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Time-Varying Lossless Systems and the
Inversion of Large Structured Matrices

In the inversion of large matrices, direct methods might
give undesired ‘unstable’ results. Valuable insight into
the mechanism of this effect is obtained by viewing the
matrix as the input-output operator of a time-varying
system, which allows to translate ‘unstable’ into ‘anti-
causal’ but bounded inverses. Inner-outer factorizations
and other lossless factorizations from system theory play
the role of QR factorizations. They are computed by
state space techniques and lead to a sequence of QR
factorizations on time-varying realization matrices. We
show how several such results can be combined to solve
the inversion problem.

Zeitvariante verlustlose Systeme und die
Inversion großer strukturierter Matrizen

Direkte Methoden ergeben bei der Inversion großer Ma-
trizen m"oglicherweises ‘instabile’ Ergebnisse. Wertvolle
Einsichten in den Mechanismus dieses Effektes erhält man
durch die Auffassung der Matrix als Eingangs-/Ausgangs-
Operator eines zeitvarianten Systems. Hierdurch werden
‘instabile’ in ‘antikausale’, aber beschränkte Inverse umge-
setzt. Inner/Outer-Zerlegungen und andere verlustlose Fak-
torisierungen der linearen Systemtheorie übernehmen hier-
bei die Rolle der QR-Zerlegung. Sie werden auf der Basis
von Zustandsmodellen berechnet und führen auf eine Folge
von QR-Zerlegungen zeitvarianter Realisierungsmatrizen.
Wir zeigen, wie aus solchen Ergebnissen eine Lösung des
Inversionsproblems konstruiert werden kann.

Keywords: Large matrix inversion, time-varying sys-
tems, inner-outer factorization.

1. Introduction

The inversion of large structured matrices is a delicate
problem which often arises in finite element modeling
applications, or (implicitly) in non-stationary inverse fil-
tering problems in signal processing. To stress the fact
that these matrices might be fairly large and even so large
that ordinary linear algebra techniques might fail, we al-
low them to have infinite size, i.e., they are operators on
the space of ��� -sequences. We study some of the ways
in which system theory and state space techniques can
assist in the inversion problem. To set the scene, consider
the infinite Toeplitz matrix
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as is readily verified:

�3� "%$ �54
,
� "6$ �7�84

. One way
to obtain

� "6$
in this case is to restrict

�
to a finite matrix

and invert this matrix. For example,9 �:����/� �� � ������� � �<; "%$ � 9 �=�����'���)(� �.���/��1� �>; �
In general, however, this does not always give correct
results.

Another way to obtain
� "%$

, perhaps more appealing
to engineers, goes via the ? -transform:� � ?@� � �A� �� ?B �#"%$ � ?@� � ��C� $� ? � �ED �� ?FD �( ? � DG,�,�, �
The expansion is valid at least for H ?IH � � .

What happens if we now take
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and treat it in the same way? In that case, we obtain
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Thus,
� "%$

is unbounded, and the series expansion for� "%$ � ?@� is not valid for H ?IH � � . The correct, bounded
inverse is obtained via� "%$ � ?@� � ��C�S�0? � � $� ? "%$�C� $� ? "6$ �� � �� ? "6$ � �( ? " � �T,�,�,
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Again, it is readily verified that

�3� "%$ �]4
,
� "%$ ���]4

.
Moreover, this inverse is bounded. It is seen that, for
infinite matrices (operators), the inverse of an upper op-
erator need not be upper. In the light of finite dimensional
linear algebra, this seems to be a strange result. An intu-
itive explanation is that, because the matrix is so large,
the location of the main diagonal is not clear: a shift of
the whole matrix over one (or a few) positions should
be allowed and should only give a similar (reverse) shift
in the inverse. For example,

� "6$
is obtained from finite

matrices after shifting the origin over one position:9 �Q� � ��:�Q� �� �=�Q�^; "%$ � 9 ����/� � �����)(Z������ �����/+N����0('������_; �
A better explanation is to say that

� � ?@� is not an outer
function, that is to say non-minimum phase, and hence� "%$ � ?@� is not causal, which translates to a lower trian-
gular matrix representation.

The above example gives a very elementary insight in
how system theory (i.e. the ? -transform) can help in the
bounded inversion of large matrices. The examples so far
were cast in a time-invariant framework: all matrices were
Toeplitz. We now go beyond this and consider general
matrices and their connection to time-varying systems.
An illustrative example is provided by the combination

of the above two cases:

�`�
	









�

. . .
. . .�W����/� �� ������

1 �Q��a�Q��L�Q�� � . . .. . .

������������� � � (b�
Is
� "6$

upper? But then it will be unbounded:	
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Something similar happens if we opt for a lower triangular
matrix representation. A bounded

� "%$
(if it exists!) will

most likely be a combination of upper (the top-left corner)
and lower (the bottom-right corner), and some unknown
interaction in the center: something like

� "6$ � ��h �
The purpose of this paper is to do away with speculations,
and to give precise answers to such questions, using time-
varying system theory.

There are several applications that could benefit from
such a theory.
1) Time-varying filter inversion: e.g.,

�
in (4) could rep-

resent an adaptive FIR filter, with a zero that moves
from ? � � to ? � ���/� . Think e.g. of an adaptive
channel estimate that has to be inverted to retrieve the
input signal from an observed output signal [1]. As
the example shows, a direct inversion might lead to
unstable results.

