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ABSTRACT

We consider the problem of cooperative localization in mo-
bile wireless sensor networks (WSNs). To be able to continu-
ously localize the mobile network, we propose to exploit the
knowledge of the location of the anchor nodes to linearize the
nonlinear distance measurements with respect to the location
of the unknown nodes. Based on this linearized measurement
model, we estimate the location of the unknown nodes using
a Kalman filter (KF) instead of a suboptimal extended KF
(EKF) and try to estimate the corresponding unknown mea-
surement noise covariance matrix using an iterative process.
The simulation results illustrate that the proposed algorithm
(only with a few iterations) attains the posterior Cramer-Rao
bound (PCRB) of mobile location estimation and clearly out-
performs related anchorless and anchored mobile localiza-
tion algorithms.

1. INTRODUCTION

Accurate and cost-efficient sensor node localization is a crit-
ical requirement of WSNs in a wide variety of applications.
In many practical scenarios, the nodes cannot be equipped
with global positioning systems to locate themselves, and
thus to remove this constraint, many research efforts have
focused on proposing solutions to estimate the node loca-
tions using their pairwise distance measurements in a coop-
erative context. The aforementioned studies can be divided
into two main categories, i.e., anchorless and anchored local-
ization. In the former, there are no nodes with known loca-
tions (so-called anchors) and determining the relative loca-
tion of the nodes is the ultimate goal. One popular solution
to find the relative locations of the nodes based on distance
measurements in a static network is to use multidimensional
scaling (MDS) or its distributed version for large-scale net-
works [1]. On the other hand, by exploiting the knowledge
of anchor locations a set of linear equations can be obtained.
This is the basis of the so-called weighted MDS which avoids
an eigenvalue decomposition (EVD) and attains the Cramer-
Rao bound (CRB). This idea has been developed in [2] for
multiple unknown nodes in a static network.

The problem of cooperative localization for mobile sen-
sor networks is a challenging problem of special interest, and
surprisingly it has not been efficiently solved yet. In [3],
an anchorless localization algorithm for mobile (dynamic)
networks has been proposed based on the theory of fac-
tor graphs. In this algorithm, each node requires knowl-
edge about its own movement model as a probability dis-
tribution in order to do predictions, which is not so sim-
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ple to be acquired in a real application and additionally it
increases the computational complexity significantly. Two
low-complexity anchorless algorithms have been proposed
in [4] to locate and track the mobile nodes using a novel sub-
space tracking procedure, which attain an acceptable local-
ization accuracy. In [5], an anchorless localization scheme
based on the extended Kalman filtering (EKF) has been de-
veloped which incorporates the location of the nodes as well
as their velocities in a state-space model.

However, the aforementioned algorithms (due to differ-
ent inefficiencies) do not attain the achievable lower bound
of estimation error (PCRB) for a mobile scenario when the
problem is viewed as a discrete-time filtering problem [6].
Note that although solving the localization problem for a
static network in every snapshot (e.g., using [2]) attains the
CRB for that snapshot, it will not attain the PCRB. This is
due to the fact that the information from the movement pro-
cess is ignored. This motivated us to propose an algorithm
to fill out this gap and attain the PCRB for a mobile WSN
localization problem.

Inspired by the optimal filtering capability of the KF, we
propose to linearize the nonlinear measurement model based
on the knowledge of anchor locations by adopting similar
matrix operations as in [2]. Then, instead of using the EKF,
an appropriate KF can be used which can potentially attain
the PCRB. The main advantages of the proposed algorithm
can be described as follows. Unlike the MDS-based algo-
rithms, the proposed algorithm does not involve EVD cal-
culations which basically lead to high complexity as well as
suboptimal performance. Furthermore, we show that the pro-
posed algorithm attains the PCRB of the mobile scenario,
which is a considerable improvement compared to the best
existing algorithms. The remainder of this paper is organized
as follows. In Section 2, we present the system model un-
derlying our analysis and evaluations. Section 3 describes
the proposed cooperative localization algorithm based on the
KF. Section 4 explains the performance bounds under con-
sideration in this work. Section 5 provides simulation results.
Finally, concluding remarks are presented in Section 6.

