Large Matrix Inversion using State Space Techniques
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A new computationatechniqueis presentecby which large structuredmatrices
canbe inverted. The specifiedmatrix is viewed as the input-ouput operatorof a
time-varyingsystem. Recentlydevelopedstate spacealgorithmswhich apply to
suchsystemsare thenusedto computea QR factorizationfirst and subsequently
theinverseof the matrix, startingfrom a staterealizationof the matrix. The new
algorithmsapply in principle to any matrix. They are efficient if the structureof
the matrix is suchthat the numberof statesof its time-varyingstaterealizationis
smallin comparisorto its dimensions.

1. INTRODUCTION

In a numberof applicationsin signal processingsuch as inversefiltering, spec-
trum estimation,as well as in certain finite elementmodeling applications,the
basicalgebraicoperationconsistsof a QR factorization,a Choleskyfactorization,
or a matrix inversion. Suchmatricescan be fairly large but, due to the proper
ties of the signalsor physical geometryfrom which the matricesoriginate, the
matricesare not fully randombut are structuredin someway. For example,in
stationaryenvironmentsthe estimatedcovariancematricesof measuredsignals
havea Toeplitz structure,and efficient algorithms(Schurrecursions)exist to fac-
tor suchmatricesor their inverse. Schurrecursionscan be generalizedto apply
to generalToeplitz matrices[1]. The computationof the inverseof a Toeplitz
matrix goesvia Gohbeg/Semencutecursiong2]. The resultingalgorithmshave
computationatomplexityof order@(n?) for matricesof size (nxn), ascompared
to @(n?) for algorithmsthat do not take the Toeplitz structureinto account. For
large matriceswith manyzeroentries,theinverse(or rather the applicationof the
inverseto a vector) canbe computediteratively usingthe Lanczosmethod.

In this paper we considermatriceswith a different structure,which would cor-
respondfor example,to applicationswith non-statioary signals. The underlying
ideais to modela given matrix by a time-varyingstaterealization. Sucha rep-
resentationis fairly general: any matrix can be modeledin this way. Efficient

19931EEE Workstop on VLSI Signal ProcessingVeldhove, The Netherlands.



algorithmswill resultif the statedimensionof the time-varyingrealizationis rel-
atively low in comparisorwith the size of the matrix.

Using algorithmsrecentlydevelopedor the factorizationof time-varyingsystems
(they are generalizationof the correspondingime-invariantresults), it is now

possibleto computeQR factorizations Choleskyfactorizations and matrix inver-

sions, by acting on state spacematricesonly. The computationalcomplexity is

thus shownto be linear in the size of the matrix, once a low-dimensionalstate
realizationof it is known. Someof theseresultsare collectedin this paper and
appliedto the computationof the inverseof a large structuredmatrix.

Matrix representation by time-varying state realizations

Let T = [Tjlfj-, be a matrix with entriesT;. For additionalgenerality we will
allow T to be a block matrix so thatits entriesare matricesthemselves:T; is an
M; x N; matrix, wherethe dimensionsM; andN; neednot be constanoveri andj,
and can evenbe equalto zero at somepoints. Whena (row) vectoris viewed as
a signalsequencen a finite time intervalin discretetime, thenthe multiplication
of a vector by this matrix,

[yt Y2 -+ Yal=[ur u2 --- uyT,

correspondso the applicationof the relatedsystemto the signalrepresentedby u.
Thei-th row of the matrix is theimpulseresponsef the systemdueto animpulse
attimei, i.e.,aninputvectoru=[0 ---0 1 0 --- 0]. The systemis causalif the
matrix is block upper

Let {T«}], {T«}}] be a seriesof matriceswith block entries
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and considerthe time-varying forward and backward state recursions,for k =
]_, <o n,

(T){ Xl = XA+ UkBy T { X1 = XAt uByg
Yo = XCi+ Dy Yo = %K 1)
Sy x=[0,x=10.

Here,[ 00 denotesa matrix in which one (or both) dimensionsare vanishing. The
intermediatequantitiesin the recursionare x, the forward state,andx;/, the back-
ward state. The matrices{A, Bk, Cx, Dk, A, B/, C/}| must have compatibledi-
mensionsin order for the multiplicationsto make sense,but they neednot be
squareor have constantdimensions. The relation betweenu = [ug, U, - -, U]



andz=[(z, 2, ---
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sothat the staterecursionscan be usedto computea vectormatrix multiplication
z=uT, wherethe matrix T is of the aboveform. Accordingly, we will saythata
matrix T hasa (time-varying)staterealization if thereexistmatrices{T}}, {T¢}}

suchthat the block entriesof T are given by

Di, i=],

BiA+1---A-1G, i<,

BIAL - AluCl, 1>].

