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ABSTRACT

Many computational schemes in linear algebra can be studied from the point of view of (discrete) time-
varying linear systemstheory. For example, the operation ‘ multiplication of avector by an upper triangular
matrix’ can be represented by a computational scheme (or model) that acts sequentially on the entries of the
vector. The number of intermediate quantities (‘ states') that are needed in the computationsis a measure of
the complexity of themodel. If the matrix islarge but its complexity islow, then not only multiplication, but
also other operations such asinversion and factorization, can be carried out efficiently using the model rather
than the original matrix. In the present paper we discuss a number of techniques in time-varying system
theory that can be used to capture a given matrix into such a computational network.

Keywords. computational linear algebra models, model reduction, fast matrix algorithms.

1. INTRODUCTION
1.1. Computational linear algebra and time-varying modeling

In the intersection of linear algebra and system theory is the field of computational linear algebra. Its pur-
poseisto find efficient algorithmsfor linear algebra problems (matrix multiplication, inversion, approxima-
tion). A useful model for matrix computationsis provided by the state equations that are used in dynamical
system theory. Such astate model is often quite natural: in any algorithm which computesamatrix multipli-
cation or inversion, the global operation isdecomposed into asequence of local operationsthat each act ona
limited number of matrix entries (ultimately two), assisted by intermediate quantities that connect the local
operations. These quantities can be called the states of the algorithm, and transl ate to the state of the dynam-
ical system that isthe computational model of the matrix operation. Although many matrix operations can
be captured thisway by some linear dynamical system, our interest isin matrices that possess some kind of
structure which alows for efficient (“fast”) algorithms: agorithms that exploit this structure. Structurein
amatrix isinherited from the origin of the linear algebra problem, and is for our purposes typically due to
the modeling of some (physical) dynamical system. Many signal processing applications, inverse scattering
problems and least squares estimation problems give structured matrices that can indeed be modeled by a
low complexity network.

Besides sparse matrices (many zero entries), traditional structured matrices are Toeplitz and Hankel matri-
ces, which trandate to linear time-invariant (LTI) systems. Associated computational algorithms are well-
known, e.g., for Toeplitz systemswe have Schur recursionsfor LU- and Cholesky factorization[1], Levinson
recursions for factorization of the inverse[2], Gohberg/Semencul recursions for computing the inverse[3],
and Schur-based recursions for QR factorization [4]. The resulting algorithms have computing complexity
of order O(n?) for matrices of size (nxn), ascompared to O(n®) for algorithmsthat do not take the Toeplitz
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structure into account. Generalizations of the Toeplitz structure are obtained by considering matriceswhich
have a so-called displacement structure [5, 6, 7, 8]: matrices G for which there are (simple) matrices F1,
such that
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isof low rank, a say. Such amatrix occurse.g., in stochastic adaptive prediction problems asthe covariance
matrix of the received stochastic signal; the matrix is called a-stationary. An overview of inversion and
factorization algorithms for such matrices can be foundin [9].

In this paper, we pursue a complementary notion of structure which we will call a state structure. The state
structure appliesto upper triangular matrices and is seemingly unrelated to the Toeplitz structure mentioned
above. A first purpose of the computational schemes considered in this paper isto perform adesired linear
transformation T on a vector (‘input sequence’) u,

u=[u U - Uy

with an output vector or sequencey = uT astheresult. Thekey ideaisthat we can associatewith this matrix-
vector multiplication a computational network that takes u and computesy, and that matrices with a sparse
state structure have a computational network of low complexity so that using the network to computey is
more efficient than computing uT directly. To introduce this notion, consider an upper triangular matrix T
along with itsinverse,

