EVD of Bk can be expressed in the following form

Bk =
[
U1,k U2,k

]
[
Σ1,k 0

0 0

] [
UT

1,k

UT
2,k

]

= U1,kΣ1,kU
T
1,k. (1)

Then the location matrix (up to a translation and orthogonal transformation) can be
written as

X̃k = Σ
1
2
1,kU

T
1,k. (2)

Although the above procedure can be done for every snapshot of a mobile network, the
complexity of computing the EVD in (1) can be quite intensive for large N [5]. The
idea behind the proposed subspace tracking algorithms is that in order to calculate the
location of the nodes using (2), we only need to update the D signal eigenvectors in
U1,k and their corresponding eigenvalues in Σ1,k. This can be done by more efficient
iterative approaches as proposed in the following.

3.1 Perturbation-Expansion-Based Subspace Tracking

In this section, we will explain the idea behind the perturbation-expansion-based sub-
space tracking (PEST). If the movement of the nodes satisfies the property that the
invariant subspace of the next (perturbed) double-centered distance matrix (Bk =
Bk−1 + ∆Bk) does not contain any vectors that are orthogonal to the invariant sub-
space of the current double-centered distance matrix (Bk−1), the two bases respectively
spanning the signal and noise subspace of the next double-centered distance matrix fol-
low the expressions [6]

Ũu
1,k = Ũ1,k−1 + Ũ2,k−1Pk, (3)

Ũu
2,k = −Ũ1,k−1P

T
k + Ũ2,k−1, (4)

where Pk is a coefficient matrix, Ũi,k represents an orthonormal basis spanning the

same subspace as the matrix of eigenvectors Ui,k, and Ũu
i,k is an unorthonormalized

version of Ũi,k. To compute Pk in (3) and (4), we will resort to a first-order approxi-
mation. However, since we will continuously use first-order approximations, we can not
assume that Ũ1,k−1 and Ũ2,k−1 in (3) and (4) are exact orthonormal bases spanning
respectively the signal and noise subspaces of Bk−1. And thus, the first-order approxi-
mation of Pk in [6] does not hold anymore, and we need to derive a new Pk. The value

of Pk should satisfy the necessary and sufficient condition for Ũu
1,k and Ũu

2,k to be new
bases for the new perturbed signal and noise subspaces, and thus we need

(Ũu
2,k)

TBkŨ
u
1,k = 0. (5)

We can expand (5) by substituting (3) and (4) as follows

(−Ũ1,k−1P
T
k + Ũ2,k−1)

TBk(Ũ1,k−1 + Ũ2,k−1Pk) = 0. (6)



After neglecting the second-order terms, we obtain

−PkŨ
T
1,k−1Bk−1Ũ1,k−1 + ŨT

2,k−1∆BkŨ1,k−1

+ ŨT
2,k−1Bk−1Ũ1,k−1

︸ ︷︷ ︸

6=0

+ ŨT
2,k−1Bk−1Ũ2,k−1

︸ ︷︷ ︸

6=0

Pk = 0. (7)

Different from the derivations in [6], the third and fourth terms in (7) are not exactly
equal to zero and also the value of their elements increases with each iteration due to
the fact that we are using first-order approximations in each snapshot. It is notable
that (7) is linear in the elements of Pk and can easily be solved w.r.t Pk. However, this
requires a DN × DN matrix inverse calculation which is undesirable due to its high
complexity. Therefore, we confine our approximation of Pk to the first three terms in
(7). By defining

Σ̃1,k−1 = ŨT
1,k−1Bk−1Ũ1,k−1, (8)

this results in
Pk = ŨT

2,k−1BkŨ1,k−1(Σ̃1,k−1)
−1. (9)

To avoid updating Ũu
2,k in (3), we use Ũ1,k−1Ũ

T
1,k−1 + Ũ2,k−1Ũ

T
2,k−1 = I (I represents

the identity matrix). Together with (9), this allows us to rewrite (3) as

Ũu
1,k = Ũ1,k−1 + (I− Ũ1,k−1Ũ

T
1,k−1)BkŨ1,k−1Σ̃

−1
1,k−1. (10)

Now, to be able to use the above formula in an iterative manner we should normalize it
using any possible orthonormalization process like Gram-Schmidt (GS) factorization.

