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Abstract—We have recently seen a surge of work on distributed
graph filters, extending classical results to the graph setting.
State of the art filters have however only been examined from
a deterministic standpoint, ignoring the impact of stochasticity
in the computation (e.g., temporal fluctuation of links) and input
(e.g., the value of each node is a random process). Initiating the
study of stochastic graph signal processing, this paper shows that
a prominent class of graph filters, namely autoregressive moving
average (ARMA) filters, are suitable for the stochastic setting.
In particular, we prove that an ARMA filter that operates on
a stochastic signal over a stochastic graph is equivalent, in the
mean, to the same filter operating on the expected signal over
the expected graph. We also characterize the variance of the
output and we provide an upper bound for its average value
among different nodes. Our results are validated by numerical
simulations.

I. INTRODUCTION

Signal processing on graphs [1]–[3] has been developed

recently as a tool that extends the classical concept of signal

processing on time and space signals to signals indexed by

nodes of an irregular graph. The definition of a graph Fourier

transform offers the possibility to analyze the graph signal

not only in the node domain, but also in the graph frequency

domain. Making use of graph filters, the graph signal can be

filtered keeping a desired part of the spectrum, while attenuating

the other frequencies. Notable applications are signal denoising

[4], [5] and event boundary detection [6].

Since the graph signal is indexed by the nodes of the graph,

i.e., it is distributed across the graph, distributed implementa-

tions of graph filters are preferred. Distributed implementations

of finite impulse response (FIR) graph filters are considered

in [7]–[9]. FIR graph filters have the benefit that they can be

easily implemented in the node domain, due to their polynomial

frequency response. However, the polynomial form limits their

performance, and they have been shown to be more sensitive

to graph changes. To improve robustness, distributed infinite

impulse response (IIR) graph filters have been proposed in

[10], [11]. These filters have a frequency response that is a

rational function and they offer better performance than FIR

graph filters. Furthermore, these IIR filters are designed for

a continuous range of frequencies, thus the knowledge of the

graph spectrum is not necessary.

In this paper, our starting point is the autoregressive moving

average (ARMA) graph filter, a type of IIR filter proposed in

[11]. We aim at analyzing the effects of stochasticity in the

graph and signal on the filter performance. Stochasticity is

unavoidable in real applications: it occurs for instance when the
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signal defined on the node of a graph is randomly distributed

(e.g., a noisy graph signal), or when the graph topology changes

with a certain probability, i.e., link failures occur or new nodes

appear. In this paper, we derive the expected value and an upper

bound on the variance of the steady state signal in the graph,

based only on statistical knowledge of the graph and input

signal. We show that in the mean our filters reflect the same

graph frequency response as deterministic ARMA filters. For

1st order filters in particular, the expected value of the output

of the filter is a filtered version of the expected value of the

graph signal. This is an important result since it shows that

the output signal is robust to graph changes and it can handle

random processes as graph signals.

II. GRAPH FILTERS AND STOCHASTIC MODELING

Let us consider an undirected and connected graph G com-

posed of N nodes, and denote by V and E the vertex and edge

set, respectively. Let the vector x ∈ R
N represent the signal on

the graph G, where the i-th entry xi is the signal component

relative to node i. The graph Fourier transform (GFT) expands

the signal x into the graph frequency domain: the forward and

inverse GFTs of x are x̂n = 〈x,φn〉 and xn = 〈x̂,φn〉, where

〈 , 〉 denotes the inner product. The vectors {φn}
N
n=1 form an

orthonormal basis and are commonly chosen as the eigenvectors

of a graph Laplacian. To avoid any restrictions on the generality

of our approach, in the following we present our results for a

general basis matrix L. We only require that L is symmetric

and 1-local: for all i 6= j, Lij = 0 whenever the couple (i, j)
is not in the edge set E, i.e., there is no link between node i
and node j.

A graph filter is a linear operator that acts on the graph

frequency component of the input signal attenuating some of

the frequency components and amplifying others. The output

signal y can be expressed as

y =

N
∑

n=1

h(λn) x̂nφn, (1)

where h(λn) is the graph frequency response of the graph filter

for a given frequency λn. In this paper, we are interested in

implementing a desired response h∗(λ) in a distributed fashion.

In particular, we start our analysis from the distributed ARMA

filter design in [11], and we take a step further, by considering

stochastic time-varying realizations of both the graph and input

signal.

Stochastic model. We assume the following stochastic model:

Assumption 1: (Signal) The input signal xi,k at each node i
and time instant k is a realization of an i.i.d. random process in



time Pi with first order moment x̄i and second order moment

σ2
i . The random process at different nodes does not have to be

i.i.d for a fixed time instant.