1 1/2 1/6 1/24 1 -1/2
T 1 1/3 1/12 — 1 -1/3
1 1/4 1 -1/4
1 1

Theinverse of T is sparse, which is an indication of a sparse state structure. A computational network
that models multiplication by T is depicted in figure 1(a), and it is readily verified that this network does
indeed compute [y1 Y2 Y3 Ya] = [u1 Uz Uz Ua]T by trying vectors of theform[1 0 0 Ojupto [0 O O 1].
The dependence of yi on u;, (i < k), introducesintermediate quantities x, called states. At each point k the
processor in the stage at that point takes its input data ux from the input sequence u and computes a new
output data yx which is part of the output sequence y generated by the system. The computations in the
network are split into sections, which we will call stages, where the k-th stage consumes u, and produces
Yk- To execute the computation, the processor will use some remainder of its past history, i.e., the state xy,
which has been computed by the previous stages and which was temporarily stored in registersindicated by
the symbol z. The complexity of the computational network is equal to the number of states at each point.
A non-trivial computational network to compute y = uT which requires less states is shown in figure 1(b).
The total number of multiplications required in this network that are different from 1 is 5, as compared to 6
inadirect computation using T. Although we have gained only one multiplication here, for aless moderate
example, say a(nxn) upper triangular matrix with n = 10000 and d <« n states at each point, the number of
multiplicationsin the network can be aslow as O(8dn), instead of O(1/2n?) for adirect computation using
T. Note that the number of states can vary from one point to the other, depending on the nature of T. Inthe
exampl e above, the number of states entering the network at point 1 iszero, and the number of statesleaving
the network at point 4 isalso zero. If we would change the value of one of the entries of the 2 x 2 submatrix
inthe upper-right corner of T to adifferent value, then two states would have been required to connect stage
2to stage 3.
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Figure 1. Computational networks corresponding to T. (&) Direct (trivial) realization, (b) minimal realization.

The computations in the network can be summarized by the following recursion, for k =1ton:

y=uT - X1 = XAx+ UBy @
Yk = %G+ uDg
or
A G
M1 W=D« uwlTk, Tk= [ B
k Dk

in which xi is the state vector at time k (taken to have dy entries), Ay is a dy X diy 1 (possibly non-sguare)
matrix, By isalxdy, 1 vector, C, isady x 1 vector, and Dy isascalar. More general computational networks
can have the number of inputs and outputs at each stage different from one, and possibly also varying from
stageto stage. In the example, we have a sequence of realization matrices

. . 1/3 1 1/4 1 -1
T,= To= / T3= / Ts=
1/2 1 1/3 1 1/4 1 o1
wherethe - indicates entries that actually have dimension 0 because the corresponding states do not exist.
Therecursionin equation (2) showsthat it isarecursion for increasing valuesof k: the order of computations
inthe network is strictly from left to right, and we cannot compute y, unlesswe know x, i.e., unlesswe have

processed Uy - - -Uk-1. On the other hand, yx does not depend on u., 1 - -Un. Thisisadirect consequence of
thefact that T has been chosen upper triangular, so that such an ordering of computationsisindeed possible.

1.2. Time-varying systems

A link with system theory is obtained when T is regarded as the transfer matrix of a hon-stationary causal
linear system with input u and output y = uT. Thek-th row of T then corresponds to the impulse response
of the system when excited by an impulse at time instant i, that is, the output y due to an input vector u =
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[0:-010:- 0], whereu; = 1. The casewhere T has a Toeplitz structure then corresponds with a time-
invariant system for which theimpul seresponse dueto animpulseat timei + 1isjust the sameastheresponse
duetoanimpulseat timei, shifted over one position. The computational network is called a state realization
of T, and the number of states at each point of the computational network is called the system order of the
realization at that point in time. For time-invariant systems, the state realization can be chosen constant in
time. Since for time-varying systems the number of state variables need not be constant in time, but can
increase and shrink, it is seen that in this respect the time-varying realization theory is much richer, and that
the accuracy of an approximating computational network of T can be varied in time at will.

1.3. Sparse computational models

If the number of state variablesisrelatively small, then the computation of the output sequenceis efficient
in comparison with a straight computation of y = uT. One example of a matrix with a small state spaceis
the case where T is an upper triangular band-matrix: Tj; = Ofor j—i > p. In this case, the state dimension
is equal to or smaller than p—1, since only p—1 of the previous input values need to be remembered at
any point in the multiplication. However, the state space model can be much more general, e.g., if abanded
matrix has an inverse, then thisinverseis known to have a sparse state space (of the same complexity) too,
as we had in the example above. Moreover, this inversion can be easily carried out by local computations
on theredization of T: if T™X = S then u = yScan be computed via

Xl = XActUuBe Xerl = X(Ac—CiDBy) + YD By
Yk XCx + UkDk U = —XCDpt+ Dt

hence S has a computational model given by

_ -1 - -1
SF[AK CD'B. -CiD; ] @

DB« D!