2) Finite element matrix inversion: Finite element ma-
trices are often very large, and hence the effects ob-
served above might play a role. Presently, stability of
the inverse is ensured by careful selection of boundary
conditions: the borders of the matrix are chosen such
that its inverse (as determined by finite linear alge-
bra) is well behaved. Time-varying techniques might
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[
give additional insight. It is even envisioned that one
might do without explicit boundary conditions: extend�

to an infinite matrix, which is constant (Toeplitz)
towards

� �Qi � �QiG� and
� D#i � D#iG� . LTI systems

theory gives explicit starting points for inversion re-
cursions. It is even possible to “zoom in” on a selected
part of

� "6$
, without computing all of it.

3) System inversion also plays a role in control, e.g., the
manipulation of a flexible robot-arm [2].

The key idea which provides the connection of matrices�
and the rich field of system theory is that we view

�
as

the input-output matrix of a linear time-varying system,
mapping input signals (vectors) to output signals (vec-
tors).

�
is supposed to have a certain structure, which

allows us to obtain a time-varying state space represen-
tation of the system with a low state dimension. This
stucture is fairly general. For example, a banded matrix
has a state representation where the number of states is
equal to the width of the band. Moreover, even though
the inverse of a band matrix is not sparse, it has the same
number of states as the original matrix, and hence the
state representation is a very efficient way to specify this
inverse. Such results are already partly known: e.g. for a
three-diagonal matrix, the inverse can be computed by a
well-known three-term recursion. Our results generalize
on this. All computations are performed in a state space
context, and they are computationally efficient if the state
dimension is low.

In an operator theoretic context, inversion is of course
a solved problem. Time-varying systems have been for-
mulated in terms of a nest algebra, for which factorization
and inversion results have been presented among others
by Arveson [3]. The key ingredient is an inner-outer fac-
torization, which can be viewed as a QR factorization on
operators. However, it is not clear from Arveson’s pa-
per how these abstract results translate to practical algo-
rithms. This was the motivation for additional work. The
time-varying inner-outer factorization provides a split-
ting into causal (upper) and anti-causal (lower) parts:
a dichotomy. In the connection with time-varying state
space theory, it has been investigated by Gohberg and co-
workers [4], [5]. State space algorithms for inner-outer
factorizations lead, not surprisingly, to time-varying Ric-
cati recursions [6], and can be computed as well via a QR
recursion on state space matrices. In this paper, we collect
several of these results and apply them to the problem of
matrix inversion.

2. Lossless Factorizations and Operator
Inversion

2.1 Time-Varying Systems

Let
�j�Vk �Ul�m�n

be a (finite) matrix or (infinite) operator,
with entries

�ol�m
. For additional generality, we allow

�
to

be a block matrix so that its entries are matrices them-
selves:

� l�m
is an p lrqNsUm

matrix, where the dimensionsp l
and

sUm
are finite but need not be constant over t andu

. They may even be equal to zero at some points, so
that finite matrices fit in the same (infinite) framework.

A connection with system theory is obtained by viewing
a row vector as a signal sequence in discrete time. The
multiplication of such a sequence by this operator,k ,�,�, v0w v $ ,�,�, n��2k ,�,�, xyw x $ ,�,�, nz� �
is the mathematical description of the application of a
linear system to the signal represented by x :

�
is the

input-output operator of the system. The t th row of
the operator is then the impulse response of the sys-
tem due to an impulse at time t , i.e., an input vectorx �Lk ,�,�, � � l � ,�,�, n . The system is causal if the
operator is block upper, and anti-causal if it is lower.

For mathematical convenience, only signals that have
bounded energy are admitted: row vectors are in ��� . Sys-
tems have to be bounded as ���3{|��� -operators. This puts
our theory in a Hilbert space context. We define}

: the space of bounded � � {|� � operators,~
: the space of bounded upper operators~7�5�0�]�Z}W���Ul�m#� �r� t^� u ��� ��
: the space of bounded lower operators.

2.2 Inner-Coprime Factorization

Let
� ,���� denote a complex conjugate transpose (Hermitian

conjugate). An operator � is left isometric if �F�0� �54
,

right isometric if ��F� �]4
, and unitary if both properties

hold. � is inner if it is both upper and unitary. A prime
example of an inner operator is the shift operator � :

� � 	
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� ����� �
The inverse of a unitary operator � is �F� . This shows
that the inverse of an inner operator is not upper, but
lower. (In ordinary linear algebra, this would imply that� is diagonal, but not so for operators, and also not for
block-upper finite matrices).

The equivalent of the familiar QR factorization from
linear algebra is called the inner-coprime factorization,
which is a factorization of

�5�N}
as�`�`� ��� � �

inner
� � �c~ �(Almost) every

�5�N}
has such a factorization (there are

some borderline exceptions having to do with marginally
stable systems, but they are not of interest to us here).
Note that

� � is lower, so that this is a lower times upper
factorization. This factorization can be used to map a
general operator in

}
to an upper operator � , which

reduces the problem to the inversion of upper operators:� "%$ � � "%$ � . Hence, the inner-coprime factorization
is a useful preprocessing step, but the delicate part still
has to be done.

An LTI example of this factorization is� � ?b� � ��C�*�0? ��� ���Z?�C���0?�� � ����*?�� �
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In this case,

�
has an unstable pole:

�]���
(its matrix rep-

resentation is as in (3)). After factorization,
� � contains

the unstable pole, and
�7� � $� �S��� � �A� $� �Q� "%$ �P~

is
inner. � contains the reflection of the pole and is stable
(upper).

