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Time-Varying L ossless Systems and the Inversion of Large
Structured Matrices

Alle-Jan van der Veen

Time-Varying L ossless Systems and the
Inversion of Large Structured Matrices

In the inversion of large matrices, direct methods might
give undesired ‘unstable’ results. Vauable insight into
the mechanism of this effect is obtained by viewing the
matrix as the input-output operator of a time-varying
system, which alows to translate ‘unstable’ into ‘anti-
causal’ but bounded inverses. Inner-outer factorizations
and other |osslessfactorizationsfrom system theory play
the role of QR factorizations. They are computed by
state space techniques and lead to a sequence of QR
factorizations on time-varying realization matrices. We
show how several such results can be combined to solve
the inversion problem.

Zeitvariante verlustlose Systeme und die
Inversion grofRRer strukturierter Matrizen

Direkte Methoden ergeben bei der Inversion grol3er Ma-
trizen m"oglicherweises ‘instabile’ Ergebnisse. Wertvolle
Einsichten in den Mechanismus dieses Effektes erhélt man
durch die Auffassung der Matrix a's Eingangs-/Ausgangs-
Operator eines zeitvarianten Systems. Hierdurch werden
‘instabile’ in *antikausale', aber beschrankte Inverse umge-
setzt. Inner/Outer-Zerlegungen und andere verlustlose Fak-
torisierungen der linearen Systemtheorie Ubernehmen hier-
bei die Rolle der QR-Zerlegung. Sie werden auf der Basis
von Zustandsmodellen berechnet und filhren auf eine Folge
von QR-Zerlegungen zeitvarianter Realisierungsmatrizen.
Wir zeigen, wie aus solchen Ergebnissen eine Losung des
Inversionsproblemskonstruiert werden kann.

Keywords: Large matrix inversion, time-varying sys-
tems, inner-outer factorization.

1. Introduction

The inversion of large structured matrices is a delicate
problem which often arises in finite element modeling
applications, or (implicitly) in non-stationary inverse fil-
tering problems in signal processing. To stress the fact
that these matrices might befairly large and even solarge
that ordinary linear algebra techniques might fail, we al-
low them to have infinite size, i.e., they are operators on
the space of £5-sequences. We study some of the ways
in which system theory and state space techniques can
assist intheinversion problem. To set the scene, consider
the infinite Toeplitz matrix
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The position (0,0) of T is indicated by a square. The
inverse of T' isgiven by

.1/2 1/4 1)8
1 1/21/4
1 1/2

1 ...

T !'=

asis readily verified: TT-! = I, T~!T = I. One way
toobtain T~ in this caseisto restrict T' to afinite matrix
and invert this matrix. For example,

1-1/2 0 1°% r111/21/4
[0 1 —1/2] = lo 1 1/2].
0 0 1 00 1

In general, however, this does not always give correct
results.

Another way to obtain T2, perhaps more appealing
to engineers, goes via the z-transform:

1
T(z):l—iz
1 1 1
-1 - 14 = a2 4.
= T7(2) 1, -|-2z-|-42-|-

The expansion isvalid at least for |z| = 1.
What happens if we now take

1]-2 O

T = 1 -2 (2)
1 -2
0 1
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and treat it in the same way? In that case, we obtain of the above two cases:
L : 1 —1/2 0
248.. 1 |—1/2
Tt — 124 , T = -2 . (4)
12 1 -2
0 1. 1 -2
: 0 1
T_l(z):1+22+4z2—|—---. L §

Thus, T—1 is unbounded, and the series expansion for
T~1(z) is not valid for |z| = 1. The correct, bounded
inverse is obtained via

1 —1,-1
(2) 1—22 1-— %z—l
1 1
_ _52—1 _ Zz—z _
e —1/2 @ 0

~1/8 —1/4 —1/2 0
.—1/16 —1/8 —1/4 —1/2 "

Again, itisreadily verified that 7T~ = I, T~1T = I.
Moreover, this inverse is bounded. It is seen that, for
infinite matrices (operators), the inverse of an upper op-
erator need not be upper. Inthelight of finite dimensional
linear algebra, this seems to be a strange result. An intu-
itive explanation is that, because the matrix is so large,
the location of the main diagonal is not clear: a shift of
the whole matrix over one (or a few) positions should
be allowed and should only give asimilar (reverse) shift
in the inverse. For example, T~ is obtained from finite
matrices after shifting the origin over one position:

-2 0 0]7' [-1/2 0 0
1-2 ol =|-1/4-1/2 o0f.
0 1

—2 ~1/8 —1/4 —1/2

A better explanation is to say that T'(z) is not an outer
function, that is to say non-minimum phase, and hence
T~1(2) is not causal, which translates to a lower trian-
gular matrix representation.