Observe that the model for S= T~ is obtained in alocal way from the model of T: S, depends only on
Tk. The sum and product of matrices with sparse state structure have again a sparse state structure with
number of states at each point not larger than the sum of the number of states of its component systems, and
computational networksof these compositions (but not necessarily minimal ones) can be easily derived from
those of its components.

At this point, one might wonder for which classof matricesT there exists asparse computational network (or
state space realization) that realizes the same multiplication operator. For an upper triangular (nx n) matrix
T, define matrices H; (1 <i < n), which are submatricesof T, as

Ti-yi Ti-gigr o Tican

H = Ti2i  Ti-2ji41
. TZ,n
Ty o Tyner T

(seefigure 2). We call the H; (time-varying) Hankel matrices, asthey will have aHankel structure (constant
along anti-diagonals) if T has a Toeplitz structure.® In terms of the Hankel matrices, the criterion by which

Iwarning: inthe current context (arbitrary upper triangul ar matrices) the H; do not haveaHanke! structureand the predicate* Hankel
matrix’ could lead to misinterpretations. Our terminology findsits motivation in system theory, where the H; are related to an abstract
operator Ht which is commonly called the Hankel operator. For time-invariant systems, Hr reducesto an operator with amatrix rep-
resentation that hasindeed a Hankel structure.



Figure 2. Hankel matrices are (mirrored) submatricesof T.

matrices with a sparse state structure can be detected is given by the following Kronecker or Ho-Kaman
[10] type theorem (proven in section 3).

Theorem 1.  The number of states that are needed at stage k in a minimal computational network of an
upper triangular matrix T is equal to the rank of its k-th Hankel matrix Hy.

Let’s verify this statement for our example. The Hankel matrices are

1/3 1/12 1/
Hi=[---], H2=[1/21/6 1/24], H3=l1§6 1§24], Hy=| 1/12
1/24

Sincerank(H;) = 0, no states x; are needed. One state is needed for x, and one for x4, because rank(H,) =
rank(Hs) = 1. Finally, also only one state is needed for xs, because rank(Hz) = 1. In fact, thisis (for this
example) the only non-trivial rank condition: if one of the entriesin Hz would have been different, then two
states would have been needed. In general, rank(H;) < min(i —1,n-i-1), and for ageneral upper triangular
matrix T without state structure, acomputational model will indeed require at most min(i—1,n—i—1) states
for x;.

1.4. Example: Cholesky Factorization

Computational advantages of the time-varying system theory are not per serestricted to upper triangular op-
erators. Toillustrate this, we introduce the following example. Consider a (strictly) positive definite matrix
G, and suppose G has been normalized such that its main diagonal is the identity matrix. It is desired to
obtain a Cholesky factorization of G: afactorization G = L., where L is an upper triangular matrix. For
Toeplitz matrices, this can be done using Schur recursions[1, 11]. The Schur algorithm can be generalized
in various ways to apply to triangular factorizations of general matrices [12], matrices with a displacement
structure [5, 6, 7, 8], and approximate factorizations on a staircase band [13]. In the context of this paper, it
can be shown that if the upper triangular part of G has a state structure, then a computational model of this
part can be used to determine a computational model of the factor L.

A transition to upper matrices is obtained by an analog of the Cayley transformation, which is used to map
positive functions to contractive (scattering) functions. Define P(G) to be the upper triangular part of G,
and G; = 2P(G) -1, then S= (G; +1)"}(G1 - 1) is awell-defined and contractive upper triangular matrix:
[|9] < 1. It has adirect relation with G:

PG =(1-97%  s=I-[PG)]* .

This shows that the state structure of G carriesover to S: if P(G) has a computational model with dy states
at point k, then [P(G)]‘l and hence a so S have computational models with at each point the same number
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of states, and can be directly derived using equation (3).