For a more complicated LTV example, consider
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The inner-coprime factorization

���5� � � is
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It is not hard to verify this by direct multiplications:

�
is

unitary and
����� � � , but obviously, this factorization

is not trivially obtained. It has been computed by Matlab
using the state space methods of Section 3. Note that
the number of inputs of

�
and � is not constant: it is

equal to 2 at time � � �
. This is a remarkable aspect of

time-varying factorizations.

2.3 Inner-Outer Factorization

An operator
� w �*~

is left outer if it has a left inverse�#"%$w�� � which is upper, and right outer if it has a right inverse� "%$w��   which is upper.
� w is outer if it is both left outer and

right outer. The fact that the inverse of an outer operator
is upper again is very helpful in computing this inverse.

For LTI systems, outer means that
� � ?@� does not have

‘unstable’ zeros:
�

in (1) is outer, but
�

in (2) is not.
Also, an inner operator is not outer (unless it is diagonal)
because its inverse is equal to its conjugate transpose
and always lower. In more abstract operator language,
equivalent definitions are that

� w is left outer if
� w ~ � �~ � , and right outer if

~ � � w �T~ � , where
~ � is the space of

all operators in
~

that are bounded in the Hilbert-Schmidt
norm (the operator version of the Frobenius norm: root-
sum-square of all entries). It might happen that ranges
are not closed, in which case the inverse is only densely
defined. We do not want to go to this level of detail in this
paper.

The content of the inner-outer factorization theorem is
[3], [6]:
Theorem 1. Every operator

�`�P~
has factorizations����¡ � �I¢ �   [Inner-outer]�I¢ � ��£ [Outer-inner]

where � � £ � ��¢ �   � ��¢ � � �O~
satisfy�F�0� �]4 � ��¢ �   � right outer

�££ � �]4 � ��¢ � � � left outer �Again, these factorizations can be viewed as some form
of QR (or RQ) factorization, although less obviously than
for the inner-coprime factorization, because

�
is of course

already upper triangular. The objective here is to obtain
outer factors

� ¢ �   and
� ¢ � � , centered on the main diagonal:

to be outer, it is at least necessary that the main diagonal
is (left or right) invertible. � and £ are in general only
isometries. They are unitary (inner) if the columns, resp.
rows, of

�
span all of

} � .
A simple LTV example which can be computed by

hand is

���
	








�

... � �� � �
0 �� �� � �... ...

� ���������� � � Y��
In this example,

�
does not have full row span:k ,�,�, �e�

1
�2� ,�,�, n is not contained in it. The

outer-inner factorization is�G�`� w�� � £ �
� 	







�
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�
... � �� $¤ � $¤ �� �� �� � ......

� ���������� �� w�� � obviously has a left inverse
�#"%$w!� � which is upper (it is

even diagonal and a right inverse in this case). £ is only
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h
an isometry: £M£ � �84

, but £ � £a¥�¦4
. The inner-outer

factorization is�`� � � w��   �
� 	
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� ���������
	







�
... � � � �,&,N,=, , ,=,j,� � ...

� ��������� �
� has a column with zero horizontal dimension (signified
by ‘ , ’), but �F�)� �G4

nonetheless.
� w��   has a right inverse� "%$w��   which is upper,

� "%$w!�   � 	







�
... ,� ,� ,� ,,,`�, �, ...

� ���������
but

� "%$w!�   � w��   ¥�84
: it is not a left inverse. If our purpose

is the inversion of
�

, then it is clear in this case that�
only has a right inverse. The outer-inner factorization

is useful for computing this inverse: we directly have� "%$  � £ � � "%$w!� � .

2.4 Operator Inversion

The strategy for the inversion of an operator
�5�N}

is to
determine the following factorizations:�§�V� � � [Inner-coprime]:

�
inner� � � � w!�   [Inner-outer]: �F�)� �]4 �� w!�   right outer� w!�   � � w¨w £ [Outer-inner]: ££ � �`4 �� w©w left outer

(all factors in
~

),
�\ª �

so that
�8�j� �0� � w¨w�£ . The final factor, � w¨w , is upper

and both left and right outer, hence invertible in
~

, and its
inverse is easily obtained.

�
is not necessarily invertible:� and £ are isometries, and might not be unitary. In any

case,
�

has a Moore-Penrose (pseudo-)inverse�Q«C� £ � � "%$w©w � � � �
and

�
is invertible with

� "%$ �5� «
if � and £ are both

unitary. The inverse is thus specified as a lower-upper-
lower-upper factorization. The factors may be multiplied
to obtain an explicit matrix representation of

� «
, but

because each of them will be known by its state rep-
resentation, it is computationally efficient to keep it in
factored form. State representations are the topic of the
next section.

,�,�,zx w x $ x � x � ,�,�,

,�,�,z?�w ? $ ?¬� ? � ,�,�,

 $  �  �
o®w o® $ U®�v $

v ® $

¯ $G° $± $'² $° ®$¯ ® $ ² ® $± ®$
Fig. 1. State realization which models the multiplication ³O´µ�¶ .

3. State Representations and Recursions

In the previous section, we have considered bounded op-
erators

�5�g}
, and looked at it as the input-output oper-

ator of a linear time-varying system. In this section, we
go further and consider systems that have time-varying
state realizations with a finite, and hopefully low, number
of states at each point in time.