2. SYSTEM MODEL

Consider a network of N wireless sensor nodes living in a
2-dimensional space (as the extension to the 3-dimensional
case is straightforward) among which / > 3 are fixed anchors
with known locations, and the remaining ones are mobile.
Let {x; 4}, denote the actual vector coordinates of the sen-
sor nodes, or equivalently, let X; = [X;x,...,Xyy] be the
matrix of coordinates at snapshot k. Then, we can write

X = Xap, Xukls



where Xa,k = [X]JﬁXz,k, e >Xl,k] and Xu,k =
(X141 X142k -, XN k] Tespectively represent the vec-
tor coordinates of the anchor nodes and unknown nodes in
the k-th snapshot of the mobile network.

To be able to perform cooperative localization in a cen-
tralized manner, we have to collect pairwise distance mea-
surements between all pairs of nodes. However, in practice
these measurements are noisy and hence the distance mea-
surements can be modeled as

Fiojk = di jk+ Gijks (D

where d; jx = ||xix — X || is the noise-free Euclidean dis-
tance and ¢g; jx ~ 4 (0, O'fj_’k) is the independent and iden-
tically distributed (i.i.d.) noise. The distance measurements
themselves can simply be calculated by means of time of ar-
rival (TOA) measurements. Hence, we assume that the TOA
information is already converted to noisy distance measure-
ments.

A variety of movement models can be considered for the
mobile nodes in the network. Here, we consider a low dy-
namic motion model for the mobile nodes so that the veloc-
ity can be modeled as a random walk process. This model
is widely use in the literature [4, 5]. The corresponding
discrete-time state equation can be given as

Suk = PSuk—1+ Wi, @)
where s, = [xI,,%I,]7 is the column vector of length
4(N — 1) containing the locations and velocities of the un-
known nodes at the k-th snapshot of the movement. We
set wy = [07,w]]”, where we assume that Wy represent-
ing the speed variations is a vector with i.i.d. zero-mean
Gaussian entries with standard deviations o,,. Further, ® =
Lyv—1) + FT5, where T; is the sampling period (time between

two consecutive snapshots) and F is

Ly_o

F_ O v—2)x(2N-21)
Opv—2nx@v-2n]|”

On—2)x(2n-21)

Our goal is to estimate the locations of the unknown nodes.

3. KF OVER LINEARIZED MEASUREMENT
MODEL

As described earlier, the distance measurements are non-
linear with respect to the location of the nodes. Thus, to
be able to exploit the Kalman filter (KF) to estimate the lo-
cations, we have to take partial derivatives of the measure-
ments r; j; and estimate the locations of the nodes by an
extended Kalman filter (EKF) which leads to a sub-optimal
performance [5]. To be able to use the standard KF, we take
the idea from [2], and try to employ the known locations of
the anchors to end up with a set of linear equations in the
unknown locations. Then, taking advantage of this linear
model we use a standard KF to localize the moving nodes
in an adaptive manner.

Let us start by assuming that there is no noise. By col-
lecting the squared pairwise distance measurements df ik be-

tween the nodes in a distance matrix Dy, i.e. [Dy;; = d? i

the double-centered distance matrix (B;) can be calculated
as[1, 2, 4]

1
B, = fEJDkJ =JXIX,J, 3)

where J is the centering operator J =Iy — 1y 117\} /N, with Iy
the N x N identity matrix and 1y the N x 1 vector of all ones.
It is notable that, in case of a network with fixed nodes, By
can be used in the classical MDS to recover the locations of
the nodes Xy (up to a rigid transformation) by means of the
EVD as described in [1]. However, we want to rewrite (3) as
a linear function of the unknown locations, as done in [2], so
that we can exploit the features of the standard KF for track-
ing. Some of the following derivations are similar to those in
[2] except for the fact that we rewrite them for a mobile sce-
nario on a per-snapshot basis (represented by the subscript
k). To be able to establish the considered linearization, we
assume that X, ;1; = 02,1, which can always be satisfied by
a simple rigid transformation. By partitioning J into upper
and lower parts, we have

XkJ = Xa,kJa + Xu,kJua (4)

where J = [JT, JIT.  Now, by defining X,x =
[IEXT s IE]T, we can calculate

X=X (XX 5)