The computationof a vectormatrix product using the state equationsis more
efficient thana direct multiplicationif, for all k, the dimensionsof xx andx; are
relatively small comparedto the matrix size. If this dimensionis, on average,
equalto d, thena vectormatrix multiplicationhascomplexity?(d?n) (this canbe
reducedurtherto @(dn) by consideringspecialtypesof realizations) anda matrix

inversionhascomplexity @(d2n) ratherthan @(n3), aswe showin section2.

Tij =

Computation of a state realization

At this point, a first questionthatemepesis whether for any givenmatrix, a state
realizationexists. If so, thensubsequentiuestionsare (i) how to find it, and (ii)
whatwill beits complexity To answerthesequestionsdefinethe submatrices
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He = T2k T2kl @
. T2,n
L Tik Tt Tin
Teper  Tike2 Ter
Tie1ke1  Tkelke
Hlé — k+1,k-1 k+1,k-2 (3)
Th-11
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The Hy canbe calledtime-varyingHankel matrices,as they would havea Hankel
structurein the time-invariantcontext. In termsof the Hy, we havethe following
result.



Theorem 1. ([3, 4]) Let T be an nx n matrix, and for k = 1,.-.-,n, let dg =
rank(Hy), d; = rankH}). Thenthere are time-varyingstaterealizationghatrealize
T, and the minimal dimensionof xx and x; of any staterealizationof T is equal
to dx and d/, respectively

Let Hq = QR = [Quwk Qz,k][Ré*] be a QR factorizaton of Hy, where Q is
a unitary matrix and Ry has the indicated structule suchthat R; x has rank dy.
Likewise let H/ = QR = [Q{ . Q4,][]. Thena realizationof T is givenby

T: Ac = [0 QPJQukn T A = [0 QfudQix
B« = (Quu)(l2) Be = Q1)
Ck = Ru( 1) C! = Rl 1)
Dk = Tkk D, = 0.

In this theorem,( O standsfor complexconjugatetranspose For a matrix X, the
notationX(1, :) denoteghefirst row of X, and X(:, 1) the first column.

Hence the statedimensionof the realization(which determineghe computational
complexity of multiplicationsand inversionsusing staterealizations)is directly

relatedto the ranksof the Hankelmatrices. Oncefactorizationsof the Hy, andH},

for k=1,---,n areknown,it is possibleto derive minimal realizationsof a given

matrix. The realizationformulasgiven aboveyield a realizationthatis in input

normalform: it satisfiesAl/A + BiBx = | and AlFA! + B/B! = 1.

A realizationalgorithmthat is lesssensitiveto the presenceof additive noiseon

the entriesof T would use singularvalue decompositiongSVDs) of the Hankel

matrices,ratherthan the QR factorization,and adjusttheir rank by settingsmall

singularvaluesequalto zero. It is alsopossibleto computeoptimal approximate
realizationsof lower systemorder [5]. The derivation of the factorizationsis

computationallythe mostdemandingpart of the whole procedure.Improvements
can be obtainedby using updatingschemedor the factorizations(since Hyx and
Hy+1 havemany entriesin common),and by consideringsubmatriceof Hy (asit

is known thatif Hy hasrank di, thenit is enoughto considera submatrixof Hy

whoserankis alsoequalto di [6, 4]).

2. MATRIX INVERSION

In this section,we will showhow a staterealizationof the inverseof a matrix can
be computedirom a staterealizationof the given matrix. We startby considering
a simple case,in which the matrix is block upperandit is knownthatits inverse
is again block upper Sucha matrix, when viewed as a system,is known in
systemtheory languageas being outer (minimal phasesystem). Not all block-
upper matricesare outer: simple exampleswhere T is block upperand T1 is
block lower are givenin [4]. Mixed cases(the inversehasa lower andan upper



part) canalsooccur, andtheseinversesarenot trivially computed asthey require
a ‘dichotomy’: a splitting of spacesinto a part that determinesthe upper part
and a part that gives the lower part. The dichotomycan be computedusingan
innerouter factorization(theorem6 below).