A computational model for P(G) isobtained using therealization a gorithm of section 3. Thuslet{A,B,C,D}
be arealization of P(G) (satisfying certain conditions which we omit at this point). Viathe model of S itis
possible to derive a state model of the factor L satisfying G = L"L. It turns out that the model of L is given

by

L — I A G
k (D-CMC¥2 | | B 1

where B] = —(D -CMCx) 1 (Bk ~CiMkAK), and My is given by the recursion

My = []
M1 = AMA+ (B~ CMA) H(D - CMCi) ™ (B — CiMKAY) -



2. OBJECTIVESOF COMPUTATIONAL MODELING

With the preceding section as background material, we are now in a position to identify the objectives of
our computational modeling. Wewill assume throughout that we are dealing with upper triangular matrices.
However, applications which involve other type of matrices are viableif they provide some transformation
to the class of upper triangular matrices In addition, we assume that the concept of a sparse state structureis
meaningful for the problem, in other wordsthat atypical matrix in the application has a sequence of Hankel
matrices that has low rank (relative to the size of the matrix), or that an approximation of that matrix by
one whose Hankel matrices have low rank would indeed yield a useful approximation of the underlying
(physical) problem that is described by the original matrix.

For such a matrix T, the generic objective is to determine a minimal computational model { T} for it by
which multiplications of vectorsby T are effectively carried out, but in a computationally efficient and nu-
merically stable manner. This objectiveis divided into four subproblems: (1) realization of a given matrix
T by acomputational model, (2) embedding of thisrealizationin alarger model that consists entirely of uni-
tary (lossless) stages, (3) factorization of the stages of the embedding into acascade of elementary (degree-1)
lossless sections. It could very well be that the originally given matrix has a computational model of avery
high order. Then intermediate in the above sequence of stepsis (4) approximation of a given realization of
T by one of lower complexity. These steps are motivated bel ow.

Realization

Thefirststepis, given T, to determineany minimal computational network Ty = { A, Bk, Ck, D} that models
T. This problem is known as the realization problem. If the Hankel matrices of T havelow rank, then T is
a computationaly efficient realization of the operation ‘multiplication by T’.

L ossless embedding

From T, all other minimal realizations of T can be derived by state transformations. Not all of these have
the same numerical stability. Thisisbecause the computational network hasintroduced arecursive aspect to
the multiplication: states are used to extract information from the input vector u, and a single state xi gives
a contribution both to the current output yx and to the sequence X1, Xk+2 €tc. In particular, a perturbation
in X, (or uk) also carries over to this sequence. Suppose that T is bounded in norm by some number, say
| T || < 1,2 so that we can measure perturbation errorsrelativeto 1. Then arealization of T issaid to be error
insensitiveif || Tx|| <1, too. Inthat case, an error in [x¢ U] isnot magnified by Ty, and the resulting error in
[X+1 Yk issmaller than the origina perturbation. Hencethe questionis: isit possibleto obtain aredization
forwhich|| Ty || < 1if Tissuchthat || T || < 1? Theanswer isyes, and an algorithmto obtain such arealization
isgiven by the solution of thelossless embedding problem. Thisproblemisthefollowing: for agiven matrix
T with || T|] £ 1, determine acomputational model { Z,} such that (1) each Zy isaunitary matrix, and (2) T
isasubsystem of the transfer matrix Z that correspondsto { Z}. The latter requirement meansthat T isthe
transfer matrix from a subset of the inputs of > to a subset of its outputs: ~ can be partitioned conformably

211 Z
Z:[ 11 212

, T=211.
221 22 ]

Thefact that T isasubsystem of Z impliesthat a certain submatrix of X isarealization Ty of T, and hence
from the unitarity of Z, we have that || T|| < 1. From the construction of the solution to the embedding
problem, it will follow that we can ensure that this realization is minimal, too.

2||T | is the operator norm (matrix 2-norm) of T: || T|| = SUPyjy)p<1 [[UT |2-
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Figure 3. Cascade realization of acontractive 8x8 matrix T, with amaximum of 3 states at each point.