The above example gives avery elementary insight in
how system theory (i.e. the z-transform) can help in the
bounded inversion of large matrices. The examplesso far
werecastinatime-invariant framework: all matriceswere
Toeplitz. We now go beyond this and consider general
matrices and their connection to time-varying systems.
An illustrative example is provided by the combination

IsT~! upper? But then it will be unbounded:
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Something similar happensif weopt for alower triangul ar
matrix representation. A bounded 7'~ 1 (if it exists!) will
most likely be acombination of upper (thetop-left corner)
and lower (the bottom-right corner), and some unknown
interaction in the center: something like
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Thepurpose of this paper isto do away with speculations,
and to give precise answersto such questions, using time-
varying system theory.

There are severa applications that could benefit from
such atheory.

1) Time-varying filter inversion: e.g., T"in (4) could rep-
resent an adaptive FIR filter, with a zero that moves
fromz = 2to z = 1/2. Think e.g. of an adaptive
channel estimate that has to be inverted to retrieve the
input signal from an observed output signal [1]. As
the example shows, a direct inversion might lead to
unstable results.

2) Finite element matrix inversion: Finite element ma-
trices are often very large, and hence the effects ob-
served above might play arole. Presently, stability of
theinverseisensured by careful selection of boundary
conditions: the borders of the matrix are chosen such
that its inverse (as determined by finite linear alge-
bra) is well behaved. Time-varying techniques might
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give additional insight. It is even envisioned that one
might do without explicit boundary conditions: extend
T to an infinite matrix, which is constant (Toeplitz)
towards (—o0, —o00) and (400, +00). LTI systems
theory gives explicit starting points for inversion re-
cursions. It iseven possibleto “zoomin” on aselected
part of T—1, without computing all of it.
3) System inversion also plays arolein control, e.g., the
manipulation of aflexible robot-arm [2].
The key idea which provides the connection of matrices
T and therich field of system theory isthat weview T as
the input-output matrix of alinear time-varying system,
mapping input signals (vectors) to output signals (vec-
tors). T' is supposed to have a certain structure, which
allows usto obtain atime-varying state space represen-
tation of the system with a low state dimension. This
stucture is fairly general. For example, a banded matrix
has a state representation where the number of states is
equal to the width of the band. Moreover, even though
theinverse of aband matrix is not sparse, it hasthe same
number of states as the origina matrix, and hence the
state representation is a very efficient way to specify this
inverse. Such results are already partly known: e.g. for a
three-diagonal matrix, the inverse can be computed by a
well-known three-term recursion. Our results generalize
on this. All computations are performed in a state space
context, and they are computationally efficient if the state
dimension islow.
In an operator theoretic context, inversion is of course
a solved problem. Time-varying systems have been for-
mulated in terms of anest algebra, for which factorization
and inversion results have been presented among others
by Arveson [3]. The key ingredient isan inner-outer fac-
torization, which can be viewed as a QR factorization on
operators. However, it is not clear from Arveson’s pa-
per how these abstract results translate to practical algo-
rithms. Thiswas the motivation for additional work. The
time-varying inner-outer factorization provides a split-
ting into causal (upper) and anti-causal (lower) parts:
a dichotomy. In the connection with time-varying state
space theory, it has been investigated by Gohberg and co-
workers [4], [5]. State space algorithms for inner-outer
factorizations lead, not surprisingly, to time-varying Ric-
cati recursions[6], and can be computed aswell viaaQR
recursion on state space matrices. In this paper, we collect
severa of these results and apply them to the problem of
matrix inversion.

2. Lossless Factorizationsand Oper ator
Inversion

2.1 Time-Varying Systems

Let T = [T;;] be a (finite) matrix or (infinite) operator,
with entries T;; . For additional generality, weallow T' to
be a block matrix so that its entries are matrices them-
selves: T;; isan m; x n; matrix, where the dimensions
m; and n; are finite but need not be constant over 1 and
j- They may even be equal to zero at some points, so
that finite matrices fit in the same (infinite) framework.

A connection with system theory is obtained by viewing
a row vector as a signal sequence in discrete time. The
multiplication of such a sequence by this operator,

[ [o] v -] = [ u - ]T,

is the mathematical description of the application of a
linear system to the signal represented by u: T is the
input-output operator of the system. The ith row of
the operator is then the impulse response of the sys-
tem due to an impulse at time ¢, i.e.,, an input vector
w=7[-0 1; 0 ---]. The system is causa if the
operator is block upper, and anti-causal if it is lower.

For mathematical convenience, only signalsthat have
bounded energy are admitted: row vectorsarein £3. Sys-
tems haveto be bounded as£; — £3-operators. This puts
our theory in a Hilbert space context. We define

X': the space of bounded £; — £ operators,
U : the space of bounded upper operators

U={TeX:T,; =0(i>j)}

L: the space of bounded lower operators.

