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ABSTRACT

This paper proposes strategies for distributed Wiener-based
reconstruction of graph signals from subsampled measure-
ments. Given a stationary signal on a graph, we fit a dis-
tributed autoregressive moving average graph filter to a
Wiener graph frequency response and propose two recon-
struction strategies: i) reconstruction from a single temporal
snapshot; ii) recursive signal reconstruction from a stream
of noisy measurements. For both strategies, a mean square
error analysis is performed to highlight the role played by
the filter response and the sampled nodes, and to propose a
graph sampling strategy. Our findings are validated with nu-
merical results, which illustrate the potential of the proposed
algorithms for distributed reconstruction of graph signals.

Index Terms— Graph signal processing, stationary graph
signals, Wiener regularization, ARMA graph filters.

1. INTRODUCTION
Recent advances in graph signal processing (GSP) have
shown promising results in reconstructing missing values
from signals that reside on top of networks [1–3]. By ex-
ploiting the expansion of a graph signal into a graph Fourier
basis, [2, 4] propose reconstruction strategies when the sig-
nal of interest is sparse in this dual domain. This idea is
then extended by [5–7] for adaptive graph signal reconstruc-
tion methods from a stream of data. On the other hand [8, 9]
exploit regularization priors, such as the Tikhonov prior, to in-
terpolate the missing values from subsampled measurements.
A slightly different approach is taken by [10,11], which inter-
polate stationary graph signals through a Wiener graph filter.
Yet, the sampling set is built uniformly at random.

A common point of almost all the above works is their
centralized processing. However, in many practical systems,
a centralized implementation may be either infeasible or not
efficient. The need for a distributed implementation is also
acknowledged in [6,7,12] for graph signal reconstruction with
a bandlimitedness prior.

Motivated by the benefits of distributed processing, in
this work we propose distributed strategies for stationary
graph signal reconstruction. Specifically, we make use of
the ARMA graph filter [13] to approximate a Wiener graph
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frequency response, and then we employ the ARMA recur-
sion to distributively reconstruct the missing values in the
non-sampled nodes. Moreover, we extend our algorithm to
enable recursive graph signal reconstruction when a stream
of noisy data is available. For both approaches, we perform a
mean square error (MSE) analysis to highlight the role played
by the filter response and the sampling set. Finally, we adopt
sparse sensing techniques [14] to sample the graph such that
the mean square reconstruction error is minimized.

2. BACKGROUND
This section recalls some background information about GSP,
ARMA graph filtering and Wiener graph regularization.
GSP basics. We consider an undirected graph G = (V, E)
consisting of a node set V = {v1, . . . , vN} and an edge set
E . W indicates the weighted adjacency matrix, such that
Wi,j is the edge weight connecting the tuple (vi, vj) ∈ E ,
or Wi,j = 0 otherwise. The discrete graph Laplacian is L =
diag(1TW)−W. We indicate with S the graph shift opera-
tor, which has as plausible candidates W, L, or any of their
generalization [15]. Since the graph is undirected, S can be
eigendecomposed as S = UΛUH, with eigenvector matrix
U and eigenvalues Λ = diag(λ1, . . . , λN ).

A graph signal x consists of a mapping from the node set
to the set of complex numbers, i.e., the ith entry of x is the
signal xi at node vi. The graph Fourier transform (GFT) of
x and its inverse are x̂ = UHx and x = Ux̂, respectively.
The eigenvalues in Λ form the spectral support of x̂ and are
referred to as the graph frequencies [15, 16].

A graph filter consists of a function h(λn) and acts as
a point-wise multiplication in the GFT domain, yielding the
output ŷ = h(Λ)x̂. The diagonal of h(Λ) is referred to as
the filter frequency response. By means of the GFT, the fil-
ter output in the vertex domain is y = Uh(Λ)UHx , Hx.
Depending on the form of h(λn) we can distinguish between:

• polynomial graph filters [15, 16], characterized by a fre-
quency response h(λn) =

∑K
k=0 ϕkλ

k
n for some order K

and coefficients ϕk. In the vertex domain, these filters yield
the output y =

∑K
k=0 ϕkS

kx.

• rational graph filters [13], with frequency response

h(λn) =

∑Q
q=0 ϕqλ

q
n

1 +
∑P
p=1 ψpλ

p
n

, (1)
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for some orders P,Q, and coefficients ψp, ϕq . These fil-
ters can be implemented in the vertex domain with conju-
gate gradients [17], or as we show next, distributively via
ARMA recursions on graphs.