3.1 Time-Varying State Realizations

Let
��·¸ � ,

�/· ® ¸ � be series of matrices with block entries· ¸ � � ² ¸ ± ¸° ¸ ¯ ¸ � � · ® ¸ � � ² ® ¸ ± ®¸° ®¸ � � �
and consider the time-varying forward and backward
state recursions,� · � ¡  ¸�¹ $ �  ¸ ² ¸ D�x ¸ ° ¸v ¸d�  ¸0±3¸ Dºx ¸0¯»¸� · ® � ¡ o®¸ "6$ � o®¸ ² ® ¸ D*x ¸ ° ®¸v ®¸ � o®¸ ± ®¸? ¸F� v ¸ D*v ®¸ � � +��
See Fig. 1. The recursion maps the input sequencesk x ¸ n to output sequences

k v ¸ n , k v ®¸ n , and finally to
k ? ¸ n .

The intermediate quantities in the recursion are  ¸ , the
forward state, and U®¸ , the backward state. The matri-
ces

� ² ¸ � ° ¸ � ± ¸ � ¯ ¸ � ² ® ¸ � ° ®¸ � ± ®¸ � must have compati-
ble dimensions in order for the multiplications to make
sense, but they need not be square or have constant di-
mensions. Zero dimensions are also allowed. The rela-
tion between input x �.k ,�,�,@x $ � x � � ,�,�, n and output? �¼k ,�,�,�? $ � ? � � ,�,�, n , as generated by the above state
recursions, is ? � x �]�
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�`� ���5���>� [ ��(.� h ½ ����5� [ �0(�� h ½ �[�[5[ ( [/h ½ �(�(¾( hh�h½ ®�
Fig. 2. Hankel matrices are submatrices of ¶ . ¿�À is shaded.
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...
...

. . .

� ��������
so that the state recursions can be used to compute a
vector-matrix multiplication ? � x � , where the matrix�

is of the above form. Accordingly, we will say that a
matrix

�
has a (time-varying) state realization if there

exist matrices
�/·¸ � ,

��· ® ¸ � such that the block entries of�`�8k � l�m n
are given by�Ul�m#�ÂÁ ¯ l � t �Ru �° l ² lÃ¹ $ ,�,�, ² m "6$ ± m � t^Ä u �° ®l ² ®l "6$ ,�,�, ² ®m�¹ $ ± ®m � t^� u � �\Å �

The upper triangular part of
�

is generated by the for-
ward state recursions

�/· ¸ � , the lower triangular part by
the backward state recursions

��· ® ¸ � . To have nicely con-
verging expressions in (9), we always require realizations
to be exponentially stable, in the sense thatÆÈÇÈÉÊUËÌ-ÍÏÎUÐl�Ñ ² lÒ¹ $ ,�,�, ² lÃ¹ Ê Ñ $ÏÓ Ê Ä8� �ÆÈÇÈÉÊUËÌ-ÍÏÎUÐl Ñ ² ®l "6$ ,�,�, ² ®l " Ê Ñ $ÏÓ Ê Ä8� �
The computation of a vector-matrix product using the
state equations is more efficient than a direct multiplica-
tion if, for all � , the dimensions of  ¸ and U®¸ are relatively
small compared to the matrix size. If this dimension is,
on average, equal to Ô , and

�
is an

sTqNs
matrix, then

a vector-matrix multiplication has complexity Õ � Ô � s �
(this can be reduced further to Õ � Ô s � by considering
special types of realizations, viz. [7], [8]), and a matrix
inversion has complexity Õ � Ô � s � rather than Õ � s � � .
3.2 Computation of a State Realization

At this point, a first question that emerges is whether, for
any given matrix, a state realization exists. If so, then
subsequent questions are

� t�� how to find it, and
� tÃt\� what

will be its complexity. To answer these questions, define
the submatrices½ ¸O� 	� � ¸ "6$ � ¸ � ¸ "6$ � ¸�¹ $ ,�,�,� ¸ " �¨� ¸ � ¸ " �©� ¸�¹ $

...
. . .

�� � � � � �½ ®¸ � 	� ��¸ � ¸ "%$ �I¸ � ¸ " � ,�,�,� ¸�¹ $ � ¸ "%$ � ¸�¹ $ � ¸ " �
...

. . .

�� � � �����
See Fig. 2. The

½ ¸
are called (time-varying) Hankel ma-

trices, but they have a Hankel structure only in the time-
invariant context. Even without this structure, a number
of important properties of LTI systems carry over. For
example, when we substitute eq. (9) into (10), we obtain½ ¸:� 	

� ° ¸ "6$ ± ¸ ° ¸ "6$ ² ¸ ± ¸�¹ $ ,�,�,° ¸ " � ² ¸ "%$ ± ¸ ° ¸ " � ² ¸ "6$ ² ¸ ± ¸�¹ $° ¸ " � ² ¸ " � ² ¸ "%$ ±3¸ . . .

...

� ���
� 	

� ° ¸ "%$° ¸ " � ² ¸ "6$° ¸ " � ² ¸ " � ² ¸ "%$...

� ��� ,, k ± ¸ ² ¸ ± ¸�¹ $ ² ¸ ² ¸�¹ $ ± ¸�¹ � ,�,�, n��GÖ ¸ Õ ¸ �Just as in the LTI case, the Hankel matrices of an LTV
system generated by state recursions (8) admit factoriza-
tions, and the rank of the factorization of

½ ¸
is (at most)

equal to the state dimension at time � . Conversely, the
structure of this factorization can be used to derive real-
izations from it. The ideas for this were already contained
in the classical Kalman realization theory [9].