2.2 Inner-CoprimeFactorization

Let(-)* denoteacomplex conjugatetranspose (Hermitian
conjugate). An operator U isleft isometricif U*U = I,
rightisometricif UU* = I, andunitaryif both properties
hold. U isinner if it is both upper and unitary. A prime
example of an inner operator isthe shift operator Z:

0
. 0 1
= 1
0 @0 -

The inverse of a unitary operator U is U*. This shows
that the inverse of an inner operator is not upper, but
lower. (In ordinary linear algebra, this would imply that
U isdiagonal, but not so for operators, and also not for
block-upper finite matrices).

The equivalent of the familiar QR factorization from
linear algebra is called the inner-coprime factorization,
whichisafactorizationof T' € X’ as

T=Q'R, Qinner, REU .

(Almost) every T' € X hassuch afactorization (thereare
some borderline exceptions having to do with marginally
stable systems, but they are not of interest to us here).
Note that @* islower, so that thisis alower times upper
factorization. This factorization can be used to map a
general operator in X’ to an upper operator R, which
reduces the problem to the inversion of upper operators:
T-! = R~1Q. Hence, the inner-coprime factorization
is a useful preprocessing step, but the delicate part still
hasto be done.
An LTI example of thisfactorization is

1 [2-:z 1]
1-2z  |1-—2z||2—2|

T(z) =
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1-1z-1] |1-1%z]"
Inthiscase, T hasanunstablepole: T' € £ (itsmatrix rep-
resentation is asin (3)). After factorization, @* contains
theunstablepole, and @ = (3 — Z)(1—12)"telUis
inner. R contains the reflection of the pole and is stable

(upper). . ,
For amore complicated LTV example, consider

0

—_

12 1
1/41/2 1
0 |1/81/41/2 1

Theinner-coprime factorization T = Q* R is

. | | ) ]
(1 0]
Q"= 0 L3 1/2 ’
[0 1v3] —3/4 1/2
0 [0 1v3] -3/8 —3/4 1/2
i | | ) ]
| AL
e et
0 R

Itisnot hard to verify this by direct multiplications: @ is
unitary and T' = Q* R, but obviously, this factorization
isnot trivially obtained. It has been computed by Matlab
using the state space methods of Section 3. Note that
the number of inputs of @ and R is not constant: it is
equal to 2 at time k£ = 0. Thisis aremarkable aspect of
time-varying factorizations.

2.3 Inner-Outer Factorization

An operator Tp € U is left outer if it has a left inverse
TO_,ll whichisupper, andright outer if ithasarightinverse
T} which isupper. Ty isouter if it isboth left outer and

right outer. The fact that the inverse of an outer operator
is upper again is very helpful in computing this inverse.

For LTI systems, outer means that T'(z) does not have
‘unstable’ zeros: T' in (1) is outer, but T' in (2) is not.
Also, aninner operator is not outer (unlessit is diagonal)
because its inverse is equal to its conjugate transpose
and always lower. In more abstract operator language,
equivalent definitions are that Tj isleft outer if Toll; =
Uy, andright outer if Uy Ty = Uy, whereld, isthe space of
all operatorsini/ that are bounded inthe Hilbert-Schmidt
norm (the operator version of the Frobenius norm: root-
sum-square of al entries). It might happen that ranges
are not closed, in which case the inverse is only densely
defined. We do not want to go to thislevel of detail in this
paper.

The content of the inner-outer factorization theoremis
(3]. [6]:
Theorem 1. Every operator T' € U has factorizations

UT,,
T= { T,V

[Inner-outer]
[Outer-inner]

where U, V, T, ., T, ; € U satisfy

v*v =1, T,,: rightouter,
Vv* =1, T,,.: leftouter.

Again, these factorizations can be viewed as some form
of QR (or RQ) factorization, although less obviously than
for theinner-coprimefactorization, because T' isof course
already upper triangular. The objective here is to obtain
outer factorsT, . and T, ¢, centered on themain diagonal:
to be outer, it is at least necessary that the main diagonal
is (left or right) invertible. U and V' arein genera only
isometries. They are unitary (inner) if the columns, resp.
rows, of T' span all of A.

A simple LTV example which can be computed by
handis

ol . ®
01
0 01

In this example, T' does not have full row span:

[---0 0 0 0 ---]isnotcontained in it. The
outer-inner factorization is

T="T,V=
1 0 1 0
1 1
1 1
_ V2 NeANG
1 0 1
1 01
0 1 0 0

Ty, obviously hasaleftinverse T, whichisupper (itis
even diagonal and aright inversein this case). V isonly
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anisometry: VV* = I, but V*V # I. The inner-outer
factorizationis

T=UT,, =
1 .0 1
1] 1
B 1] - 11
= []1 AT -
01 1
0 0. 1

U hasacolumnwith zero horizontal dimension (signified
by*-"),but U*U = I nonetheless. Ty » hasarightinverse

T, which is upper,

but TO‘,TITO,, # I:itisnot aleft inverse. If our purpose
is the inversion of T, then it is clear in this case that
T only has aright inverse. The outer-inner factorization
is useful for computing this inverse: we directly have
T =V"T,,.