Distributed ARMA graph filters. From [18], the ARMAP,Q
recursion

yt =

P︷ ︸︸ ︷
−

P∑
p=1

ψpS
p yt−1 +

Q︷ ︸︸ ︷
Q∑
q=0

ϕqS
q x, (2)

implements distributively the steady-state output

y , lim
t→∞

yt = (I−P)−1Qx, (3)

for any initialization y0 given the coefficients ψp are designed
to satisfy ‖P‖ < 1. By means of the GFT, it can be observed
that (3) consists of a rational filter with frequency response
(1). We observe that in computing the output yt, (2) performs
P graph shifts of the previous output yt−1 and Q graph shifts
of the input x. Because of the locality of the shift operator,
and since Skx can be recursively computed as S(Sk−1x), the
ARMA recursion on graphs (2) enjoys a distributed imple-
mentation in the vertex domain (see [13,18] for more details).
Wiener regularization on graphs. Let xd ∼ P(µ̄d,Σd) be
an N × 1 random vector and consider the task of recovering
xd from noisy measurements x = xd + n with n being zero-
mean noise with covariance matrix Σn. Under the assumption
that xd and n are mutually independent, the Wiener solution
to this problem consists of finding a filter H that minimizes
the MSE, i.e.,

H? = argmin
H

E‖H(xd − µ̄d + n)− xd − µ̄d‖22

= Σd(Σd + Σn)−1,
(4)

and then setting x?d = H?(x− µ̄d).
For xd representing a signal on a graph, xd is said to be

stationary on G if: i) µ̄d = 0, and ii) Σxd = Udiag(σ2
d)UH

[10, 11, 19]. These conditions impose respectively xd to have
a zero mean and the covariance matrix to be diagonalizable
by graph shift eigenvectors.

Therefore, under the above stationary setting, the optimal
Wiener filter (4) consists of a graph filter with a rational fre-
quency response similar to (1) (not necessarily with a polyno-
mial structure). In the sequel, we make use of recursion (2)
to approximate H? and distributively reconstruct the graph
signal xd from subsampled measurements. To ease the expo-
sition, let us denote with HW = (I−PW)−1QW the ARMA
filter response (3) that approximates (4).

3. GRAPH WIENER RECONSTRUCTION

Now, given HW, we are interested in designing a sampling
set S = {vs1 , . . . , vsM } of cardinality |S| = M ≤ N such

Algorithm 1: Distributed computation of the ARMA output

1: Initialize y0 =z, w(0) =z, and ψp, ϕq to approximate (4)
2: for q = 1, . . . , Q compute the MA terms as:
3: Collect w(q−1) from all neighbors m ∈ Nn
4: Compute w(q)

n =
∑
m∈Nn

Ln,m

(
w

(q−1)
n − w(q−1)

m

)
5: Set zQ,n =

∑Q
q=0 ϕqw

(q)
n

6: Set y1 = zQ, and compute yt for t ≥ 2 as:
7: Set w(0) = yt−1
8: for p = 1, . . . , P
9: Collect w(p−1) from all neighbors m ∈ Nn

10: Compute w(p)
n =

∑
m∈Nn

Ln,m

(
w

(p−1)
n −w(p−1)

m

)
11: Set yt,n = −

∑P
p=1 ψpz

(p)
n + zQ,n

that it guarantees the minimum steady-state MSE reconstruc-
tion error. To this aim, let D = diag(d1, . . . , dN ) denote the
selection matrix with di = 1 if vi ∈ S and di = 0, other-
wise. Likewise, let z = Dx be the N × 1 vector of collected
measurements with zi = xi if vi ∈ S and zi = 0 otherwise.

With z being the new ARMA input, (3) is rewritten as

yW = HWz = (I−PW)−1QWDx, (5)

i.e., the steady-state reconstructed output is a Wiener spread-
ing version of the sampled noisy measurements. Algorithm 1
illustrates the distributed implementation of this filter for S =
L. The following proposition quantifies the mean square de-
viation (MSD) of the reconstructed signal yW.

Proposition 1. The steady-state MSD = E‖HWDx − xd‖22
of the reconstructed signal from (5) is

MSD = tr
(

(HWD−I)Σd(HWD−I)H+HWDΣnDHH
W

)
,

(6)

where HW is the ARMA filter response that approximates the
Wiener filter (4), D is a diagonal sampling matrix, and Σd
and Σn are the covariance matrices of xd and n, respectively.

Proof. (Sketch.) The claim can be proven by considering the
norm property ‖a‖22 = tr(aaT) along with the the linearity
of the trace and expectation and the mutual independence be-
tween xd and n.