For the caseof a generalmatrix (mixed uppetrlower), it is shownhow this matrix
can be mappedby a unitary matrix to a block upper matrix. However as the
inverseof this matrix is possiblynot block upper it is in generalnecessanto
performthe innerouterfactorization,which factorsthe matrix into a unitary block
uppermatrix (whoseinverseis block lower andobtainedoy a simpletransposition)
anda block uppermatrix whoseinverseis known to be upper too.

State complexity of the inverse

Supposehat T is aninvertible matrix with a staterealizationof low complexity
We will first showthat(underconditions)theinversehasa staterealizationof the
samecomplexity

Proposition 2. Let T be an invertible n x n matrix with Hankel matrices(H 1)k
and(H+)x definedby (2), (3), for k=1, - - -, n. Putrank(Hr)x = dk and rank(H{)x =
dy.

If, for eachk, at leastone of the submatriceq[T;]i% or [Ty is invertible,
then S = T has Hankel matriceswith the sameranks: rank(Hs)x = dg and
rankHYk = dy.

(It is conjecturedhatthe propositdnis still trueif the conditionontheinvertibility
of the submatricess lifted.)

Proof We will useSchursinversionlemma. In generallet A,B,C,D be matrices
suchthat A and D are squareandA is invertible, then

[ o) -[em T8 omcws ][0 7]

If in additionthe inverseof this block matrix exists,thenD — CA~1B is invertible
andthe inverseof the block matrix is given by

& o] = o 7% o-cwen ]| on 1]

A1+ A1B(D-CAB)ICAT -A1B(D-CAB)?
-(D-CAlB)ICA? (D-CA1B)™?
In particulay D’ is invertible,rankB’ = rankB, rankC’ = rankC. The proposition

followsif [& 3] istakento beapartioningof T, suchthatB = (H1)x andC = (H4)x.
0



Inversion of an upper matrix with upper inverse

If amatrix is block upperandhasaninversewhich is againblock upper(i.e., the
correspondindime-varyingsystemis outer),thenit is straightforwardo derivea
staterealizationof the inverseof the matrix, given a staterealizationof the matrix
itself. Therealizationcanevenbe obtainedocally: it is, atpointk, only dependent
on therealizationof the given matrix at pointk.

Theorem 3. ([7]) Let T be a block uppertriangular matrix, whoseentries T
onthe maindiagonalare squae andinvertible. ThenS= T is againblock upper
triangular. If T hasa staterealizationT = {Ay, By, Cx, Dx}], thena realizatbn of
Sis givenby
| A CkDilBk _CkDE1

Se= DB Dt
The theoremis provedmerely by rewriting the stateequationscorrespondingo T
in (1).

Mapping a matrix to block-upper

In order to usethe aboveinversiontheoremon a matrix T which is not block
upper we computea kind of QR factorizationof T asT = UA, whereU is block
lower and unitary, and A is block upper SinceU is unitary; its inverseis equal
to its Hermitian transposeand can trivially be obtained. We first considerthe
specialcasewhereT is lower triangular This caseis relatedto the innercoprime
factorizationin [5].

Proposition 4.  ([5]) LetT be a block lower matrix, with staterealizatin T ' =
{Al, B, C/, D} normalizedsuchthat (A)"A/ +(B/)B. = I. ThenT hasa factor-
izationT = UA, whee U is a unitary block lower matrix and A is a block upper
matrix. Realizationsof U and A are givenby

Ul = [ Ac Cl ] A = [ (ADY  (ADCL +(BY)™Dy
“ B{ Dixl’ (CHR" (DD + (CLHCh

where Uy is a squae unitary matrix and C,, and D, , are determinedby com-
pleting [Qk,] to a squae unitary matrix, for eachk in turn.
k

Notethatthe realizationof T asobtainedusingtheoreml hasalreadythe required
normalization. The realizationfor A is not necessarilyminimal, which is seen,
for example,if T is takento be unitary itself. BecauseA, and B, neednot have
constantimensionsthe numberof columnsaddedto obtainU,, is not necessarily
constantn time, sothatthenumberof inputsandoutputsof U canbetime-varying.



In particulay U canbe a block matrix whoseentriesare matrices,evenif T itself
hasscalarentries.

The more generalcaseis a corollary of the abovepropositon.