2.4 Operator Inversion

The strategy for theinversion of an operator T' € X isto
determine the following factorizations:

T=Q'R [Inner-coprime]: @ inner
R =URy, [lnner-outer]: U*U =1,
Ry, right outer
Ry, = RooV  [Outer-inner]: VV* =1,
Ry |€eft outer
(al factorsinf), (7

sothat T' = Q*U RooV. Thefinal factor, Roo, is upper
and both |eft and right outer, henceinvertibleini/, and its
inverseiseasily obtained. T is not necessarily invertible:
U and V areisometries, and might not be unitary. In any
case, T has a Moore-Penrose (pseudo-)inverse

T = V'R U*Q,

and T isinvertiblewith 7= = T if U and V' are both
unitary. The inverse is thus specified as a |lower-upper-
lower-upper factorization. The factors may be multiplied
to obtain an explicit matrix representation of T, but
because each of them will be known by its state rep-
resentation, it is computationally efficient to keep it in
factored form. State representations are the topic of the
next section.

. -uo ul uz ua )
By
zy Dl\ 3 z3
A
o\t
U1 B
! AI !
Zo 1 (21 i)
DI
1 Ci
!
Y1
. -ZO zl z2 z3 )

Fig. 1. State realization which models the multiplication z =
uT.

3. State Representationsand Recursions

In the previous section, we have considered bounded op-
eratorsT € X, and looked at it as the input-output oper-
ator of alinear time-varying system. In this section, we
go further and consider systems that have time-varying
staterealizationswith afinite, and hopefully low, number
of states at each point in time.

3.1 Time-Varying State Realizations
Let {T:}, {T}} beseries of matrices with block entries

Ay Ck] , [A;c C,’c]
] k — ]

T":[Bka =Bl 0

and consider the time-varying forward and backward
state recursions,

(T) ZTr4+1 = TrAr + ur B

Yr = 2xC + up Dy

! — IA/ +ukBl

T Tr_1 Ty k
(T) { v, =C}

Zp = Yk + Y- (8)

See Fig. 1. The recursion maps the input sequences
[u] to output sequences [yx], [y}], and finaly to [zz].
The intermediate quantities in the recursion are z, the
forward state, and j, the backward state. The matri-
ces {Ag, B, Cx, D, A}, By, C}, } must have compati-
ble dimensions in order for the multiplications to make
sense, but they need not be square or have constant di-
mensions. Zero dimensions are also alowed. The rela
tion between input w = [--- uy, ug, +-+] and output
z = [+ 21, 22, -+ ], & generated by the above state
recursions, is
z = ul:
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11'12 13 '14 ' 15 H,
9202372425 | Hs
T=|"" 13334 35 H,
T s |
T " 55
-

Fig. 2. Hankel matrices are submatrices of T'. Hj is shaded.

D:  BiCy By1AyCs BiAyAsCy---

T BLC! Dy ByCs ByAsC,
= | BLALC! BLCL, Ds B3C,4

BLALCL BLCY D,

so that the state recursions can be used to compute a
vector-matrix multiplication z = uT', where the matrix
T is of the above form. Accordingly, we will say that a
matrix T' has a (time-varying) state realization if there
exist matrices{ T}, {T",} such that the block entries of
T = [T;;] aregiven by

Di: 7':.7:
T; :{BZ;A?'_*_l---A;_lC;, 72<]:, (9)
BiA; 145,05, i>7.

The upper triangular part of T' is generated by the for-
ward state recursions { T }, the lower triangular part by
the backward state recursions {T*, }. To have nicely con-
verging expressionsin (9), wealwaysrequirerealizations
to be exponentially stable, in the sense that

lim sup || Aip1- - Aign ||V < 1,
n—oo 4
lim sup || Af_;--- Al ||IY™ <1.
n—oo

The computation of a vector-matrix product using the
state equations is more efficient than a direct multiplica-
tionif, forall k, thedimensionsof z andz;, arerelatively
small compared to the matrix size. If this dimension is,
on average, equal to d, and T' isan n x n matrix, then
a vector-matrix multiplication has complexity O(d?n)
(this can be reduced further to O(dn) by considering
special types of redlizations, viz. [7], [8]), and a matrix
inversion has complexity O(d%n) rather than O(n?).