Theorem 2 ([10, 11]). Let
����}

, and define Ô ¸ �×ÏØ�ÙoÚ �\½ ¸ � � Ô ® ¸ � ×ÏØ/ÙUÚ ��½ ®¸ � . If all Ô ¸ , Ô ® ¸ are finite, then
there are (marginally) exponentially stable time-varying
state realizations that realize

�
. The minimal dimension

of  ¸ and U®¸ of any state realization of
�

is equal to Ô ¸
and Ô ® ¸ , respectively.

Hence, the state dimensions of the realization (which de-
termine the computational complexity of multiplications
and inversions using state realizations) are equal to the
ranks of the Hankel matrices. Note that these ranks are
not necessarily the same for all � , so that the number of
states may be time-varying.

Minimal state realizations are obtained from minimal
factorizations of the

½ ¸
and

½ ®¸ . In principle, the fol-
lowing algorithm from [7] is suitable. Let

½ ¸ �>� ¸ � ¸
be a QR factorization of

½ ¸
, where

� ¸
is an isometry

(
� �¸ �¸�54�Û©Ü

), and � ¸ has full row rank Ô ¸ . Likewise,
let

½ ®¸ �5� ® ¸ � ® ¸ . Then a realization of
�

is given by·8� ² ¸N�Ýk � � �¸ nÒ�Þ¸�¹ $ �° ¸ � � � ¸�¹ $ � � � � � � �± ¸ � � ¸ � � � ��� �¯»¸N����¸ � ¸ �· ® � ² ® ¸ �Ýk � � ® �¸�¹ $ nÃ� ® ¸ �
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ª
° ®¸ �V� ®¸ � � � � � �± ®¸ � � ® ¸�¹ $ � � � ��� �¯ ®¸ � � �(For a matrix ß , the notation ß � � � � � denotes the first

row of ß , and ß � � � ��� the first column.) Important refine-
ments are possible. For example, it is not necessary to act
on the infinite size matrix

½ ¸
: it is sufficient to consider a

principal submatrix that has rank Ô ¸ [12]. Also note that½ ¸
and

½ ¸�¹ $ have many entries in common, which can
be exploited by considering updating algorithms for the� � factorizations. It is also possible to compute opti-
mal approximate realizations of lower system order [13],
[14].

Band matrices are important examples of systems with
a low state dimension: Ô ¸ is equal to the band width�� , and a realization can be written down directly by
inspection:� ² ¸ ± ¸° ¸ ¯ ¸ � � 	



�

� � ¸ " Û Ü � ¸� � ��¸ " Û¨Ü�¹ $ � ¸
...

...
...� � ��¸ "6$ � ¸� ,�,�, � � � ¸ � ¸

� ����� �
But also the inverse of a band matrix, although it is not
sparse, has a low state dimension: Ô ¸ is at each point the
same as that of the original band matrix. This is shown
in Section 3.3. Examples are the matrices considered so
far in this paper: they all have constant state dimensions
equal to 1.

3.3 State Complexity of the Inverse

Suppose that
�

is an invertible matrix or operator with
a state realization of low complexity. Under some reg-
ularity conditions, it is straightforward to prove that the
inverse has a state realization of the same complexity.

Proposition 1. Let
�e�à}

be an invertible opera-
tor with finite dimensional Hankel matrices

��½Þá � ¸ and��½ ®á � ¸ , defined by (10), (11). Put Ô ¸*��� ×�Ø�ÙUÚ ��½ á � ¸
and Ô ® ¸ ��� ×ÏØ�ÙoÚ �\½ ®á � ¸ .

If, for each � , at least one of the submatricesk � l�m n ¸ "6$l � m�â " Ì or
k � l�m nÃÌl � m�â�¸ is invertible, then ã �§� "6$

has Hankel matrices with the same ranks: ×ÏØ/ÙUÚ �\½Pä � ¸ �Ô ¸ and ×ÏØ/ÙUÚ ��½ ®ä � ¸ � Ô ® ¸ .

Proof : We will use Schur’s inversion lemma. In gen-
eral, let ² � ° � ± � ¯

be matrices or operators such that ²
and

¯
are square, and ² is invertible, then� ² °±Ý¯ � �|� 4 �± ² "%$ 4 � � ² �� ¯ � ± ² "%$ ° � � 4 ² "%$ °� 4 � �

If in addition the inverse of this block matrix exists, then¯=å'���7¯ � ± ² "%$ ° is invertible and the inverse of the
block matrix is given by� ² ® ° ®± ® ¯ ® � �

� � 4 � ² "%$ °� 4 � � ² "%$ ��æ� ¯=å � "%$ � � 4 �� ± ² "%$ 4 � �� � ��ç � � ² "%$ ° � ¯ å � "6$� � ¯=å � "6$ ± ² "%$ � ¯=å � "%$ � �
In particular,

¯ ® is invertible, ×ÏØ�ÙoÚ ° ® � ×ÏØ/ÙUÚ ° ,×ÏØ�ÙoÚ ± ® � ×ÏØ/ÙUÚ ± . The proposition follows if èÏé5êë5ìí
is taken to be a partitioning of

�
, such that ° � ��½Þá � ¸

and
±8� ��½ ®á � ¸ . î

3.4 Outer Inversion

If a matrix or operator is block upper and has an inverse
which is again block upper (i.e., the corresponding time-
varying system is outer), then it is straightforward to
derive a state realization of the inverse.

