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A new computationaltechniqueis presentedby which large structuredmatrices
canbe inverted. The specifiedmatrix is viewedas the input-output operatorof a
time-varyingsystem. Recentlydevelopedstatespacealgorithmswhich apply to
suchsystemsare thenusedto computea QR factorizationfirst andsubsequently
the inverseof the matrix, startingfrom a staterealizationof the matrix. The new
algorithmsapply in principle to any matrix. They are efficient if the structureof
the matrix is suchthat the numberof statesof its time-varyingstaterealizationis
small in comparisonto its dimensions.

1. INTRODUCTION

In a numberof applicationsin signalprocessing,suchas inversefiltering, spec-
trum estimation,as well as in certain finite elementmodelingapplications,the
basicalgebraicoperationconsistsof a QR factorization,a Choleskyfactorization,
or a matrix inversion. Suchmatricescan be fairly large but, due to the proper-
ties of the signalsor physical geometryfrom which the matricesoriginate, the
matricesare not fully randombut are structuredin someway. For example,in
stationaryenvironments,the estimatedcovariancematricesof measuredsignals
havea Toeplitz structure,andefficient algorithms(Schurrecursions)exist to fac-
tor suchmatricesor their inverse. Schurrecursionscan be generalizedto apply
to generalToeplitz matrices[1]. The computationof the inverseof a Toeplitz
matrix goesvia Gohberg/Semenculrecursions[2]. The resultingalgorithmshave
computationalcomplexityof order

�
(n2) for matricesof size(n× n), ascompared

to
�

(n3) for algorithmsthat do not take the Toeplitz structureinto account. For
largematriceswith manyzeroentries,the inverse(or rather, theapplicationof the
inverseto a vector)canbe computediterativelyusingthe Lanczosmethod.

In this paper, we considermatriceswith a different structure,which would cor-
respond,for example,to applicationswith non-stationary signals.The underlying
idea is to modela given matrix by a time-varyingstaterealization. Sucha rep-
resentationis fairly general: any matrix can be modeledin this way. Efficient
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algorithmswill result if the statedimensionof the time-varyingrealizationis rel-
atively low in comparisonwith the sizeof the matrix.

Usingalgorithmsrecentlydevelopedfor the factorizationof time-varyingsystems
(they are generalizationsof the correspondingtime-invariantresults), it is now
possibleto computeQR factorizations,Choleskyfactorizations,andmatrix inver-
sions,by acting on statespacematricesonly. The computationalcomplexity is
thus shownto be linear in the size of the matrix, oncea low-dimensionalstate
realizationof it is known. Someof theseresultsare collectedin this paper, and
appliedto the computationof the inverseof a large structuredmatrix.

Matrix representation by time-varying state realizations

Let T = [Tij ]n
i,j=1 be a matrix with entriesTij . For additionalgenerality, we will

allow T to be a block matrix so that its entriesarematricesthemselves:Tij is an
Mi × Nj matrix, wherethe dimensionsMi andNj neednot be constantover i and j,
andcanevenbe equalto zeroat somepoints. Whena (row) vector is viewedas
a signalsequenceon a finite time interval in discretetime, thenthe multiplication
of a vectorby this matrix,

[y1 y2 ����� yn] = [u1 u2 ����� un]T,

correspondsto theapplicationof therelatedsystemto thesignalrepresentedby u.
The i-th row of thematrix is theimpulseresponseof thesystemdueto an impulse
at time i, i.e., an input vectoru = [0 ����� 0 1 0 ����� 0]. The systemis causalif the
matrix is block upper.

Let � Tk � n
1, � T �k � n

1 be a seriesof matriceswith block entries

Tk =

�
Ak Ck

Bk Dk � , T �k =

�
A �k C �k
B �k 0 � , k = 1, ����� , n .

and considerthe time-varying forward and backwardstate recursions,for k =
1, ����� , n,

(T) 	 xk+1 = xkAk + ukBk

yk = xkCk + ukDk
(T � ) 	 x �k−1 = x �kA �k + ukB �k

y �k = x �kC �k
zk = yk + y �k , x1 = [ ⋅ ] , x �n = [ ⋅ ] .