Finally, by introducing X, x = [X[],,—Iy—]", as described
in [2], we will end up with the following linear set of equa-
tions for the noiseless pairwise distance measurements

BkX;qu,k =0nx(n—1)- (6)

However, in the presence of measurement noise, instead of

. . . A 2
Dy, we have to build the corresponding matrix [Dgl; j =17
and compute

N 1.4
B, = fEJDkJ. @)
As a result, (6) will not hold anymore and we have to check

what will be the influence of the noise. Let us therefore de-
fine

B = BiX] Xy = H X,k — Hey, ®)
where
L[ X
H; =By { ak } , 9
' Ov—1)x2

L [_1qqT
HR‘,(B,({ llllN—l]. (10)

Iy

Vectorizing both sides of (8) yields

ék = VCC(Ek) = I:IL7qu7k - hR,ka (1 1)
where

H =TIy ®Hpy,
Xy, = vee(Xy k),
hg i = vec(Hgx),
with ® representing the Kronecker product.
To match this to the state definition in (2), we define a

modified version of (11) as the measurement model of our
cooperative localization problem as

hgy = Hygsux— &, (12)



Algorithm 1 Linearized Kalman Filter

1: Start with an initial location and velocity guess (8,.0)
2: fork=1to K do
3:  Next state:

Sk = PSuj—1
4:  Next error covariance:

P,: = ‘PP]{,]@T +Q
5:  Compute the Kalman gain:

- v -1
K, =P H] (R] -R{H(P;) +
Hf R H.,)~'H R;)

6:  Update the state:

Suk =8, + Ki(hgx— I:IL,ké,;k)
7. Update the error covariance:

Py =(I-KH, )P,
8: end for

where Hy ; = [Hy O(n2_n1)x (2n—21)] 18 @ zero-padded ver-
sion of H ; to account for the velocity values stacked in
the state vector s, ;. Observe that we only measure the pair-
wise distances between the nodes, not their relative veloci-
ties. Meanwhile, note that the resulting noise term (&) does
not have i.i.d entries [2]. To estimate the node locations from
the described state and linearized measurement model, we
propose to use the KF. The KF algorithm fitting our modi-
fied model is shown in Algorithm 1. In the algorithm, Py,
Ry and Q are the covariance matrices of the state error, the
measurement noise, and the process noise, respectively.

Assuming that we have information about the statistical
properties of the movement model, we have perfect knowl-
edge about

Opnv—2)x(2N-21)
o,y

Opnv—2)x(2N-21)

=E [
Q=Efwiwi ) On—2)x(2N-21)

(13)
where [ stands for the statistical expectation. The covariance
matrix of the measurement noise can be defined as

R, =E{&&( ). (14)
To compute this covariance matrix, let us rewrite (11) as
& = Gyvec(Dy), (15)

where o
Gy =—-0.5(X] Xup)" ®J). (16)

By considering an appropriate deterministic selection matrix
W (similar to the one defined in [2]), we have

vec(Dy) = ¥ry, a7
where tx = [F1 /114, "N—1N4) is the column vector of
pairwise distance measurements where the entries corre-
sponding to distances between anchors are removed. Thus,

Gkvec(ﬁk) = Gk‘I’I‘k. (18)
Using (18), we can rewrite (14) as

E{&&L Y,
G(PE{r;r! } w7 GT. (19)

R, =

From (1), and by assuming a sufficiently small noise power,
we have

2 2 2
ik —dijk 2d; j xqi,jk + i j ks
~ 2d;14qi ks (20)
and therefore
COV(ViZ,j,k) ~ 4”1'2.j,k01'2,,;,k- (21)

Based on (20) and (21), (19) can be rewritten as
R, = G, ¥S, ¥ G, (22)
where
Si=4 diag<r%,l+1,k612,l+l,k7 - >r]2\/71,N,kGI%/71,N,k)- (23)

It is worth mentioning that since Gy is a function of the un-
known locations to be estimated (as is clear from (16)), Ry
itself will be dependent on the unknown locations, which
makes the estimation of Ry non-trivial. Since the perfor-
mance of the KF is sensitive to the estimation of Ry, to
achieve a better estimate we repeat the KF loop p times for
every snapshot and use the location estimates obtained in the
previous iteration to compute Ry for the current iteration.
However, both I:IL,kP;:I:IZ,k and Ry, are rank deficient ac-
cording to their definitions described earlier. For this reason,
we use the Kalman gain expression as shown in line 5 of the
Algorithm 1 [7, 8].