We call the orthonormalized result Ũ1,k. As described in [6] and as can be seen from

the above derivations, Ũ1,k is an approximation of the orthonormal basis which spans
the same subspace as its corresponding signal eigenvectors in U1,k. However, to be
able to calculate the relative locations using (2), we have to find U1,k. To this aim, we
look for a matrix Ak so that

Ũ1,k = U1,kAk. (11)

Note that since Ũ1,k and U1,k are isometries, Ak will be a unitary matrix. To be able to
estimate the locations according to (2), we also need to calculate Σ1,k, which depends
on the value of U1,k and Ak as follows

Σ1,k = UT
1,kBkU1,k.

From (8), and using (11), we finally obtain

Σ̃1,k = (U1,kAk)
TBk(U1,kAk),

= AT
kU

T
1,kBkU1,kAk,

= AT
kΣ1,kAk. (12)

From (12), Ak and Σ1,k can be calculated by an EVD of Σ̃1,k. Note that, our main
goal for using perturbation expansion was to avoid computationally intensive EVD
calculations, while here we require it again. However, the point is that Σ̃1,k is a D×D
matrix, which is very small in size compared to the N × N double-centered distance
matrix Bk for large scale sensor networks. The PEST algorithm is summarized in
Algorithm 1.



Algorithm 1 PEST
1: Start with an initial location guess
2: for k = 1 to K do

3: Calculate Ũu
1,k using (10)

4: GS orthonormalization Ũ1,k = GS(Ũu
1,k)

5: Calculate Σ̃1,k, Ak and Σ1,k using (8) and (12)
6: Calculate U1,k using (11)
7: Location estimation using (2)
8: end for

Algorithm 2 PIST
1: Start with an initial location guess
2: for k = 1 to K do

3: Calculate Ũu
1,k = BkŨ1,k−1

4: GS orthonormalization Ũ1,k = GS(Ũu
1,k)

5: Calculate Σ̃1,k, Ak and Σ1,k using (8) and (12)
6: Calculate U1,k using (11)
7: Location estimation using (2)
8: end for

3.2 Power-Iteration-Based Subspace Tracking

Power iterations can also be used to efficiently calculate an invariant subspace of a
diagonalizable matrix (like Bk) [5]. Power iterations are normally used in an iterative
manner to reach an acceptable accuracy. Depending on a random initial guess, the
number of iterations can be large, which in turn leads to a high computational com-
plexity. Additionally, an inappropriate choice of the initial guess can sometimes lead
to instability and divergence problems [5]. To avoid both problems (complexity and
divergence) in mobile network localization, we propose to do just one iteration in each
snapshot of the mobile network and use the previous estimate of the orthonormal basis
as the initial guess for the next estimate. This leads to a scheme that tracks the desired
invariant subspace in a similar fashion as PEST, and we call it power-iteration-based
subspace tracking (PIST). Note that this power-iteration-based approach leads to a
unique orthonormal basis spanning the desired signal subspace. Thus, the same EVD
calculations as in (12) are required to obtain the matrix of eigenvectors. The PIST
algorithm is shown in Algorithm 2.

3.3 EKF Tracking and Ordinary LS

For the sake of comparison, we consider two other algorithms. First, we consider
cooperative mobile network localization using the EKF proposed in [4]. However, as
we do not have velocity measurements in our setup, we simplify the EKF model of [4].
The discrete-time state and measurement equations can be written as

xk = Φxk−1 +wk, (13)
dk = h(xk) + vk, (14)

where xk = [xT
1,k, . . . ,x

T
N,k, ẋ

T
1,k, . . . , ẋ

T
N,k] is the column vector of length 2DN contain-

ing the nodes’ locations and velocities at the k-th snapshot, dk = [d1,2,k, . . . , d(N−1),N,k]
T

is the column vector of pairwise distance measurements of length N(N − 1)/2 at the
k-th snapshot, and Φ = I+ FTs, with Ts the sampling period and F given by

F =

[
0DN×DN IDN×DN

0DN×DN 0DN×DN

]

.