(1)

Here, [ ⋅ ] denotesa matrix in which one(or both) dimensionsarevanishing.The
intermediatequantitiesin the recursionarexk, the forwardstate,andx �k , the back-
ward state. The matrices � Ak, Bk, Ck, Dk, A �k , B �k , C �k � n

1 must have compatibledi-
mensionsin order for the multiplicationsto make sense,but they neednot be
squareor haveconstantdimensions. The relation betweenu = [u1, u2, ����� , un]
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andz = [z1, z2, ����� , zn], asgeneratedby the abovestaterecursions,is

z = u


�������� D1 B1C2 B1A2C3 B1A2A3C4 �����
B �2C �1 D2 B2C3 B2A3C4

B �3A �2C �1 B �3C �2 D3 B3C4
...

B �4A �3A �2C �1 B �4A �3C �2 B �4C �3 D4 ����� Bn−2An−1Cn...
...

. . . Bn−1Cn����� B �nA �n−1C �n−2 B �nC �n−1 Dn


���������
so that the staterecursionscanbe usedto computea vector-matrix multiplication
z = uT, wherethe matrix T is of the aboveform. Accordingly, we will say that a
matrix T hasa (time-varying)staterealization if thereexistmatrices� Tk � n

1, � T �k � n
1

suchthat the block entriesof T aregiven by

Tij = �� � Di , i = j ,
BiAi+1 ����� Aj−1Cj , i < j ,
B �i A �i−1 ����� A �j+1C �j , i > j .

The computationof a vector-matrix product using the state equationsis more
efficient thana direct multiplicationif, for all k, the dimensionsof xk andx �k are
relatively small comparedto the matrix size. If this dimensionis, on average,
equalto d, thena vector-matrix multiplicationhascomplexity

�
(d2n) (this canbe

reducedfurtherto
�

(dn) by consideringspecialtypesof realizations),anda matrix
inversionhascomplexity

�
(d2n) ratherthan

�
(n3), aswe showin section2.

Computation of a state realization

At this point, a first questionthatemergesis whether, for anygivenmatrix, a state
realizationexists. If so, thensubsequentquestionsare (i) how to find it, and (ii )
what will be its complexity. To answerthesequestions,definethe submatrices

Hk =


����� Tk−1,k Tk−1,k+1 ����� Tk−1,n

Tk−2,k Tk−2,k+1
...

...
. . . T2,n

T1,k ����� T1,n−1 T1,n


������ (2)

H �k =


����� Tk,k−1 Tk,k−2 ����� Tk,1

Tk+1,k−1 Tk+1,k−2
...

...
. . . Tn−1,1

Tn,k−1 ����� Tn,2 Tn,1


������ . (3)

The Hk canbe calledtime-varyingHankelmatrices,astheywould havea Hankel
structurein the time-invariantcontext. In termsof the H k, we havethe following
result.
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Theorem 1. ([3, 4]) Let T be an n × n matrix, and for k = 1, ����� , n, let dk =
rank(Hk), d �k = rank(H �k). Thenthereare time-varyingstaterealizationsthatrealize
T, and the minimal dimensionof xk and x �k of any staterealizationof T is equal
to dk and d �k, respectively.

Let Hk = QkRk = [Q1,k Q2,k] � R1,k
0 � be a QR factorization of Hk, where Qk is

a unitary matrix and Rk has the indicatedstructure such that R1,k has rank dk.
Likewise,let H �k = Q �kR �k = [Q �1,k Q �2,k] � R �1,k

0 � . Thena realizationof T is givenby

T : Ak = [0 Q∗
1,k]Q1,k+1

Bk = (Q1,k+1)(1, :)
Ck = R1,k(:, 1)
Dk = Tk,k

T � : A �k = [0 Q � ∗1,k+1]Q �1,k

B �k = Q �1,k(1, :)
C �k = R �1,k+1(:, 1)
D �k = 0 .