Cascadefactorization

Assuming that we have obtained such arealization Xy, it is possible to break down the operation ‘ multipli-
cationby X’ onvectors X U] into aminimal number of elementary operations, each in turn acting on two
entries of thisvector. Because Xy is unitary, we can use elementary unitary operations (acting on scalars) of

theform
c s

[a1 by] [ P CD] =[a2 by, ccl+ss7=1,

i.e., elementary rotations. The useof such elementary operationswill ensurethat £ isinternally numerically
stable, too. In order to make the number of elementary rotations minimal, the realization £ is transformed
to an equivalent realization X', which realizes the same system Z, is still unitary and which still contains a
redlization T’ for T. A factorization of each Z; into elementary rotations is known as a cascade realization
of 2. A possible minimal computational model for T that correspondsto such a cascade realization isdrawn
in figure 3. In thisfigure, each circle indicates an elementary rotation. The precise form of the realization
depends on whether the state dimension is constant, shrinks or grows. The realization can be divided hor-
izontally into elementary sections, where each section describes how a single state entry is mapped to an
entry of the ‘next state’ vector X 1. It has anumber of interesting properties; oneisthat it is pipelineable,
whichisinteresting if the operation ‘ multiplication by T’ isto be carried out on a collection of vectorsu on
aparallel implementation of the computational network. The property is a conseguence of the fact that the
signal flow in the network is strictly uni-directional: from top-left to bottom-right, so that computationson a
new vector u (anew Uy and anew Xi) can commencein the top-left part of the network, while computations
on the previous u are still being carried out in the bottom-right part.

Approximation

In the previousitems, we have assumed that the matrix T has indeed acomputational model of an order that
islow enough to favor acomputational network over an ordinary matrix multiplication. However, if therank
of the Hankel matrices of T (the system order) is not low, then it makes often sense to approximate T by a
new upper triangular matrix T that has alower complexity. Whileitisfairly knownin linear algebrahow to
obtain a (low-rank) approximant to amatrix in a certain norm (e.g., by use of the singular value decomposi-
tion (SV D)), such approximations are not necessarily appropriatefor our purposes, because the approxi mant
should be upper triangular again, and have alower system order. Because the system order at each point is
given by the rank of the Hankel matrix at that point, a possible approximation scheme is to approximate
each Hankel operator by onethat is of lower rank (this could be done using the SV D). However, because the
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Hankel matrices have many entries in common, it is not clear at once that such an approximation scheme
isfeasible: replacing one Hankel matrix by one of lower rank in a certain norm might make it impossible
for the next Hankel matrix to find an optimal approximant. The severity of this dilemmais mitigated by a
proper choice of the error criterion. In fact, it is remarkable that this dilemma has a nice solution, and that
this solution can be obtained in anon-iterative manner. Theerror criterion for which asolutionisobtainedis
called the Hankel norm and denoted by || - ||w: it isthe maximum over the operator norm (the matrix 2-norm)
of each individual Hankel matrix approximation, and a generalization of the Hankel norm for time-invariant
systems. Intermsof the Hankel norm, the following theorem holdstrue and generalizesthe model reduction
techniques based on the Adamyan-Arov-Krein paper [14] to time-varying systems:

Theorem 2. ([15]) Let T be a strictly upper triangular matrix and let ' = diag(y;) be a diagonal Her-
mitian matrix which parametrizes the acceptable approximation tolerance (y; > 0). Let Hx be the Hankel
matrix of 1T at stage k, and suppose that, for each k, none of the singular values of Hy are equal to 1.
Then there exists a strictly upper triangular matrix T, with system order at stage k equal to the number of
singular values of Hy that are larger than 1, such that

IFHT-Ta)|n < 1.

In fact, there is an algorithm that determines a model for T, directly from amodel of T. ' can be used to
influence the local approximation error. For auniform approximation, ™ =yl, and hence || T -Ta||n <V: the
approximant isy-closeto T in Hankel norm, which impliesin particular that the approximation error in each
row or column of T islessthany. If one of they; is madelarger thany, then the error at thei-th row of T can
become larger a so, which might result in an approximant T, to take on less states. Hence " can be chosen
to yield an approximant that is accurate at certain points but less tight at others, and whose complexity is
minimal.