Proposition 2 ([7]). Let
�2�ï~

be outer, so thatã ���ð� "%$ �§~
. If

�
has a state realization

·.�� ² ¸ � ° ¸ � ± ¸ � ¯ ¸ � , then a realization of ã is given byñ ¸ � � ² ¸ � ± ¸ ¯ "%$¸ ° ¸ � ± ¸ ¯ "%$¸¯ "%$¸ ° ¸ ¯ "%$¸ � �
Proof : From

� "%$ �`�`4
and

�3� "6$ �`4
, and the fact

that
� "%$

is upper, we obtain that all
¯M¸�R�I¸ � ¸ must be

invertible. Using this, we rewrite the state equations:¡  � "6$ �  ² DTx °v �  ± D*x ¯ò ¡  � "6$ �  � ² � ±¯ "6$ ° �»D§v ¯ "%$ °x � �  ±¯ "%$ D§v ¯ "%$ �The second set of state equations generates the inverse
mapping vc{Lx , so that it must be a realization of

� "6$
.

The remaining part of the proof is to show that
� ² ¸ �± ¸ ¯:"%$¸ ° ¸ � is a stable state operator. The proof of this

is omitted, but it is essentially a consequence of the fact
that

�
is outer and hence has a bounded upper inverse

[11]. î
Note that the realization of the inverse is obtained lo-

cally: it is, at point � , only dependent on the realization
of the given matrix at point � . Hence, it is quite easy to
compute the inverse of an operator once we know that it
is outer.

3.5 Inner-Coprime Factorization

In order to use the above inversion proposition on a matrix�
which is not block upper, we compute a kind of QR

factorization of
�

as
�7�>�ó

, where
�

is block lower
and unitary, and ô is block upper. Since

�
is unitary,

its inverse is equal to its Hermitian transpose and can
trivially be obtained. We first consider the special case
where

�
is lower triangular. This case is related to the

inner-coprime factorization in [13].

Proposition 3 ([13]).
( õ ) Suppose that

� � �
has an exponen-

tially stable finite dimensional state realization
· ® �
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�

has
a factorization

�V�Ý� � � , where
�a��~

is inner and� �O~
.

( ö ) Denote realizations of
�

and � by÷ ¸ � � � ²Fø � ¸ � ± ø � ¸� ° ø � ¸ � ¯ ø � ¸ � �&ù ¸ � � � ²Qú � ¸ � ± ú � ¸� ° ú � ¸ � ¯ ú � ¸ � �
Then

÷ ¸
and

ù ¸
follow recursively from the QR factor-

ization� û ¸ ² ® ¸ 4 û ¸ ± ®¸° ®¸ � ¯ ®¸ � �8÷ �¸ �/û ¸ "%$� ù ¸ � � �����
where û ¸� Ô ® ¸ q Ô ® ¸ is a square matrix.

The state operators of
÷

and
ù

are the same:
� ² ø � ¸ �� ² ú � ¸ , and they are related to ² ® �¸ via a state transfor-

mation. The resulting number of inputs of
�

and � may
be time-varying. In particular,

�
can be a block matrix

whose entries are matrices, even if
�

itself has scalar
entries.

Eq. (12) is a recursion: for a given initial matrix û ¸�ü , we
can compute

÷P¸�ü
,
ù ¸�ü

, and û ¸�ü "6$ . Hence we obtain the
state realization matrices for

�
and � in turn for � � � w �� � � w ��� � ,�,�, . All we need is a correct initial value for

the recursion. Exact initial values can be computed in the
case of systems that are LTI for large � ( û �¸ ü û ¸�ü satisfies a
Lyapunov equation), or periodically varying, or that have
zero state dimensions for �P�`� w . However, even if this is
not the case, we can obtain

�
and � to any precision we

like by starting the recursion with any (invertible) initial
value, such as ýû ¸ üM�W4

. The assumption that
�

has an
exponentially stable realization implies that ýû ¸ { û ¸
( �5{ �Qi ), the correct value for û . Convergence is
monotonic, and the speed of convergence is depending
on the ‘amount of stability’ of the ² ® ¸ .

The more general case (
����}

) is a corollary of the
above proposition. Split

�§�§�yþ D �bÿ
, with

�yþ5�`�
and

� ÿ � � ~ (strictly upper). The above inner-coprime
factorization, applied to

� þ
, gives

� þ �Â� � � . Then
�

has a factorization
�`�5� � � � D ���bÿ � �Þ�b� ��ô , whereô ��~

. The realization for
�

is only dependent on
�yþ

,
and follows from the recursion (12). A realization for ô
is obtained by multiplying

�
with

� ÿ
, and adding � .