In this theorem,( ⋅ )∗ standsfor complexconjugatetranspose.For a matrix X, the
notationX(1, :) denotesthe first row of X, andX(:, 1) the first column.

Hence,thestatedimensionof therealization(which determinesthecomputational
complexity of multiplicationsand inversionsusing staterealizations)is directly
relatedto the ranksof the Hankelmatrices.Oncefactorizationsof the Hk andH �k
for k = 1, ����� , n areknown,it is possibleto deriveminimal realizationsof a given
matrix. The realizationformulasgiven aboveyield a realizationthat is in input
normalform: it satisfiesA∗

kAk + B∗
kBk = I andA � ∗k A �k + B � ∗k B �k = I.

A realizationalgorithmthat is lesssensitiveto the presenceof additivenoiseon
the entriesof T would usesingularvalue decompositions(SVDs) of the Hankel
matrices,ratherthan the QR factorization,and adjusttheir rank by settingsmall
singularvaluesequalto zero. It is alsopossibleto computeoptimal approximate
realizationsof lower systemorder [5]. The derivation of the factorizationsis
computationallythe mostdemandingpart of the whole procedure.Improvements
can be obtainedby using updatingschemesfor the factorizations(sinceHk and
Hk+1 havemanyentriesin common),andby consideringsubmatricesof Hk (as it
is known that if Hk hasrank dk, then it is enoughto considera submatrixof Hk

whoserank is alsoequalto dk [6, 4]).

2. MATRIX INVERSION

In this section,we will showhow a staterealizationof the inverseof a matrix can
be computedfrom a staterealizationof the givenmatrix. We startby considering
a simplecase,in which the matrix is block upperandit is known that its inverse
is again block upper. Such a matrix, when viewed as a system, is known in
systemtheory languageas being outer (minimal phasesystem). Not all block-
upper matricesare outer: simple exampleswhere T is block upper and T−1 is
block lower aregiven in [4]. Mixed cases(the inversehasa lower andan upper
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part)canalsooccur, andtheseinversesarenot trivially computed,asthey require
a ‘dichotomy’: a splitting of spacesinto a part that determinesthe upper part
and a part that gives the lower part. The dichotomycan be computedusingan
inner-outer factorization(theorem6 below).

For the caseof a generalmatrix (mixed upper-lower), it is shownhow this matrix
can be mappedby a unitary matrix to a block upper matrix. However, as the
inverseof this matrix is possiblynot block upper. it is in generalnecessaryto
performthe inner-outerfactorization,which factorsthematrix into a unitaryblock
uppermatrix (whoseinverseis block lowerandobtainedby a simpletransposition)
anda block uppermatrix whoseinverseis known to be upper, too.

State complexity of the inverse

Supposethat T is an invertible matrix with a staterealizationof low complexity.
We will first showthat (underconditions)the inversehasa staterealizationof the
samecomplexity.

Proposition 2. Let T be an invertible n × n matrix with Hankelmatrices(HT)k

and(H �T)k definedby (2), (3), for k = 1, ����� , n. Put rank(HT)k = dk andrank(H �T)k =
d �k.

If, for each k, at least one of the submatrices[Tij ]k−1
i,j=1 or [Tij ]n

i,j=k is invertible,
then S = T−1 has Hankel matriceswith the sameranks: rank(HS)k = dk and
rank(H �S)k = d �k.

(It is conjecturedthatthepropositionis still trueif theconditionon theinvertibility
of the submatricesis lifted.)

Proof We will useSchur’s inversionlemma. In general,let A,B,C,D be matrices
suchthat A andD aresquare,andA is invertible,then�

A B
C D � =

�
I 0

CA−1 I � �
A 0
0 D − CA−1B � �

I A−1B
0 I � .

If in additionthe inverseof this block matrix exists,thenD − CA−1B is invertible
andthe inverseof the block matrix is given by�

A � B �
C � D � � =

�
I −A−1B
0 I � �

A−1 0
0 (D − CA−1B)−1 � �

I 0
−CA−1 I �

=

�
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1 � .