Assumption 2: (Graph) The probability that a link (i, j) in

the edge set E is activated at time k is p, with 0 < p ≤ 1. The

edges are activated independently across time, with Lk denoting

the graph Laplacian at time instant k. Graph realizations are

considered mutually independent with the graph signal process.

Assumption 3: (Basis) There exist lower/upper bounds, uni-

form in time, on the eigenvalues of {Lk}, i.e., λmin ≤ λ(Lk) ≤
λmax for all k.

Assumption 1 is a weak assumption on the nature of the input

signal, which generalizes the deterministic signals analyzed

in current literature. Assumption 2 is quite standard in the

literature on network algorithms [12], [13]; it means that, at

each time step k, we draw a realization of the edge set Ek ⊆ E
generated via an i.i.d. Bernoulli process. Let us refer from now

on by L to the Laplacian relative to the graph E, and by Lk to

the Laplacian of Ek. Given realization Ek, each node locally

derives the instantaneous basis Lk by communicating with its

neighbors. For convenience, denote the expected basis E[Lk] as

L̄. Assumption 3, which concerns the basis realization Lk, is

not restrictive; lower and upper bounds are usually easy to find:

For normalized Laplacians, λmin = 0 and λmax = 2, whereas for

standard Laplacians1, λmin = 0 and λmax = λmax(L). Several

(finite) upper bounds for λmax(L) are known: for instance,

λmax(L) ≤ max{d(u) + d(v)|(u, v) ∈ E}, where d(u) is the

degree at node u.

ARMA filters. With this in place, we study the recursion

yk = ψMkyk−1 + ϕxk and y0 arbitrary, (2)

which is a stochastic extension of the potential kernel [15] and

is indexed as an ARMA1 graph filter in [11]. Graph signals

xk and yk are the input and output of the filter at time k.

The coefficients ψ and ϕ are arbitrary real numbers which

influence the filter graph frequency response, i.e., how well

we approximate h∗(λ). Matrix Mk is a shifted version of

the instantaneous basis Lk: Mk = λmax+λmin

2
I − Lk, such

that Mk has a reduced maximum eigenvalue (which helps

for the filter design). From Assumption 3, all the realizations

Mk enjoy lower and upper bounds on their eigenvalues as

µminI ≤ Mk ≤ µmaxI. And in particular, their spectral norm is

bounded as

‖Mk‖ ≤M = max{|µmin|, |µmax|}. (3)

For example, if the Lk’s are normalized Laplacians, we can

set M = 1. We further indicate with M̄ the expected value of

Mk. A word is in order for our choice of the iteration matrix

Mk. The design of Mk in a shifted version does not influence

our results. By Sylvester’s matrix theorem, matrices Mk and

Lk have the same eigenvectors and the eigenvalues µn,k of Mk

are related to the eigenvalues λn,k of Lk by µn,k = (λmax +
λmin)/2− λn,k.

1From the interlacing properties of the standard Laplacian [14], it follows
that λmax(Lk) ≤ λmax(L).

III. ARMA1 FILTERS IN THE MEAN

For simplicity of presentation, we consider ARMA1 filters,

like the one in (2). Our approach however is straightforwardly

extended to higher-order graph filters: as shown in [11], one

implements a Kth order filter by running (and linearly com-

bining) K ARMA1 filters in parallel.

Central to our filter design is the stability condition

|ψ|M < 1, (4)

imposed in the filter design phase, i.e., |ψ| < 1/M .

We are now ready to show that the ARMA1 recursion in (2)

under Assumptions 1, 2, and 3 and the stability condition (4)

behaves as an ARMA1 filter in the mean. This is encoded in

the following theorem.

Theorem 1: Let Assumptions 1–3 hold as well as the stabil-

ity condition (4). The steady state value of the expected value

of the ARMA1 recursion (2) is given by

ȳ := lim
k→∞

E[yk] = ϕ(I−ψE[Mk])
−1

E[xk] = ϕ(I−ψM̄ )−1x̄,

(5)

where x̄ is the vector containing the first order moments x̄i.

Proof: Define the transition matrix Φ(t′, t) := Mt′ · · ·Mt,

for t′ ≥ t, and Φ(t′, t) := I if t′ < t. We can write recursion (2)

at time instant k as

yk = ψkΦ(k, 1)y0 + ϕ

k−1
∑

t=0

ψtΦ(k, k − t+ 1)xk−t. (6)

By taking the steady state value of its expectation and by

using the linearity of the expectation operator and the limit,

the independence of the graph realization and the graph signal

we can write

lim
k→∞

E[yk] = lim
k→∞

ψkE[Mk]
ky0+

lim
k→∞

ϕ

k−1
∑

t=0

ψtE[Mk]
t
E[xk−t]. (7)