Theorem 5. Let T be a block matrix with realizationsT ' = {A{, B/, C/,0}],
T = {A¢. B, G, Dk}]. ThenT = UA, with U a block lower unitary matrix, A a
block upper matrix, havingrealizations

A C (AD” (BB« | (A)C+ (BY)Dx
Ue= [ B DL ] S A &
KoUK (C4,0" (DG B | (Ch"Ci + (DY) D

whee C/,, andD/; , are determinedy completing[gkj] to a squae unitary matrix.
! ! k

Inner-outer factorization

At this point, we havetransformeda generaimatrix T to ablock uppermatrix A. In

orderto usetheorem3 to find theinverseof a block uppermatrix, it mustbe known

thatthe inverseis againupper As discussedit the beginningof this section,this

will not necessarilybe the casefor A. Hence,thefinal caseto considerin orderto

connecttheorem5 with theorem3 is a block uppermatrix which is notinvertible

or whoseinverseis not block upper Beforetheorem3 canbe applied,the matrix

mustbe factoredinto the productof an isometricmatrix and an invertible matrix

whoseinverseis upperagain. This QR-factorizationis known, in systemtheory

astheinnerouer factorization. The factorizationcan be computedin statespace
terms,accordingto the following theorem.

Theorem 6. ([8, 4]) LetT bea blockuppermatrix. ThenT hasa factorization
T = VTo, wheee V is upperand an isometry(V"V = 1), and Ty is an upper matrix
with upperinverse.

Let T = {A By, C«, Dk}] be a realizationof T, and put Y; = [[J. Recursively
computeunitary matricesWy suchthat the following producthaszeios of maximal
possibledimensionst the indicatedpositions:

Y 4 O
“ | B« Dk ' (D1o)k(D1o) > 0.

(Brok (Do)

Partition the rowsof W compatiblywith theright handsideof equation(4). Then
realizatonsof V and Ty are

I O
Vk:Wk 00 y (TO)k:[

A Ck:|.
(O

(Bro)k (D1l



NotethateachW canbeobtainedrom a QR-factorizatiorof thematrix [, 2« $, ].

Sincewe obtaina factorizationT = VT, whereV is anisometryand Ty is invert-
ible, the innerouterfactorizationis a kind of QR factorization. It is, in a sense,
remarkablethatit canbe computedusingQR factorizationf statespacematrices.

Inversion of a general matrix

At this point, all ingredientsare presentfor the computationof a matrix inverse
using statespacetechniques.We will assumethat, for a given matrix T, a time-
varyingstaterealizationT, T’ hasbeenderivedusingtheoreml. Sucharealization
is in inputnormalform. Subsequentlyusingtheoremss and6, a QR factorization
of T follows asT = (UV) Ty, whereU is block lower andunitary, V is block upper
andisometric,and Ty is an uppertriangularinvertible matrix with upperinverse.
Thesematriceshaverealizationsas statedin the theoremsjf propersubstituions
aremade.

If T is invertible, then T~ follows from the above QR factorizationas T =
TotVEUE, whereTg! is uppertriangularand hasa realizationthatis obtainedfrom
that of To usingtheorem3. The realizationsof V& and U™ follow trivially from
thoseof V andU. We havethus obtaineda realizationof the factorsof T-1. A
realizationof T-1 itself can be derived, if necessaryby computinga combined
realizationof the products. Again, without specialeffort sucha realizationwill
notnecessariljpe minimal, i.e., its statedimensionsanbe largerthanthe minimal
statedimensionas derivedin propositio 2.

3. CONCLUDING REMARKS

In this paper a recentlydevelopedechniqueto inverta matrix hasbeenpresented.
It is intendedfor the inversionof large matricesthat havetime-varyingstatereal-
izationswith a low numberof states. The derivedalgorithmactssolely on state
spacerealizationsandis a single-directiona(forward) recursionconsistingof local
statematrix multiplicationsand QR factorizations.It resultsin staterealizationsof
thefactorsof a QR factorizationof theinverse. Startingfrom a staterealizationof
T, the computationatomplexityis @(nd?), wheren is the sizeof the matrix andd
is the averagenumberof statesat eachpoint. A numberof questionsare remain-
ing for future research.We mention(1) startingfrom the realizationproceduren
theoreml, whatis a more efficient way to computea minimal staterealizationof
T (possiblywith certainassumption®n T, and combinedwith an approximation
scheme),(2) doesthere exist a techniqueso that the complexity of the derived
realizationof T~ minimal, i.e., equalto the complexity claimedin propositia 2,
and(3) whatis the numericalstability of the technique.
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