In particular, D � is invertible,rankB � = rankB, rankC � = rankC. The proposition
follows if � A B

C D � is takento bea partioningof T, suchthatB = (HT)k andC = (H �T)k.�
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Inversion of an upper matrix with upper inverse

If a matrix is block upperandhasan inversewhich is againblock upper(i.e., the
correspondingtime-varyingsystemis outer),thenit is straightforwardto derivea
staterealizationof the inverseof the matrix, givena staterealizationof thematrix
itself. Therealizationcanevenbeobtainedlocally: it is, atpointk, only dependent
on the realizationof the given matrix at point k.

Theorem 3. ([7]) Let T be a block upper triangular matrix, whoseentriesTii

on themaindiagonalare square andinvertible. ThenS= T−1 is againblockupper
triangular. If T hasa staterealizationT = � Ak, Bk, Ck, Dk � n

1, thena realization of
S is givenby

Sk =

�
Ak − CkD−1

k Bk −CkD−1
k

D−1
k Bk D−1

k � .

The theoremis provedmerelyby rewriting the stateequationscorrespondingto T
in (1).

Mapping a matrix to block-upper

In order to use the aboveinversion theoremon a matrix T which is not block
upper, we computea kind of QR factorizationof T asT = U∆, whereU is block
lower and unitary, and ∆ is block upper. SinceU is unitary, its inverseis equal
to its Hermitian transposeand can trivially be obtained. We first considerthe
specialcasewhereT is lower triangular. This caseis relatedto the inner-coprime
factorizationin [5].

Proposition 4. ([5]) Let T be a block lower matrix, with staterealization T � =� A �k, B �k , C �k, D �k � n
1 normalizedsuchthat (A �k)∗A �k +(B �k )∗B �k = I. ThenT hasa factor-

izationT = U∆, where U is a unitary block lower matrix and ∆ is a block upper
matrix. Realizationsof U and ∆ are givenby

U �k =

�
A �k C �U,k

B �k D �U,k � , ∆∆∆k =

�
(A �k)∗ (A �k)∗C �k + (B �k)∗D �k

(C �U,k)
∗ (D �U,k)

∗D �k + (C �U,k)
∗C �k �

where U �k is a square unitary matrix and C �U,k and D �U,k are determinedby com-

pleting � A �k
B �k � to a square unitary matrix, for eachk in turn.

Notethat therealizationof T asobtainedusingtheorem1 hasalreadytherequired
normalization. The realizationfor ∆ is not necessarilyminimal, which is seen,
for example,if T is takento be unitary itself. BecauseA �k andB �k neednot have
constantdimensions,thenumberof columnsaddedto obtainU �k is not necessarily
constantin time, sothatthenumberof inputsandoutputsof U canbetime-varying.
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In particular, U canbe a block matrix whoseentriesarematrices,evenif T itself
hasscalarentries.

The moregeneralcaseis a corollary of the aboveproposition.

Theorem 5. Let T be a block matrix with realizationsT � = � A �k, B �k , C �k , 0 � n
1,

T = � Ak, Bk, Ck, Dk � n
1. ThenT = U∆, with U a block lower unitary matrix, ∆ a

block uppermatrix, havingrealizations

U �k =

�
A �k C �U,k

B �k D �U,k � , ∆∆∆k =


��
(A �k)∗ (B �k)∗Bk (A �k)∗C �k + (B �k)∗Dk

0 Ak Ck

(C �U,k)
∗ (D �U,k)

∗Bk (C �U,k)
∗C �k + (D �U,k)

∗Dk


���
whereC �U,k andD �U,k aredeterminedby completing � A �k

B �k � to a squareunitarymatrix.

Inner-outer factorization

At thispoint,we havetransformeda generalmatrixT to a blockuppermatrix∆. In
orderto usetheorem3 to find theinverseof a blockuppermatrix, it mustbeknown
that the inverseis againupper. As discussedat the beginningof this section,this
will not necessarilybe thecasefor ∆. Hence,thefinal caseto considerin orderto
connecttheorem5 with theorem3 is a block uppermatrix which is not invertible
or whoseinverseis not block upper. Beforetheorem3 canbe applied,the matrix
mustbe factoredinto the productof an isometricmatrix andan invertible matrix
whoseinverseis upperagain. This QR-factorizationis known, in systemtheory,
as the inner-outer factorization.The factorizationcanbe computedin statespace
terms,accordingto the following theorem.