We make use of two properties of the spectral norm ‖ · ‖ of

a square matrix, namely sub-multiplicativity, i.e., ‖AB‖ ≤
‖A‖‖B‖, and convexity, i.e., ‖E[A]‖ ≤ E[‖A‖], to bound

the maximum eigenvalue of the matrix ψsE[Mk]
s, for any

exponent s > 0. After some algebra, and by employing the

spectral condition (3), and the stability criteria (4), we obtain

‖ψsE[Mk]
s‖ ≤ (|ψ|M)k < 1, for all s > 0. (8)

Due to (8) for s = k, the first term of the right-hand side of (7)

vanishes in the limit. As for the second term of the right-hand

side of (7), due to the norm condition (8) for s = 1, we can

compute the infinite sum as

lim
k→∞

ϕ

k−1
∑

t=0

ψtE[Mk]
t
E[xk−t] = ϕ(I−ψE[Mk])

−1
E[xk]. (9)

By substituting (9) into (7) the claim is follows.

Theorem 1 says that the expected value of the steady state

output is only influenced by the expected value of the signal on

the graph and by the expected value of the graph distribution.



An important feature is that the steady state output of the

graph filter is not influenced in the mean by the graph topology

changes. Furthermore, given its final expression is (5), we can

use the conclusions of Theorem 3 in [15], in which P is

replaced by M̄ and 1−ϕ by ψ, to conclude that the stochastic

recursion (2) acts as an ARMA1 graph filter in the mean.

IV. VARIANCE OF THE EXPECTED ARMA1 FILTER

We proceed to characterize the variance of the filter output

in (2), and as such to quantify how far from the mean a

given realization can be. First of all, we derive in closed

form the variance in the case of a static deterministic graph

and a stochastic time varying signal. For the general and

more involved case where both the graph and the signal are

stochastic, we derive an upper bound on the average variance

across all nodes.

Deterministic graph, stochastic signal. In this scenario, re-

cursion (2) (and (6)) simplifies into

yk = ψkMky0 + ϕ

k−1
∑

t=0

ψtM txk−t, (10)

which leads to the following result in terms of expected value

and covariance matrix.

Theorem 2: Let Assumptions 1 and 3 hold true, as well as

the stability condition (4). Consider the graph filter (10) with a

static deterministic graph and a stochastic time-varying signal

and denote by Σxx the covariance matrix of the input xk,

which is diagonal with diagonal entries σ2
i . The steady state

of the expected value ȳ, and the limiting covariance matrix

Σyy = limk→∞ E[yky
T

k ] are respectively

ȳ = ϕ(I− ψM)−1x̄ (11)

Σyy = ϕ2

∞
∑

t=0

ψ2tM tΣxx(M
t)T. (12)

Proof: (Sketch) The claim can be derived by computing the

covariance of yk in (10) and remembering the independence of

the initial condition y0 and the input signal xk. Then, by taking

the limit for k → ∞, equation (12) follows.

The results of Theorem 2 are not surprising, considering

that the graph filter (2) is a linear operator. In fact, directly

from linear system theory, the covariance expression (12) is

the unique solution of the discrete Lyapunov equation

Σyy = ψ2MΣyyM
T + ϕ2Σxx. (13)

It tells us that the covariance of the steady state is directly

related to the covariance of the input signal with the graph

matrix M , and it is independent of the particular signal

realizations.

Stochastic graph, stochastic signal. For the general case, the

following theorem gives a constructive proof on how to upper

bound the average variance of the output y at steady state.

Theorem 3: Under the same assumptions and definitions of

Theorem 1, define the limiting average variance experienced at

each node as

lim
k→∞

Var[yk] = lim
k→∞

tr(E[yky
T

k ]− E[yk]E[yk]
T)/N, (14)

where tr(·) indicates the trace operator. Let Σxx be the

covariance matrix of the input xk, which is diagonal with

diagonal entries σ2
i . Then, limk→∞ Var[yk] is upper bounded

as

lim
k→∞

Var[yk] ≤
ϕ2

N
tr

(

Σxx + x̄x̄T

(1− |ψ|M)2
− ȳȳT

)

. (15)

Proof: (Sketch, extended version available in [16])

To ease notation, define Φq := Φ(k, k− q+1). Expanding (6),

one writes limk→∞ tr(E[yky
T

k ]) = limk→∞{a1 + 2a2 + a3},

with

a1 = tr(E[ψ2kΦky0y
T

0 ΦT

k ]) (16a)

a2 = tr
(

E

[

ϕψkΦky0

k
∑

l=0

ψlxT

k−lΦ
T

l

])

(16b)

a3 = tr
(

E

[

k
∑

t=0

ψtΦtxk−t

k
∑

l=0

ψlxT

k−lΦ
T

l

])

. (16c)