Proposition 1 shows the impact of the filter accuracy HW
and the sampling set D in the reconstruction MSD. Therefore,
these parameters represent our handle to amend the steady-
state reconstruction MSD. In the sequel, we propose a sam-
pling strategy that acts on D such that the minimum recon-
struction MSD (6) is attained.
Sampling strategy. Although the conventional approach to
reduce the MSD involves a joint design of filtering coeffi-
cients and sampling nodes, this approach results in a chal-
lenging non-convex problem. To tackle this issue, we con-
sider a non-joint design of these parameters. Specifically, we
consider (ψp, ϕq) being designed in the filter design phase,
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and we then tune D to minimize the reconstruction MSD.
This idea is not totally new and it has been formerly used
in [20, 21] for graph sampling for sketching and control, re-
spectively. Pursuing then a sparse-sensing approach [14], the
sampling set can be obtained from the optimization problem

min
d

tr
(

(HWD− I)Σd(HWD− I)H + HWDΣnDHH
W

)
s.t. 1Td = M, D = diag(d), d ∈ [0, 1]N .

(7)
Problem (7) consists already of the relaxed convex version of
the selection strategy. The approach designs d (thus the sam-
pling set S) that yields the minimum MSD value. The first
constraint is the standard l1-norm surrogate of the l0-norm
and imposes a maximum cardinality on S. The last constraint,
on the other hand, is a relaxation of the Boolean constraint
d ∈ {0, 1}N to the box one. Conversely, one can also con-
sider the opposite problem, i.e., finding the sparsest sampling
pattern that guarantees a target MSD reconstruction error. The
latter can as well be formulated as a convex problem.

In Section 6, we analyze the impact of d on the recon-
struction error, and show that the position of the sampled
nodes w.r.t. the graph is as important as the cardinality of
the sampling set.

4. RECURSIVE WIENER RECONSTRUCTION

In this section we focus on Wiener-based reconstruction from
a stream of independent noisy data xt = xd + nt, for t ≥ 1.
This is a common situation in sensor networks, and to avoid
the challenges of batch processing we consider a recursive
implementation to incorporate the current data on the fly. Fol-
lowing the joint Tikhonov denoising in [22], we write the re-
cursive Wiener reconstruction (RWR) algorithm as

yt = PWyt−1 + QWDxt, (8a)

ỹt =
1

t

(
(t− 1)ỹt−1 + yt

)
, (8b)

where (8a) incorporates the time-varying measurements into
the ARMA recursion and (8b) consists of the running average
of the ARMA output.

Recursion (8) can be expanded to all its terms as

ỹt =
1

t

t∑
τ1=1

τ1−1∑
τ2=0

Pτ2WQWDxτ1−τ2 (9)

=
1

t

t∑
τ1=1

τ1−1∑
τ2=0

Pτ2WQWDxd︸ ︷︷ ︸
χt

+
1

t

t∑
τ1=1

τ1−1∑
τ2=0

Pτ2WQWDnτ1−τ2︸ ︷︷ ︸
ηt

.

Then, by working out the sums we rewrite χt and ηt as:

χt =
1

t

t∑
τ1=1

(I−Pτ1W )(I−PW)−1QWDxd (10)

=
t+ 1

t
(I−PW)−1QWDxd

− 1

t
(I−Pt+1

W )(I−PW)−2QWDxd , HWD,txd,

ηt=
1

t

t∑
τ1=1

t−τ1∑
τ2=0

Pτ2WQWDnτ1 , (11)

where (10) is obtained by expressing the geometric series in
closed form since ‖PW‖ < 1, and (11) follows from simple
algebra. With these in place, we next characterize the steady
state performance and the MSD of the RWR algorithm.
Steady state performance. The main result is summarized
in the following proposition.

Proposition 2. The steady-state behavior of the RWR recur-
sion (8) is

ỹ , lim
t→∞

ỹt = (I−PW)−1QWDxd. (12)

Recursion (8) converges to (12) with rate t−1.

Proof. (Sketch.) From (10) we can observe that limt→∞ χt =
(I − PW)−1QWDxd since all other terms vanish as t−1.
Similarly, by expressing all terms of (11) in closed form
(
∑a
τ=0 A

τ = (I −A)−1(I −Aa+1), if ‖A‖ < 1) it can be
observed that limt→∞ ηt = 0 with rate t−1.

Proposition 2 states that the asymptotic reconstructed sig-
nal of xd through the RWR algorithm (8) consists of a perco-
lated version of the true sampled signal xd through a Wiener
graph filter. Observe that the noise contribution is removed
due to the running average in (8b).
Mean square error analysis. To fully characterize the RWR
performance, the following proposition provides a closed
form expression for the MSD of the RWR recursion (8).