3.2 Computation of a State Realization

At this point, afirst question that emergesis whether, for
any given matrix, a state realization exists. If so, then
subsequent questions are (¢) how tofind it, and (4¢) what

will be its complexity. To answer these questions, define
the submatrices

T Th—1,6 Th-1,k4+1 - *

H, = | Te-2,6 Te-2,k41 (10)
[The—1  Trr-2

H = Tet1,6-1 Tht1,6-2 (11)

SeeFig. 2. The H, arecalled (time-varying) Hankel ma-
trices, but they have a Hankel structureonly in the time-
invariant context. Even without this structure, a number
of important properties of LTI systems carry over. For
example, when we substitute eg. (9) into (10), we obtain

[Bi_1C4 Byp_1ArCrs1 .
By_3Ar-1Ck Br24r-14xCry1
Hy = | By_3Ap_2A;-1Cy E

[ Br—1
Brp_2A4r-1
= | By_3Ar_24_1

-[Cr ArCri1 ArAr4+1Cry2--] = CxOk.

Just as in the LTI case, the Hankel matrices of an LTV
system generated by state recursions (8) admit factoriza-
tions, and the rank of the factorization of Hy, is(at most)
equal to the state dimension at time k. Conversely, the
structure of this factorization can be used to derive real-
izationsfromit. Theideasfor thiswere already contained
in the classical Kalman realization theory [9].

Theorem 2 ([10, 11]). LetT € X, and defined; =
rank(Hy), d), = rank(Hy}). If dl dg, d}, arefinite, then
there are (marginally) exponentially stable time-varying
state realizations that realize T'. The minimal dimension
of 2 and z}, of any state realization of T is equal to dy
and d},, respectively.

Hence, the state dimensions of the realization (which de-
termine the computational complexity of multiplications
and inversions using state realizations) are equal to the
ranks of the Hankel matrices. Note that these ranks are
not necessarily the same for al &, so that the number of
states may be time-varying.

Minimal state realizations are obtained from minimal
factorizations of the Hy, and Hj. In principle, the fol-
lowing algorithm from [7] is suitable. Let Hy, = QR
be a QR factorization of Hy, where @ is an isometry
(Q:Qr = I,), and Ry, hasfull row rank dy. Likewise,
let H, = Q4 R}.. Then arealization of T is given by

T: A = [0 QrlQk+1,
By = (Qk+1)(1,:),
Ck = Rk(:, 1),
Dy = Ty 1,

T': 4, = [0 Q¢pa]Qu,
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B, = Q4(1,:
kE — Qk( :'):
C]Ic = R;c+1(:: 1):
D;c = 0.

(For a matrix X, the notation X (1,:) denotes the first
row of X, and X (:, 1) thefirst column.) Important refine-
ments are possible. For example, it isnot necessary to act
ontheinfinite sizematrix Hy: itissufficient to consider a
principal submatrix that has rank dy, [12]. Also note that
H} and Hy 41 have many entries in common, which can
be exploited by considering updating algorithms for the
QR factorizations. It is also possible to compute opti-
mal approximate realizations of lower system order [13],
[14].

Band matrices areimportant examples of systemswith
a low state dimension: dj, is equal to the band width
—1, and a realization can be written down directly by
inspection:

0 T,k
10 Ty a1,k
A Cy | _ .
By Dy | — Lo
1 0|Tp_1,8
0 0 1|Thr

But also the inverse of a band matrix, athough it is not
sparse, has alow state dimension: dy, is at each point the
same as that of the original band matrix. This is shown
in Section 3.3. Examples are the matrices considered so
far in this paper: they all have constant state dimensions
equal to 1.

3.3 State Complexity of the Inverse

Suppose that 7' is an invertible matrix or operator with
a state realization of low complexity. Under some reg-
ularity conditions, it is straightforward to prove that the
inverse has a state realization of the same complexity.

Proposition 1. Let T € X be an invertible opera-
tor with finite dimensional Hankel matrices (Hr)z and
(H%)k, defined by (10), (11). Put dy := rank (Hr)g
and d}, := rank(H7 ).

If, for each k, at least one of the submatrices
[Ti)572 o OF [T35155—, isinvertible, then § = T-1
has Hankel matriceswith the sameranks: rank (Hg)r =
dr andrank(H%)r = d},.

Proof:  We will use Schur’s inversion lemma. In gen-
eral, let A, B, C, D be matrices or operators such that 4
and D are square, and A isinvertible, then

A B| I o4 0 I A'B
C D| |cA~tI||0o D—cA™B||l0 I |*
If in addition the inverse of this block matrix exists, then

D* := D — CA~!Bisinvertible and theinverse of the
block matrix is given by

A B
5]~

- [g _A;B] [Ao_l(pxo)—l] [—0{4-1 ?r] -

[ B

- —(DX)_ch_l (Dx)—l .
In particular, D’ is invertible, rank B’ = rank B,
rank C’ = rank C. The proposition followsif [& 2]

istaken to be a partitioning of T, such that B = (Hr)x
andC = (Hi ). m|

3.4 Outer Inversion

If amatrix or operator is block upper and has an inverse
which is again block upper (i.e., the corresponding time-
varying system is outer), then it is straightforward to
derive a state realization of the inverse.