Algorithm 3 EKFT
1: Start with an initial location guess
2: for k = 1 to K do

3: Next state:
x̂−

k = Φx̂k−1

4: Next error covariance:
P−

k
= ΦPk−1Φ

T +Q

5: Compute the Kalman gain:
Kk = P−

k
HT

k
(HkP

−

k
HT

k
+Rk)

−1

6: Update the state:
x̂k = x̂−

k +Kk

(
dk − h(x̂−

k
)
)

7: Update the error covariance:
Pk = (I−KkHk)P

−

k

8: end for

Table 1: Computational Complexity
Algo. FLOPS for Lin. Op. Orthonorm. SQRT Matrix Inverse EVD Total FLOPS

PEST 4N2D + 3ND2 + ND 1(N × D) 2 1 (D × D) 1 (D × D)
4DN2+(5D2+D)N+

2D3 + 6D2 + 24

PIST 2N2D + 2ND2 + ND 1 (N × D) 2 - 1 (D × D)
4DN2+(5D2+D)N+

D3 + 24

EKFT

(D/2)N5 + (5D2/2 −

D)N4 + (12D3
−

5D2/2 + 2D)N3 +

(4D2
− D/2 + 2)N2

−

2N

- DN(N − 1)/2 2 (2DN × 2DN) -

(D/2)N5 + (5D2/2 −

D)N4 + (28D3
−

5D2/2 + 2D)N3 +

(52D2 + 11D/2 +

2)N2 + (−6D − 2)N

Ordinary
LS (l an-
chors)

(D2)N3 + (l −

2lD2)N2 + (D2(1 +

l2)+D(1+ l)− l2)N −

(D + D2)l

- - N − l (D × D) -

(D2)N3 + (l −

2lD2)N2 + (D3 +

D2(7+l2)+D(1+l)−

l2)N−(D+7D2
−D3)l

Further, we set wk = [0T , w̄T
k ]

T , where we assume that the entries of w̄k and vk are
uncorrelated zero-mean white Gaussian noise processes with standard deviation σw

and σi,j,k, respectively. To linearize the measurement equations, we take the Jacobian
matrix of h(xk) defined by an N(N − 1)/2 × 2DN matrix Hk = ∇h(xk). The EKF
tracking (EKFT) algorithm is shown in Algorithm 3. Pk, Rk and Q are the covariance
matrix of the error in the state estimate, the measurement noise, and the process
noise, respectively. We also consider one anchored localization algorithm similar to the
WMDS in [2]. We employ the known locations of the anchors to end up with a set
of linear equations in the unknown locations and then we use ordinary LS to estimate
the location of the unknown nodes. Hence, we consider the WMDS algorithm with
the weighting matrix equal to identity matrix and we do not adopt any iterations per
snapshot of the movement.

4 Computational Complexity

We define the computational complexity as the number of operations required to create
one estimate of the location of the unknown nodes. For the sake of simplicity, we do not
count the number of additions and subtractions as well as the number of multiplications
by 1, −1, or powers of 2, due to the negligible complexity in comparison with more
general multiplications. Also, we consider the same complexity for multiplications and
divisions, and hence, present the sum of them as the number of floating point operations
(FLOPS). The results are summarized in Table 1.

The last column in the table presents the total number of FLOPS. To calculate this,
we assume that Gauss-Jordan elimination is used to calculate the matrix inverse and
N3+6N2 FLOPS are required to calculate the inverse of an N×N matrix. As well, we
assume that the Newton method is used to calculate a scalar square root (SQRT) and
12 FLOPS are required. Moreover, the GS orthonormalization process (Orthonorm.)
is considered which requires 2ND2 FLOPS for an N × D matrix. And, for a D × D



matrix EVD computation, we consider a maximum number of D3 FLOPS. As can be
seen in the table, both PEST and PIST have a quadratic complexity in N while it is
of order 5 in N (using the matrix inversion lemma) for the EKFT and of order 3 for
the ordinary LS. This results in a much higher complexity (especially for large N) for
the EKFT and ordinary LS in comparison with the proposed algorithms.