These operations can be done in state space. Using the
fact that ² ø � ² ú and ° ø � ° ú , we obtainô ôô ¸ � 9 � ²#ø � ¸ � ± ø � ¸ ° ¸ � ± ú � ¸� ² ¸ ±3¸� ° ø � ¸ � ¯ ø � ¸ ° ¸ � ¯ ú � ¸ ; �
3.6 Inner-Outer Factorization

Let
�>�O~

, with exponentially stable finite dimensional
realization

·Ý�ï� ² ¸ � ° ¸ � ± ¸ � ¯ ¸ � , where ² ¸ � Ô ¸PqÔ ¸�¹ $ , ² ® ¸ � Ô ® ¸ q Ô ® ¸ "6$ . The inner-outer factorization�ï� � � w��   , where �F�0� �V4
and

� w!�   is right outer,
can be computed recursively, as follows. Suppose that, at
point � , we know the matrix û ¸ . Compute the following

QR factorization:� s%¸ Ô ¸�¹ $p ¸ ¯ ¸ ° ¸� Ô��C� ¸ û ¸ ± ¸ û ¸ ² ¸ � ��
�Þ��� ¸ , 9 s ¸ Ô ¸�¹ $� pOw�� ¸ � ¯ w¬� ¸ � ° w¬� ¸� Ô � � ¸�¹ $ � û ¸�¹ $� � ; � � [ �

where
�Ý¸

is unitary, and the partitioning of the factors
at the right hand side of (13) is such that

� ¯ w0� ¸ and û ¸�¹ $
both have full row rank. This also defines the dimensions� pOw0� ¸ and

� Ô � � ¸�¹ $ . Since the factorization producesû ¸�¹ $ , we can perform the QR factorization (13) in turn
for �D]� � �QDG� � ,�,�, .

A non-trivial result from [6], [11] claims that this re-
cursion determines the inner-outer factorization.

�Ý¸
has

a partitioning as

�Ý¸#� � � pOw0� ¸ � Ô � � ¸�¹ $p ¸ � ¯�� � ¸ � ° � � ¸ ç� Ô � � ¸ � ±�� � ¸ � ² � � ¸ ç � �
It turns out that � �7� � ² � � ¸ �6� ° � � ¸ ��� ±�� � ¸ �6� ¯�� � ¸ �is a realization of � , and

· w �7� ² ¸ ,
� ° w � ¸ ,

± ¸
,
� ¯ w � ¸ �

is a realization of
� w!�   .

In [6], the inner-outer factorization was solved using a
time-varying Riccati equation (see also [15]). The above
recursive QR factorization is a square-root variant of it.
Correct initial points for the recursion can be obtained
in a similar way as for the inner-coprime factorization.
If
�

is Toeplitz for �'Ä�� w , then û ¸ ü can be computed
from the underlying time-invariant Riccati equation (viz.
[16]), which is retrieved upon squaring of (13), thus elim-
inating

� ¸
. As is well known, this calls for the solution

of an eigenvalue problem. Similar results hold for the
case where

�
is periodically varying before �'Äj� w , or

has zero state dimensions ( Ô ¸T� �@� �]Ä �/w ). But, as
for the inner-coprime factorization, we can in fact take
any invertible starting value, such as ýû ¸ ü#�j4

, and per-
form the recursion: because of the assumed stability of² , ýû ¸ { û ¸ . In a sense, we are using the familiar QR-
iteration [17] for computing eigenvalues! (Open question
is how the shifted QR iteration fits in this framework.)

The outer-inner factorization
�7�5� w�� � £ � £M£ � �54

,� w�� � left outer) is computed similarly, now by the back-
ward recursive LQ factorization� s%¸ � Ô��3� ¸p ¸.¯»¸ ° ¸ û ¸Ô ¸ ± ¸ ² ¸ û ¸ � �Þ�

�Þ� � � s w � ¸ � Ô��&� ¸ "%$p ¸ � ¯ w � ¸ � �Ô ¸ � ± w�� ¸ û ¸ "6$ � � �Ý¸ � ��(@�
The partitioning is such that

� ¯ w�� ¸ and û ¸ "%$ have full
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Å
column rank.

� ¸
is unitary and has a partitioning as

� ¸ � 9 s%¸ � Ô��&� ¸� s w � ¸ � ¯
	 � ¸ � ° 	 � ¸� Ô��&� ¸ "6$ � ±�	 � ¸ � ² 	 � ¸ç ç ; �
Realizations of the factors are given by � �§� � ² 	 � ¸ ,� ° 	 � ¸ ,

� ±�	 � ¸ ,
� ¯	 � ¸ � and

· w � � ² ¸ , ° ¸ ,
� ± w � ¸ ,� ¯ w¬� ¸ � .

An example of the outer-inner factorization is given in
Section 3.8.

3.7 Inversion

At this point, we have obtained state space versions of all
operators in the factorization

�R�5� �)� � w¨w £ of eq. (7):�
is obtained by the (backward) inner-coprime factoriza-

tion of Section 3.5, � by the (forward) inner-outer QR
recursion in eq. (13), and £ by the (backward) outer-inner
LQ recursion in eq. (14). We also have obtained a state
space expression for the inverse of the outer factor � w¨w ,
viz. Section 3.4. The realizations of the (pseudo-)inverses
of the inner (isometric) factors are obtained simply via
transposition: e.g., the realization for £ � is anti-causal
and given by

� � ² 	 �Ï�¸ ��� ± 	 �Ï�¸ ��� ° 	 ���¸ ��� ¯ 	 �Ï�¸ � . The
(pseudo-)inverse of

�
is given by

� « � £ � � "%$w¨w �#� � .
It is possible to obtain a single set of state matrices

for
� «

, by using formulas for the multiplication and ad-
dition of realizations. This is complicated to some ex-
tent because of the alternating upper-lower nature of the
factors. Moreover, it is often not necessary to obtain a
single realization: matrix-vector multiplication is carried
out more efficiently on a factored representation than on a
closed-form realization. This is because for a closed-form
representation, the number of multiplications per point in
time is roughly equal to the square of the sum of the state
dimensions of all factors, whereas in the factored form it
is equal to the sum of the squares of these dimensions.
See also [7].