Proposition 2 ([7]). Let T € U be outer, so that
S := T7! ¢ U.If T has a dtate redlization T =
{Ag, B, Ck, D}, then arealization of S is given by

S, _ [Ak—Cka‘lBk —C,D;t
k= - -
D;'By Dt

Proof: FromT—'T =T andTT~! = I, and the fact
that 7= is upper, we obtain that all Dy, = T}, must be
invertible, Using this, we rewrite the state equations:

271 = zA+ uB

y = 2C +uD

zZ"! = z(A-CD™'B) + yD~'B
< U = —zCD™ ! + yD‘l.

The second set of state equations generates the inverse
mapping y — wu, o that it must be arealization of T 1.
The remaining part of the proof is to show that {4 —
Ck D;lBk} is a stable state operator. The proof of this
is omitted, but it is essentially a consequence of the fact
that T is outer and hence has a bounded upper inverse
[11]. a

Note that the realization of the inverseis obtained lo-
caly: it is, a point &, only dependent on the realization
of the given matrix at point k. Hence, it is quite easy to
compute the inverse of an operator once we know that it
isouter.

3.5 Inner-CoprimeFactorization

Inorder to use the aboveinversion proposition onamatrix
T which is not block upper, we compute a kind of QR
factorizationof T'asT = QA, where @Q is block lower
and unitary, and A is block upper. Since @ is unitary,
its inverse is equal to its Hermitian transpose and can
trivially be obtained. We first consider the special case
where T is lower triangular. This case is related to the
inner-coprime factorization in [13].

Proposition 3 ([13]).
(@) Suppose that T € L has an exponen-
tialy stable finite dimensiona state realization T/ =
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{4}, B}, C4, D, }, with 4}, : d}, x d},_;. Then T has QR factorization:
afactorization T = Q*R, where Q@ € U isinner and
Rel. o ng  dry1
(b) Denoteredizations of @ and R by my [ Dy B, ] .
dy k chk YkAIc o
ap = [(40)e (€ g,  [(4m)s (Cr)e () )
(BQ)e (DQ)x |’ (Br)e (DR): |- T k1
(mo)e  [(Do)r (Bo)k
Then Q; and R, follow recursively from the QR factor- = Wi - (dy)k+1 0 Ye+1 (13)
ization 0 0

Yi Al
B;

1Y:Cy - qQ: Yi-1
0 D, | —=k| 0

R, ] (12)

whereY}, : d, x d}, isasquare matrix.

The state operators of Q and R are the same: (Ag)r =
(ARr), and they are related to A" via a state transfor-
mation. The resulting number of inputs of @ and R may
be time-varying. In particular, @ can be a block matrix
whose entries are matrices, even if T itself has scalar
entries.

Eq. (12)isarecursion: foragiveninitial matrix Yy, ,we
can compute Q,, R,, and Yz, —1. Hence we obtain the
staterealization matricesfor @ and R inturnfork = kq—
1, ko — 2, ---. All weneed isacorrect initial value for
the recursion. Exact initial values can be computedin the
caseof systemsthat are LTI for large k (Y Y, satisfiesa
Lyapunov eguation), or periodically varying, or that have
zero statedimensionsfor k > ko. However, evenif thisis
not the case, we can obtain @ and R to any precision we
like by starting the recursion with any (invertible) initial
value, such as Y3, = I. The assumption that T' has an
exponentially stable realization implies that Y, — Y3
(k — —o0), the correct value for Y. Convergence is
monotonic, and the speed of convergence is depending
on the ‘amount of stability’ of the A;.

The more general case (T' € X) isacorollary of the
above proposition. Split T' = T + Ty, with T, € £
and Ty, € ZU (strictly upper). The above inner-coprime
factorization, applied to T, givesT; = Q*R. Then T
hasafactorizationT = Q*(R + QTy) =: @* A, where
A € U. Theredlization for @ is only dependent on T,
and follows from the recursion (12). A realization for A
is obtained by multiplying @ with T;, and adding R.
These operations can be done in state space. Using the
fact that Ag = Ag and Bg = Br, We obtain

(4Q)k (CQ)r B |(Cr)k
A

(Bo)x (D2):Be (D)

3.6 Inner-Outer Factorization

Let T € U, with exponentially stable finite dimensional
realization T = {Ag, Bg, Cx, Dy}, where A : dj X
dry1, A% ¢ di, x dj,_;. The inner-outer factorization
T =UTo,r, where U*U = I and Tp, is right outer,
can be computed recursively, asfollows. Supposethat, at
point k, we know the matrix Y. Compute the following

where W, is unitary, and the partitioning of the factors
at theright hand side of (13) issuch that (Do) and Y41
both have full row rank. This also definesthe dimensions
(mo)r, and (dy )g+1. Since the factorization produces
Y% 41, we can perform the QR factorization (13) in turn
fork+1,k+2,---.