Proposition 3. The MSDt = E‖ỹt − xd‖22 of the recon-
structed signal yt from the RWR algorithm (8) is

MSDt = tr

[(
HWD,t − I

)
Σd

(
HWD,t − I

)H]

+
1

t2
tr

[(
t−1∑
τ=0

P2τ
W +. . .+

0∑
τ=0

P2τ
W

)
QWDΣnDQH

W

]
,

(13)

with HWD,t defined in (10). Moreover, (13) converges to the
steady-state MSD

MSD∞= lim
t→∞

MSDt = tr
(

(HWD− I)Σd(HWD− I)H
)
,

(14)
with rate t−1

Proof. (Sketch.) From the mutual independence of xd and nt
the MSD at time t can be written as

MSDt = trE
[
(χt − xd)(χt − xd)H

]
+ trE

(
ηtη

H
t

)
. (15)

The first trace-term on the right-hand side of (13) can then
be obtained from the definition of the covariance matrix in
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Fig. 1: (Left) Considered graph topology with N = 120. Green circles depict the selected M = 90 nodes from (7). (Center)
Average MSD per node as a function of t for the sampling strategy (7) compared to a uniformly random sampling. (Right)
Average MSD per node as a function of M , for t = 10.
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Fig. 2: Average MSD per node as a function of t for
the RWR algorithm with M = 90 sampled nodes.

Empirical Empirical EmpiricalFig. 3: Illustration for the USPS data set. (Left) Some digits from the data
set. (Center) Noisy graph signal (digits) with 50% non-sampled nodes.
(Right) Recovered digits after 30 observations.

trE
[
(χt−xd)(χt−xd)H

]
. The second trace-term in the right

hand-side of (13) is obtained by first substituting the expres-
sion for ηt, and then by making use of the independence of
the noise realizations in time and exploiting the trace property
tr(ABC) = tr(CAB) = tr(BCA).

The convergence of (13) to (14) can be proven by express-
ing all sums in closed form (recall ‖P‖ < 1) and then taking
the limit for t→∞.

An important outcome of Proposition 3 is that (14) can be
used to design the sampling strategy, similarly to (7), for sam-
pling the graph such that the steady-state MSD is minimized.

5. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithms first in a synthetic scenario and then in the USPS
data set.
Synthetic scenario. We consider a graph composed of N =
120 nodes, with a topology depicted in Fig. 1 (Left). The
graph signal power spectral density is σ2

d (λn) = exp(−8λn)
and the zero-mean Gaussian noise n has a covariance matrix
Σn = 0.01I. The Wiener filter (4) is approximated with an
ARMA recursion of P = 3 and Q = 5 [18] leading to an
MSE approximation error of order 10−5. The shift operator
is S = Ln − 0.5λmax(Ln)I, where Ln denotes the normal-
ized Laplacian. The empirical results are averaged over 103

different realizations of xd and 106 realizations of the noise.
In Fig. 1 (Center) we show the MSD per node as a func-

tion of t for the proposed sampling strategy and random uni-

formly sampling. In this example, M is fixed to 90 and the
selected nodes are shown in green in Fig. 1 (Left). We ob-
serve that both strategies attain their theoretical performance
in just a few iterations with the sparse sensing sampling (7)
performing 1.1 dB better. Fig. 1 (Right) shows the MSD per
node as a function of M . In these results, the ARMA recur-
sion is arrested after t = 10 iterations. We observe that the
signal reconstruction is affected when more than 50% of the
nodes are not sampled. From the latter findings sampling sets
with M ≥ 90 nodes seem a reasonable choice.

Next, in Fig. 2 we show the performance of the RWR
algorithm as a function of t for M = 90. Once again, we
observe the fast convergence of the ARMA to its asymptotic
MSD (14), and the performance improvement of the proposed
sampling strategy (minimizing (14)) over random sampling.
USPS data set. To further illustrate the reconstruction perfor-
mance, we consider the USPS dataset which presents a high
degree of graph stationarity [10]. Under the settings of [10],
we additionally corrupted the data with zero-mean Gaussian
noise of variance σ2

n (λn) = 1, for all λn. The Wiener filter is
approximated by an ARMA with P = 3 and Q = 5 leading
to an MSE of order 10−7.

Fig. 3 illustrates 16 digits from the dataset (Left), their
noisy subsampled version (Center) and the reconstructed sig-
nal (Right). For this setup, N is 256, M = 128 pixels are
selected using (14) and t = 30. We observe how the sam-
pling approach focuses on reconstructing the most relevant
part of the images (i.e., where the digits are) and leaves more
errors in the borders (i.e., where there is no information).
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