We can show that limk→∞ tr(E[yky
T

k ]) = limk→∞ a3, as

a1 and a2 vanish in the limit. (This can be proved by stan-

dard upper bound arguments, while using the linearity of the

expectation and trace, the independence of Mt,xt,y0, the

inequality2 tr(AB) ≤ 0.5 ‖A + AT‖tr(B) ≤ ‖A‖tr(B), as

well as the convexity and sub-multiplicativity of the spectral

norm). In addition, since E[xk−tx
T

k−l] = Σxx if l = t
and E[xk−tx

T

k−l] = x̄x̄T, otherwise, matrix E[xk−tx
T

k−l] is

positive semidefinite. We can therefore use again the trace

inequality to upper bound limk→∞ tr(E[yky
T

k ]) by

lim
k→∞

ϕ2

k
∑

t=0

k
∑

l=0

‖E[ψt+lΦT

l Φt]‖tr
(

E[xk−tx
T

k−l]
)

. (17)

Furthermore, from the properties of the spectral norm and

equations (3) and (4), we have

‖E[ψt+lΦT

l Φt]‖ ≤ E[‖ψt+lΦT

l Φt‖] ≤ (|ψ|M)t+l, (18)

whereas

tr
(

E[xk−tx
T

k−l]
)

≤ tr(Σxx + x̄x̄T). (19)

Putting everything together, we obtain

lim
k→∞

tr(E[yky
T

k ]) ≤ lim
k→∞

ϕ2

k
∑

t,l=0

(|ψ|M)t+ltr(Σxx + x̄x̄T)

≤ ϕ2 tr

(

Σxx + x̄x̄T

(1 − |ψ|M)2

)

.

By the definition of the limiting variance limk→∞ Var[yk], the

linearity of the trace, and the expression of limk→∞ E[yk] given

in Theorem 1, claim (15) follows.

Theorem 2 describes a bound on the average variance at

node i. When the stochasticity is limited, meaning that the link

activation probability p is close to 1 and the variance on the

signal xk is low, then the average variance bound is expected to

be small (because M bounds in a tighter way matrices Mk, and

2This property of the trace is valid for any square matrix A and positive
semidefinite matrix B of appropriate dimensions [17].
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Fig. 1. Filter output of node 1 for different time instants k. The empirical
standard deviation and the square root of the bound are centered with respect
to the theoretical expected value, E[y1] = 0.15.

Σxx is close to zero). On the other hand, when the stochasticity

is high, the two terms on the right-hand side of (15) differ more

and the average variance bound is expected to be higher. Note

however that the result in (15) is still a bound and it does not

go to zero for the deterministic case. Nonetheless, as shown in

the numerical simulation section, this bound can be tight and

can therefore be useful in selecting the value of ψ.

V. NUMERICAL EVALUATION

To illustrate our results, we consider an undirected graph G
of N = 100 nodes, with edge set E. We analyze the graph

for different link probabilities p constant for all edges in E, an

initial state y0 = 0, and select the normalized Laplacian as our

basis matrix (thus M = 1). The input signal is assumed normal

distributed with E[xi,k] = 1 and a diagonal covariance matrix

with σ2
i = 1.

We simulate the ARMA1 filter (2), where the coefficients ψ
and ϕ have been found according to the filter design proposed

in [11] aiming at approximating an ideal low-pass filter with

pass-band [0, 1] and suppressing to zero all higher frequencies.

Figure 1 displays the analytical expected value of the steady

state and one realization of the output signal as a function

of time, plotted for node 1. In this case p is considered 0.5.

The empirical standard deviation of the output signal and the

calculated bound are also shown. We can see that the output

signal fluctuates around the theoretical mean, which is in line

with the results of Theorem 1. Furthermore, in this case the

bound is quite tight to the empirical standard deviation value.

To examine the influence of the graph stochasticity p, we con-

sider two extreme values of graph connectivity p = 10−3, p =
10−2, and one case where the graph is mostly connected,

p = 0.75. In Figure 2, we plot the square root of the bound (15)

as a function of ψ, and the average standard deviation for the

steady state calculated empirically. The figure illustrates that,

though it is true that the variance can grow very large, in most

cases of interest, the ARMA1 filter is not significantly affected

by variations. Note that in order to decrease the upper bound

of the variance one could tune the parameters ψ and also ϕ in

the filter design (e.g., by trading-off approximation accuracy,

high |ψ|, with low variance, low |ψ|). This aspect, along with

the generalization to higher-order and periodic ARMA filters,

is left for future work.
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Fig. 2. Square root of (15), and the empirical average standard deviation, σ̄,
for different values of p and as a function of ψ ∈ [−1/M, 1/M ]. The ARMA1

filter is low-pass for ψ < 0 and high-pass for ψ > 0.
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