Asanumerical example of the use of theorem 2, let the matrix to be approximated be

.800 .200 | .050 .013 .003

0 .600|.240 .096 .038
0|.500 .250 .125
0 0 .400 .240
0 0 0 .300
0 0 0 0

0
0
0
0
0
0

0
0
0
0

We have indicated the position of the Hankel matrix Hy. Taking I' = 0.11, the non-zero singular values of
the Hankel operatorsof 1T are

Hi Hz Hz Hy Hs Hg

O1: 8.26 6.85 6.31 553 4.06
oy 0.33 0.29 0.23
03 0.01

Hence T has a state space realization which grows from zero states (i = 1) to amaximum of 3 states (i = 4),
and then shrinks back to O states (i > 6). The number of Hankel singular values of T that are larger than one
isl(i=2---6). Thisisto correspond to the number of states of the approximant at each point. Using the
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Figure 4. Computational scheme (a) of T and (b) of Ta.

techniquesin [15], the approximant can be obtained as

0 .790 .183 .066 .030 .016
0 0 .594 .215 .098 .052
Lo|0 0 0 49 227 121
0O 0 0 0 .402 214
o 0 0 0 0 .287

0o 0o o0 0 0 0]

with non-zero Hankel singular values (scaled by I')

Hi Hy Hy Hy Hs He
o1 815 671 6.16 536 3.82

whose number indeed correspond to the number of Hankel singular values of 1T that are larger than 1.
Also, the modeling error is

IF (T -Ta)||n = sup{0.334, 0.328, 0.338, 0.351, 0.347} = 0.351

whichisindeed smaller than 1. The corresponding computational schemesof T and T, aredepictedin figure
4.

In the remainder of the paper, we will discuss an outline of the algorithmsthat are involved in the first three
of the aboveitems. A full treatment of item 1 was published in [16], item 2 in[17], and item 3 was part of
the subject of [18]. Theory on Hankel horm approximationsisavailable[15, 19] but isomitted herefor lack
of space.

3. REALIZATION OF A TIME-VARYING SYSTEM

The purpose of thissectionisto give aproof of the realization theorem for time-varying systems (specialized
to finite matrices): theorem 1 of section 1.3. A more general and detailed discussion can be found in [16].
Recall that we are given an upper triangular matrix T, and view it asatime-varying system transfer operator.
The objective is to determine a time-varying state realization for it. The approach is as in Ho-Kaman's
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theory for the time-invariant case [10]. Denote a certain time instant as ‘current time’, apply all possible
inputsin the ‘past’ with respect to this instant, and measure the corresponding outputs in ‘the future’, from
the current time instant on. For each time instant, we select in thisway an upper-right part of T: these areits
Hankel matrices as defined in the introduction. Theorem 1 claimed that the rank of H is equal to the order
of aminimal realization at point k.

PrROOF of theorem 1. The complexity criterion can be derived straightforwardly, and thederivationwill give
riseto arealization algorithm aswell. Supposethat { Ay, By, Ck, Dk} isaredization for T asin equation (2).
Then atypical Hankel matrix has the following structure:

BsCs BsAeC7  BsAgAICg - ] Bs
B4AsCs BaAsAsCy BiAs
He = | B3A4AsCs = B3A4As5 ‘[Cs AsCr AcACg -]
L B1A2---AsCs i BiA2---As
= (606

4
From the decomposition Hy = CxO it isdirectly inferred that if Ay isof size (dix dy.1), then rank(Hy) isat
most equal to dyx. We have to show that there exists a realization { Ay, By, Cy, D} for which dy = rank(Hy):
if it does, then clearly this must be a minimal realization. To find such a minimal realization, take any
minimal factorization Hy = CxOy into full rank factors Cx and O. We must show that there are matrices
{Ak, By, Cx, Dk} such that

By-1
Ck=| Brk2Ak1 Ok =[Ck ACt1 APG1C2 .

To this end, we use the fact that Hy satisfies a shift-invariance property: for example, with Hg~ denoting He
without its first column, we have

Bs
BaAs

Hg = | BsAdhs A6-[Cr ArCs ArACo 1.