In the following we briefly explain the other algorithms
under consideration for comparison. One solution consider-
ing the aforementioned measurement model consists of lo-
calizing the unknown nodes in each snapshot of the move-
ment independent of the other snapshots. The corresponding
cost function to be minimized can then be given by [2]

min (Fy 3%, — hri)" Wi (Hzixux — hri), 24

Xuk

where the weighting matrix (W) is chosen to result in the
Markov estimate, which according to [2, 9] can be given by

W, =E{&ET}T =R]. (25)
The solution of (24) can be expressed as
K = (H W H ) ' H] ;Whg,. (26)

The WMDS algorithm starts with Wo = I2_,;, which
corresponds to ordinary least squares (ordinary LS), and it
should be iterated p times at each snapshot to achieve a good
accuracy. We also consider the anchorless algorithm based
on the EKF explained in [4, 5] where similarly to the pro-
posed KF, nodes locations and velocities are incorporated in
a state-space model. Although velocity measurements of the
nodes aid cooperative network localization, in practice it re-
quires the use of Doppler sensors, which increases the imple-
mentation cost as well as the computational complexity, and
hence, we avoid doing measurements of the node velocities.



4. LOCALIZATION ACCURACY

The lower bound on the variance of the estimate for discrete-
time filtering problems can be computed via the PCRB. The
recursive PCRB derived in [6] provides a formula for updat-
ing the posterior Fisher information matrix (FIM) from one
snapshot to the next. According to [6], the sequence 7
of the posterior FIM for a linear process and measurement
model boils down to the following recursive formula

Je=(Q+ ‘I>//;11‘I’T)71 +IU_I£I<R}L-I:IL,k7 27)

where all the parameters have been defined earlier except for
the fact that R should be calculated using the true locations
in (16) and IV{LJ( should be calculated using the noise-free
double-centered distance matrix By. The PCRB for the loca-
tion of all unknown nodes is then given by

<F 2(N-1) |
PCRB; = Y [ 7 |un- (28)

n=1

Furthermore, one way to validate the PCRB is that the trace
of the upper left block of the state error covariance Py of the
KF, which corresponds to location estimation errors, should
also attain the PCRB [10]. On the other hand, as explained
in [2], the covariance matrix of the WMDS location estima-
tion errors should attain the CRB for sufficiently small noise.
Hence, we can calculate the CRB as

CRBY™MPS = r((H] R H. 1)), (29)

where Ry should be calculated using the true locations in
(16) and Hy; should be calculated using the noise-free
double-centered distance matrix B;. We will investigate
the performance of the explained algorithms by considering
these bounds to see how good they perform.

5. SIMULATION RESULTS

In this section, we compare the performances of the ex-
plained algorithms. We consider a fully connected network
of N = 10 sensors, living in a two-dimensional space. To
be able to linearize the measurement model in the cooper-
ative network, we consider / = 4 anchor nodes, which for
the sake of simplicity are considered to be fixed at the lo-
cations (0,0)m, (0,1000)m, (1000,0)m and (1000, 1000)m.
It is notable that mobile anchor nodes with known locations
can also be considered, in which case a simple rigid transfor-
mation will be required in every snapshot of the movement
to recover the true locations. The mobile nodes are consid-
ered to be initially deployed in an area of 1000m x1000m
determined by the locations of the anchors. We consider the
process model and the measurement model explained in the
previous sections. To be able to quantitatively compare the
performances of the algorithms under consideration, we con-
sider the positioning mean squared error (PMSE) of the al-
gorithms at the k-th snapshot, which is defined by

A{71 N 62
PMSE — m= nA:41+1 n,m,k7 (30)

where e, ,, x represents the distance between the real location
of the n-th node and its estimated location at the m-th Monte
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Figure 1: PMSE versus time snapshots for N =10 and [ =4

Carlo (MC) trial of the k-th snapshot. All simulations are
averaged over M = 100 independent MC runs where in each
run the nodes move toward random directions starting from
random initial locations.