3.8 Example

We finish this section with an example. Consider again�
from eq. (4). A realization for

�
is straightforward to

obtain, since it is a banded matrix:· ¸ � ���� ���
� � ����/�� � � � � � �Qi � ,�,�, �!�� � �Q�� � � � � � � � ,�,�, � �Qi ��

is already upper, so an inner-coprime factorization is
not necessary. It is also not hard to see that the inner-outer
factorization of

�
is
�G�`4 , � . This is because the initial

point of the recursion (13), given by the LTI solution of
the inner-outer factorization of the top-left block of

�
,

produces
� Ô��r� w � �

, and hence all subsequent û ¸ ’s have
zero dimensions. Consequently,

�
is already right outer

by itself.

Our purpose now is to compute the outer-inner fac-
torization of

�
. An initial point for the recursion (14) is

obtained as û ¸ � � [
, ���j� . It requires the solution of

a Riccati equation to find it (this equation is the square of
(14), which eliminates

�à¸
), but it is easy to verify that

it is a stationary solution of (14) for ���8� : it satisfies the
equation� � � [�Q� � � � � � � ,��� � [ , � 	� $� $� � [� $� � [ $�, , �� � � h �� ¯ ° û± ² û � ��� ¯ w �`�± w û � � , �à¸
(zero dimensions are denoted by ‘ , ’) and we’ll leave it
by that. Alternatively, we can start the recursion withýû ��w � � , say, and obtain ýû w � � � ª/[ �o�^,�,�,�� � [

. Eq.
(15) also shows that the realization of the outer factor has� ¯ w � ¸ � � and

� ± w � ¸ � �� , for ��� �
. Continuing

with the recursion gives us� · w � $ � � � ��� � � � � $ � � � � h � � � +�Y�Y� � +/Y�Y � � h � �û w � � � ª/[ � �� · w � w � � � � � � � h� � � � � w � � � � h � � � +�Y�Y� � +/Y�Y � � h � �û%"6$ � � � ( [�[C�� · w � "6$ � � � � � � ( h�Å� � � �/Å�� � � � "%$ � � � � Å ��+ � � � [�Å/ª� � [�Å�ª � � Å ��+ � �û%" � � � � � Å�ÅC�� · w0� " � � � � � � � ( Å��� � � � � � � � � " � � � � � Å +U� � � � � Å/h� � � Å�h � � Å +o� � �û%" � � � � �/Å�ªC�� · w � " � � � � � � � ( Å +� � � �/��h � � � " � � � � � Å�Å�h � � � ��Å/ª� � ��Å�ª � � Å�Å/h � �û " � � � � � ( ÅC�� · w0� " � � � � � � � ( Å�Å� � � �/� � � � � " � � � � � Å�Å�Å � � � � (@+� � � (b+ � � Å�Å/Å � �û%"�� � � � � �0( �� · w � "�� � � � � � � h/���� � � �/��� � � � "�� � � � � ����� � � � � �)(� � � �0( � � ���/� � �û " � � � � � ��� �
Thus, û ¸ tends towards zero as �M{ �Ji , and at the same
time, � ¸

tends towards the identity matrix. At a certain
point, (say around � � �� � , but actually depending on
the desired accuracy), we will decide on Ô � � ¸ "%$ � �

,
after which the number of states in � ¸

will be reduced
to zero as well:

� "�� � � � � �/��� � � � �/���� � �/��� � � ���/� � �� "6$ w �2� , ,� � �/��� � � ���/� � �
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� "%$¨$ � � , ,, � � ���/� � �This brings us back to the LTI solution for this part of
�

.
It is seen from � "%$ w that it is not unitary at this point in
time: only � "6$ w �N�"%$ w �]4

holds, but �g�"%$ w � "6$ w»¥�]4
.

Consequently, £»£ � �V4
but £ � £¼¥�V4

, i.e., £ is not
unitary but isometric, and hence

�
is only left invertible.

The situation is not unlike
�

in (6), but less pronounced.
The outer-inner factorization of

�
is thus

� w �
	












�
. . .

. . .�0� � � h ��a� � � h�a� � � ( Å� � � � (bY� � �/Å � � � � h� ���-��� � ......
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�
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It has indeed the structure which we announced in eq. (5):
it is Toeplitz towards

� �Qi � �QiG� and
� D#i � D#iG� , and

equal to the solution of the LTI subsystems of
�

in those
regions. In addition, there is some limited interaction in
the center which glues the two solutions together. All
entries are nicely bounded.

4. Conclusion

In this paper, we have looked at what could be called the
‘stable inversion’ of large matrices. For the case of upper
triangular matrices, this means that instead of insisting
on an upper triangular but unstable inverse, we allow
the inverse to have a lower triangular anti-causal part. In

LTI systems theory, the relation between unstability and
anti-causality is well-known (they are the same in the ? -
domain), but for the general time-varying framework and
from the matrix point of view, essentially the same no-
tions lead to perhaps surprising results. Also remarkable
is the fact that global lossless factorizations (QR factor-
izations) can be computed by local QR factorizations on
time-varying realization matrices. It should be noted that,
although all our time-varying examples were intention-
ally of the most elementary form (a single step of only
one parameter), the theory and algorithms really apply to
time-varying systems in general, i.e., to any large matrix.
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