B1Az - AsCs

In general, Ho = CxAOk+1, and in much the same way, H, = Cx-1A-10k, Where H]} is Hy without its
first row. The shift-invariance properties carry over to Cx and Oy, e.9., O, = AcOx41, and we obtain that
A= O O 1(0110¢, 1), where ‘™ denotes complex conjugate transposition. The inverse exists be-
cause Oy, 1 isof full rank. Cy follows asthefirst column of the chosen O, while By isthefirst row of Cy ;.
It remains to verify that Cx and Ok are indeed generated by this realization. This is straightforward by a
recursive use of the shift-invariance properties. a

The construction in the above proof leads to arealization algorithm (algorithm 1). In thisalgorithm, A(:, 1:
p) denotesthefirst p columnsof A, and A(1: p,:) thefirst p rows. The key part of the lgorithmisto obtain
abasis O for the rowspace of each Hankel matrix Hy of T. The singular value decomposition (SVD)[20] is
arobust tool for doing this. It is a decomposition of Hy into factors Uy, 2k, Vk, where Uy and Vi are unitary
matrices whose columns contain the left and right singular vectors of Hy, and >y is a diagonal matrix with
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In: T (an upper triangular matrix)
Out:  {Ty} (aminimal realization)
Ony1= [] ,Cny1 = []
fork=n,---,1
[ He = Ul
(o = rank(Zk)
Ck = (UkZ)(;,1:dk)
Ok = VH1l:dy,:)
Ac = OO0 Oa]”
G = Ok(:a l)
Bk = Ckra(l)
Dk = T(kKk)
end

Algorithm 1. The realization algorithm.

positive entries (the singular values of Hy) on the diagonal. The integer di is set equal to the number of
nonzero singular values of Hy, and V{(1 : d,:) contains the corresponding singular vectors. The rows of
VH(1: dy,:) span the row space of Hy. Notethat it is natural that d; = 0 and dy,,.1 = O, so that the realization
starts and ends with zero number of states. The rest of the realization algorithmis straightforward in view of
the shift-invariance property. It isin fact very reminiscent of the Principal Component identification method
in system theory[21].

The above is only an algorithmic outline. Because Hy1 has a large overlap with Hy, an efficient SVD up-
dating algorithm can be devised that takesthis structureinto account. Notethat, based on the singular values
of Hy, areduced order model can be obtained by taking asmaller basisfor Oy, atechniquethat isknownin
the time-invariant context as balanced model reduction. Although widely used for time-invariant systems,
thisisin fact a“heuristic” model reduction theory, as the modeling error norm is not known. A precise ap-
proximation theory resultsif the tolerance on the error is given in terms of the Hankel norm[15].

4. ORTHOGONAL EMBEDDING OF CONTRACTIVE TIME-VARYING SYSTEMS

Thissection discussesa constructive solution of the problem of therealization of agiven (strictly) contractive
time-varying system as the partial transfer operator of alossless system. This problem is also known asthe
Darlington problem in classical network theory [22], while in control theory, avariant of it is known as the
Bounded Real Lemma[23]. The constructionisdonein astate space context and givesriseto atime-varying
Riccati-type equation. We are necessarily brief here; details can be found in [17].

The problem setting isthefollowing. Let be given thetransfer operator T of acontractive causal linear time-
varying system with n; inputs and ng outputs, and let Ty = { Ay, Bx,Ck, Dk} be a given time-varying state
spaceredlization of T (as obtained in the previous section). Then determine a unitary and causal multi-port
 (corresponding to alossless system) such that T = X;4, along with a state realization £, where

2 2
s = 1 2 ’ 5, =
221 22

Ask Csx
Bsx Dsk

12



Without loss of generality we can in addition require £ to be a unitary realization: (£,Z)=1,Z. % = 1).
Since TT + 5552 = |, this will be possible only if T is contractive: | -TT”> 0. Whileit is clear that
contractivity isanecessary condition, wewill requirestrict contractivity of T inthesequel, whichissufficient
to construct a solution to the embedding problem. (The extension to the boundary case is possible but its
derivationis non-trivial.)