As explained earlier, the distance measurements are im-
paired by additive noise. The CRB of range estimation in an
additive white Gaussian (AWGN) channel with attenuation is
derived in [11], where the range information is obtained from
both the time delay and the amplitude of the received signal.
The results show that the CRB is inversely proportional to
the signal to noise ratio (SNR) of the transmissions and di-
rectly proportional to the distance powered by the path loss
exponent (k). Therefore, for a free space model (kK = 2), we
consider a constant Y = dl.% ik / Gf ik which acts like the SNR
and punishes the longer distances with larger measurement
errors. Note that this additive noise model is widely used
in the literature [2, 5]. In addition, for all the simulations
T, = 0.1sec and o,, = 0.1.

In order to acquire a complete picture of the performance
of the cooperative algorithms (ordinary LS, WMDS with 5
iterations per snapshot starting with ordinary LS, EKF as ex-
plained in Section 3 and the proposed linearized KF), we plot
the three following complementary figures. Fig. 1 illustrates
the PMSE performance for y = 50dB during a time span of
150 consecutive snapshots. The figure basically illustrates
the tracking capability of the algorithms under consideration.
To this aim, the PMSE performance of the EKF and the pro-
posed KF is plotted once initialized with the true locations
and once initialized with highly erroneous locations. As is
clear from the figure, the EKF and the proposed KF converge
to their achievable accuracy after some iterations even when
initialized with a large error. For the LS and the WMDS, the
PMSE is calculated independently from the previous snap-
shots and hence the initialization has no effect. As can be
seen from the figure, the proposed linearized KF achieves a
lower PMSE compared to all the other algorithms and attains
the PCRB. The WMDS attains the CRB; however, it cannot
attain the PCRB and there is a performance gap between the
WMDS and the proposed KF.

Fig. 2 depicts the PMSE performance of the algorithms
versus ¥ at snapshot k = 100, where according to Fig. 1 all the
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algorithms have converged to their best achievable accuracy.
As can be seen from the figure, the proposed KF attains the
PCRB and outperforms all the other algorithms. The perfor-
mance improvement is significant compared to WMDS over
a large span of y which shows that an optimal adaptive pro-
cess leads to a better localization accuracy. This is due to the
fact that the proposed KF, similar to the EKF, continuously
monitors the movement process and exploits this knowledge
to improve the accuracy. The improvement over EKF is also
considerable especially for the y values over 30dB. More-
over, the trace of the upper left block of P} also attains the
PCRB, which in a sense validates that the KF is performing
optimally in the current setup.

Finally, Fig. 3 shows the PMSE performance of the an-
chored algorithms versus the number of anchors for y =
50dB at snapshot £k = 100. As can be seen from the fig-
ure, both WMDS and proposed KF attain their corresponding
CRBs (WMDS CRB and PCRB) and the proposed KF has
approximately 10 times lower PMSE compared to WMDS
for different number of anchors. As well, the slight slope
of the curves and their corresponding CRBs depicts the fact
that the PMSE performance of the anchored algorithms un-
der consideration can slightly be improved by increasing the
number of anchors.

6. CONCLUSIONS

Most of the recently proposed algorithms for cooperative
mobile network localization are suboptimal in estimation ac-
curacy. This is due to the fact that they are either based on a
suboptimal approach (MDS) or based on an algorithm which
is only optimal for one snapshot of the mobile scenario.
Thus, they can attain the CRB of every snapshot, but they
cannot attain the PCRB of the dynamic filtering problem. To
resolve this inefficiency, we have proposed to employ the lo-
cation of the anchors to linearize the measurements ending
up with a set of linear equations in the unknown locations.
This allows us to use KF over this modified measurement
model. It has been illustrated that the proposed algorithm
attains the PCRB of mobile location estimation and outper-
forms comparable anchorless and anchored mobile localiza-
tion algorithms. As future work, we will analytically prove

10log, ; (PMSE)
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Figure 3: PMSE versus number of anchors for for N = 10

that the estimation error of the proposed algorithm attains the
PCRB. Moreover, we will develop this algorithm for the case
where there is no knowledge about the statistical properties
of the process model.
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