5 Simulation Results

In this section, we compare the performance of the explained algorithms (PEST, PIST,
EKFT and ordinary LS) in different mobile network localization scenarios. We consider
a network of N = 14 mobile sensors, living in a two-dimensional space (D = 2). The
mobile nodes are considered to be initially deployed in an area of 100 m ×100 m.
To obtain a fair comparison, we consider the random walk process and measurement
model as described for the EKFT in Subsection 3.3. Further, we consider l = 4 anchors
to linearize the measurement model for the ordinary LS and also l = 4 anchors to
resolve the unknown translation and orthogonal transformation of the obtained location
estimates from the anchorless algorithms using Procrustes analysis as explained in
[7]. As explained earlier, the distance measurements are impaired by additive noise.
The derivations for the CRB of range estimation in an additive white Gaussian noise
(AWGN) channel with attenuation in [8] show that the CRB is inversely proportional
to the signal-to-noise ratio (SNR) of the transmissions and directly proportional to the
distance powered by the path loss exponent (κ). Therefore, for a free space model (κ =
2), we consider a constant γ = d2i,j,k/σ

2
i,j,k, which acts like the SNR and punishes the

longer distances with larger measurement errors. To be able to quantitatively compare
the performances of the algorithms under consideration, we consider the positioning
mean squared error (PMSE) of the algorithms at the k-th snapshot, which is defined
by

PMSE =

∑M

m=1

∑N

n=l+1 e
2
n,m,k

M
, (15)

where en,m,k represents the distance between the real location of the n-th node and
its estimated location at the m-th Monte Carlo (MC) trial of the k-th snapshot. All
simulations are averaged over M = 100 independent MC runs where in each run the
nodes move toward random directions starting from random initial locations.

Fig. 1 depicts the PMSE performance of the algorithms versus γ at snapshot k = 30
for Ts = 1 s and σw = 0.1. As can be seen from the figure, the EKFT performs
better than the other algorithms for γ values less than about 85 dB. The ordinary
LS is performing close to the PIST and their performance does not saturate with γ.
PEST has approximately the same performance as PIST till γ = 70 dB and after
that the performance of the PEST saturates. This is because the error due to first
order approximations in the PEST becomes dominant after γ = 70 dB. The EKFT
performs better than the proposed algorithms because it has perfect knowledge of the
statistical properties of the process and the measurement models while this knowledge
is not required for our algorithms (being non-parametric) and this is a considerable
advantage. To highlight this effect, we feed the EKFT with Q and Rk matrices by
keeping their structure but applying a perturbation on the non-zero values. The result
(EKFT with imperfect model knowledge) illustrates that the performance of the EKFT
degrades and becomes worse than the other algorithms for a large span of γ. Fig. 2
shows the previous scenario but for Ts = 10 s and σw = 2. To emphasize the effect of
the Ts, we have also increased the value of σw, which increases the movement dynamics
of the process model. As can be seen from the figure, the performances of both the
ordinary LS and the EKFT are affected which can be justified by their dependency on
Ts. It is notable that the performance of the EKFT is significantly degraded making
it the worst among the algorithms under consideration.
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Figure 1: PMSE for Ts = 1 s
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Figure 2: PMSE for Ts = 10 s

6 Conclusions

Classical MDS is a popular cooperative localization scheme in static WSNs. However,
computing an EVD for each snapshot of a mobile network is computationally intensive.
To overcome this problem, we have proposed two novel algorithms based on subspace
tracking to track the variations in the signal eigenvectors and corresponding eigenvalues
of the double-centered distance matrix. It has been shown that the proposed algorithms
have a low computational complexity and an acceptable localization accuracy compared
to the algorithms using the EKF and the ordinary LS. Future work will be conducted
on the distributed realization of the proposed algorithms thereby focusing on networks
with partial connectivity.
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