A non-trivial result from [6], [11] claims that this re-
cursion determinesthe inner-outer factorization. W, has
apartitioning as

((mo))k (C(ly)k)+1
_ my Dy )i By)r *
Wi = (dy)e | (Culr (Av)e *|’

Itturnsout that U = {(AU)k: (BU)k: (CU)k: (DU)k}
isarealizationof U, and To = {Ax, (Bo)k,Ck, (Do)x }
isarealization of To,,.

In [6], the inner-outer factorization was solved using a
time-varying Riccati equation (see aso [15]). The above
recursive QR factorization is a square-root variant of it.
Correct initial points for the recursion can be obtained
in a similar way as for the inner-coprime factorization.
If T is Toeplitz for k < ko, then Yy, can be computed
from the underlying time-invariant Riccati equation (viz.
[16]), which isretrieved upon squaring of (13), thuselim-
inating W . Asiswell known, this calls for the solution
of an eigenvalue problem. Similar results hold for the
case where T' is periodically varying before k < ko, or
has zero state dimensions (dr, = 0,k < kg). But, as
for the inner-coprime factorization, we can in fact take
any invertible starting value, such as Yz, = I, and per-
form the recursion: because of the assumed stability of
A, Y: — 3. Inasense, we are using the familiar QR-
iteration [17] for computing eigenvalues! (Open question
ishow the shifted QR iteration fitsin this framework.)

The outer-inner factorization T' = Tp ,V (VV* =1,
To,¢ l€ft outer) is computed similarly, now by the back-
ward recursive LQ factorization

ne  (dy )k
my | Dy BpYi | _.
dr | Cr ApYi |
(no)e  (dy)r-1

e[ 0w o

The partitioning is such that (Dg); and Yz —; have full
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column rank. Wy, isunitary and has a partitioning as

N (dy )&
(no) (Dv)r (Bv)k
Wi =(dy)e-1 | (Cv)r (Av )

Realizations of the factors are given by V = {(Av )z,
(Bv )k, (Cv)k, (Dv)r} and To = {Ak, B, (Co)z,
O)ks-
An example of the outer-inner factorizationisgivenin
Section 3.8.

3.7 Inversion

At this point, we have obtained state space versions of all
operatorsin thefactorization T = @Q*U RV of eq. (7):
@ isobtained by the (backward) inner-coprime factoriza-
tion of Section 3.5, U by the (forward) inner-outer QR
recursionineg. (13), and V by the (backward) outer-inner
LQ recursion in eqg. (14). We also have obtained a state
space expression for the inverse of the outer factor Roo,
viz. Section 3.4. Therealizationsof the (pseudo-)inverses
of the inner (isometric) factors are obtained simply via
transposition: e.g., the realization for V* is anti-causal
and given by {(Av);,(Cv ), (Bv)i, (Dv);}. The
(pseudo-)inverse of T'isgiven by Tt = V* Ry U*Q.

It is possible to obtain a single set of state matrices
for T'f, by using formulas for the multiplication and ad-
dition of realizations. This is complicated to some ex-
tent because of the alternating upper-lower nature of the
factors. Moreover, it is often not necessary to obtain a
single realization: matrix-vector multiplication is carried
out moreefficiently on afactored representationthanona
closed-form realization. Thisisbecausefor aclosed-form
representation, the number of multiplications per point in
timeisroughly equal to the square of the sum of the state
dimensions of all factors, whereas in the factored form it
is equal to the sum of the squares of these dimensions.
Seedso[7].

3.8 Example
We finish this section with an example. Consider again

T from eq. (4). A redlization for T is straightforward to
obtain, since it is a banded matrix:

Ty =
0|—2
TT, k:]., , —00.

T is already upper, so an inner-coprime factorization is
not necessary. It is also not hard to see that the inner-outer
factorizationof T'isT = I-T. Thisisbecausetheinitia
point of the recursion (13), given by the LTI solution of
the inner-outer factorization of the top-left block of T,
produces (dy )o = 0, and hence all subsequent Yz'shave
zero dimensions. Consequently, T is aready right outer
by itself.