Theorem 6. ([8, 4]) Let T bea block uppermatrix. ThenT hasa factorization
T = VT0, where V is upperand an isometry(V∗V = I), and T0 is an uppermatrix
with upper inverse.

Let T = � Ak, Bk, Ck, Dk � n
1 be a realizationof T, and put Y1 = [ ⋅ ]. Recursively

computeunitarymatricesWk suchthat thefollowingproducthaszerosof maximal
possibledimensionsat the indicatedpositions:

W∗
k

�
Yk

I � �
Ak Ck

Bk Dk � =


�
Yk+1 0

0 0
(BT0)k (DT0)k


� ,
Yk+1Y∗

k+1 > 0 ,
(DT0)k(DT0)

∗
k > 0 .

(4)

Partition therowsof Wk compatiblywith theright handsideof equation(4). Then
realizationsof V and T0 are

Vk = Wk


�
I 0
0 0
0 I


� , (T0)k =

�
Ak Ck

(BT0)k (DT0)k � .
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NotethateachWk canbeobtainedfrom aQR-factorizationof thematrix � Dk Bk
YkCk YkAk � .

Sincewe obtaina factorizationT = VT0, whereV is an isometryandT0 is invert-
ible, the inner-outerfactorizationis a kind of QR factorization. It is, in a sense,
remarkablethatit canbecomputedusingQR factorizationsof statespacematrices.

Inversion of a general matrix

At this point, all ingredientsare presentfor the computationof a matrix inverse
usingstatespacetechniques.We will assumethat, for a given matrix T, a time-
varyingstaterealizationT, T � hasbeenderivedusingtheorem1. Sucharealization
is in inputnormalform. Subsequently, usingtheorems5 and6, a QR factorization
of T follows asT = (UV)T0, whereU is block lower andunitary, V is block upper
andisometric,andT0 is an uppertriangularinvertible matrix with upperinverse.
Thesematriceshaverealizationsasstatedin the theorems,if propersubstitutions
aremade.

If T is invertible, then T−1 follows from the aboveQR factorizationas T−1 =
T−1

0 V∗U∗, whereT−1
0 is uppertriangularandhasa realizationthat is obtainedfrom

that of T0 using theorem3. The realizationsof V∗ and U∗ follow trivially from
thoseof V and U. We havethusobtaineda realizationof the factorsof T−1. A
realizationof T−1 itself can be derived, if necessary, by computinga combined
realizationof the products. Again, without specialeffort sucha realizationwill
notnecessarilybeminimal, i.e., its statedimensionscanbe largerthantheminimal
statedimensionasderivedin proposition 2.

3. CONCLUDING REMARKS

In thispaper, a recentlydevelopedtechniqueto inverta matrix hasbeenpresented.
It is intendedfor the inversionof largematricesthathavetime-varyingstatereal-
izationswith a low numberof states.The derivedalgorithmactssolely on state
spacerealizationsandis a single-directional(forward)recursionconsistingof local
statematrix multiplicationsandQR factorizations.It resultsin staterealizationsof
thefactorsof a QR factorizationof theinverse.Startingfrom a staterealizationof
T, thecomputationalcomplexityis

�
(nd2), wheren is thesizeof thematrix andd

is the averagenumberof statesat eachpoint. A numberof questionsareremain-
ing for future research.We mention(1) startingfrom the realizationprocedurein
theorem1, what is a moreefficient way to computea minimal staterealizationof
T (possiblywith certainassumptionson T, andcombinedwith an approximation
scheme),(2) doesthereexist a techniqueso that the complexity of the derived
realizationof T−1 minimal, i.e., equalto the complexityclaimedin proposition 2,
and(3) what is the numericalstability of the technique.
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