Our purpose now is to compute the outer-inner fac-
torization of T'. An initial point for the recursion (14) is
obtained as Yy = /3, k > 1. It requires the solution of
aRiccati equation to find it (this equation isthe square of
(24), which eliminates W), but it is easy to verify that
itisastationary solution of (14) for &k > 1: it satisfiesthe
equation

[—12 \ﬂ B [—21\?5:] _;‘/5 %\f (49)
AR

(zero dimensions are denoted by ‘-’) and we'll leave it
by that. Alternatively, we can start the recursion with
Y30 = 1, say, and obtain Y, = 1.7321--- =~ /3. Eq.
(15) also showsthat the realization of the outer factor has
(Do)r = 2 and (Co)x = —1, for & > 0. Continuing
with the recursion gives us

[0|—1 | [0.5 |—0.866 |
(To)r = |775—|» V1= 0866 05 |
Yo = 1732,
[0]—0.25 ] 0.5 |—0.866]
(To)o = |75 |+ Vo= |0868 05 |
Y_1 = 0.433,
[0]—0.459] [0.918|—0.397]
(To)-1 = T 1.090 " V-1 = |03970 0.918]"
Y_, = 0. 199,
[0]|—0.490 [0.981|—0.195]
(To)-2 = T 1020 V2= %195 0.081 |
Y. 3 = 0. 097,
[0]|—0.498] 0.995|—0.097 ]
(To)-s = | 71,005 |» V-3 = |0.097| 0.995]"
Y_, = 0.049,
[0]—0.499 [0.999/—0.048 ]
(To)-4 = | T| T.00T | Vog = 0.048] 0.999 | °
Y_5 = 0.024,
[0]—0.500] [1.000{—0.024]
(To)-5 = T 1000 ° V-5 = |5.024 1.000 | °
Y. ¢ = 0.012.

Thus, Y}, tendstowardszeroask — —oo, and at thesame
time, V tends towards the identity matrix. At a certain
point, (say around &k = —10, but actually depending on
the desired accuracy), we will decide on dy,x_1 = 0,
after which the number of statesin V will be reduced
to zero aswell:

Voo 1.000|—0.000
-9 = |0.000] 1.000
V-10 = [0 000 1.000] '
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This brings us back to the LTI solution for this part of T'.

Itisseenfrom V_yq that itisnot unitary at thispoint in

time:only V_1oV? o = I holds, but V¥, V_q0 # I.

Consequently, VV* = T but V*V £ 1I,i.e, V isnot

unitary but isometric, and hence T" isonly Ieft invertible.

The situation isnot unlike T" in (6), but less pronounced.
The outer-inner factorization of 7' is thus

1-0.5 0
1 —0.5
1 —0.49
T, = 1 —0.46 ,
1.09 [-0.25
2 —1
2 1

1-0.00—-0.00—0.00—0.01}—0.02—0.01—-0.00- - -
1-0.00—0.01-0.02—0.04—0.02—0.01
1-0.02—0.04—0.08—-0.04—0.02
0.98—0.08—0.15—0.08—0.04
0.92—0.34—0.17—0.09
0.5—0.75—0.37
0.5—0.75

0 0.5 -

The (left) inverseof T'is
T =V*To, =

0.00 0.00---
0.01 0.00
0.01 0.01
0.03 0.01
0.05 0.03

1.00 0.49 0.24 0.10
—0.01 0.99 0.48 0.20
—0.01-0.02 0.95 0.40
—0.02—-0.05—-0.10 0.80] 0.10
—0.05—0.10—-0.20—-0.40, 0.20 0.10
—0.02—-0.05—0.10—-0.20/—0.40 0.05 0.03 0.01
—0.01-0.02—-0.05—-0.10{—0.20—0.47 0.01 0.01

---—0.01-0.01-0.02—0.05(—0.10—0.24—0.49 0.00---

0.01
0.03
0.05

0.01
0.01
0.03
0.05

It hasindeed the structure which we announced in eg. (5):
it is Toeplitz towards (—oco, —o00) and (+oo, +00), and
equal to the solution of the LTI subsystems of T in those
regions. In addition, there is some limited interaction in
the center which glues the two solutions together. All
entries are nicely bounded.

4. Conclusion

In this paper, we have looked at what could be called the
‘stableinversion’ of large matrices. For the case of upper
triangular matrices, this means that instead of insisting
on an upper triangular but unstable inverse, we alow
the inverse to have alower triangular anti-causal part. In

LTI systems theory, the relation between unstability and
anti-causality is well-known (they are the samein the z-
domain), but for the general time-varying framework and
from the matrix point of view, essentially the same no-
tions lead to perhaps surprising results. Also remarkable
is the fact that global lossless factorizations (QR factor-
izations) can be computed by local QR factorizations on
time-varying realization matrices. It should be noted that,
although all our time-varying examples were intention-
aly of the most elementary form (a single step of only
one parameter), the theory and algorithms really apply to
time-varying systemsin generd, i.e., to any large matrix.
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