Theorem 3. Let T be an upper triangular matrix, with state realization Ty = {Ax,Bk,C«,Dy}. If T is
strictly contractiveand T is controllable: CkDCk > 0O for all k, then the embedding problem has a solution
with alosslessrealization £ = { As k, Bs k,Cs k, Dz x}, such that 31y = T. Thisrealization hasthe following
properties (where T has n; inputs, ng outputs, and dy incoming states at instant k):

o A; isstate equivalent to A by an invertible state transformation R, i.e., As = RkAkR;}Ll,

e The number of inputsadded to T in X is equal to ng,
¢ The number of added outputsis time-varying and given by dy—dyx+1+n; 2 0.

ProOF (partly). The easy part of the proof is by construction, but the harder existence proofs are omitted.
We use the property that asystem isunitary if itsrealization isunitary, and that T = X1 if T isasubmatrix
of X, up to a state transformation.

Sep 1. of the construction isto find, for each timeinstant k, a state transformation R and matrices B, and
D21 k such that the columns of Zy ,

R« A G R
Zik= | B« Dk [ +1 | ]
| Box Dok

are isometric, i.e., (£1x)"Z1x = 1. Upon writing out the equations, we obtain, by putting My = R R, the
set of equations
M = AMA + BB + BB
0 AMC + B'D + BDn (5)
1 = CMC + DD + DjDan

which by substitution lead to
M1 = AMAGHBBL  + [AMC+ BDy] (I - DDk ~CiMkCi) ™ [DiBx + CMIAY] -

Thisequation can beregarded asatime-recursive Riccati-type equation with time-varying parameters. It can
be shown (see[17]) that (I - DDk —CMCy) isstrictly positive (henceinvertible) if T isstrictly contractive
and that My is strictly positive definite (hence R;1 existsand isinvertible) if T is controllable. By x and
D2  are determined from (5) inturn as

Daik = (I-DiDk~CGiMKCi)Y2
Bok = —(1-DDk~CMCi) /2 [D By + CMyA]

Step 2. Find a complementary matrix ) such that Zy = [21,k Zz,k] is asquare unitary matrix. Thisis
always possible and reduces to a standard exercise in linear algebra. It can be shown that the system corre-
sponding to Xy isindeed an embedding of T.

O

The embedding a gorithm can be implemented along the lines of the proof of the embedding theorem. How-
ever, asiswell known, the Riccati recursionson M; can be replaced by more efficient algorithms that recur-
sively compute the square root of M, i.e., R, instead of M; itself. These are the so-called sguare-root algo-
rithms. The existence of such agorithms has been known for along time; see e.g., Morf [24] for alist of
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In: {T} (acontrollableredization of T, ||T|| < 1)
Out:  {Z} (aunitary realization of embedding %)
Ri=[]
fork=1,---,n
R« Ac G
Tex = | By Dx
I | 0 |
Tex = @_kTek, O J-unitary, and such that T¢ (2,2) = T¢,(1,2) = T¢, (2,1) =0
Rqer O
Tex = 0 0
| Bok Doik
R« Ao G R&
ik = | B« D [ +1 I]
| | Bok Dok
L= [Zu =L
end

Algorithm 2. The embedding algorithm.

pre-1975 references. The square-root algorithm is given in algorithm 2. The algorithm acts on data known
at the k-th step: the state matrices Ay, Bk, Ck, Dk, and the state transformation Ry obtained at the previous
step. Thisdataiscollectedinamatrix Tex. Thekey of thealgorithmisthe construction of aJ-unitary matrix
©: 07)0 = J, where

On
O21
Oz

O
Oz
O3

O3 |
O3 J= | ,
O33 -

0=

such that certain entries of Té’k = OT¢x are zero. We omit the necessary theory on this. It turns out that,
because Oy is J-unitarity, we have that T{fk\] Tek = Tng Tek; writing these equations out and comparing
with (5) it is seen that the remaining non-zero entries of Té’k are precisely the unknowns R, 1, By and
Doy k. It is also a standard technique to factor © even further down into elementary (J)-unitary operations
that each act on only two scalar entries of Te, and zero one of them by applying an elementary J-unitary

rotation of the form
o’ [
c

With B, and D51 known, it isconjectured that it isnot really necessary to apply the state transformation by R
and to determine the orthogonal complement of Z4, if in theend only acascadefactorization of T isrequired,
much asin [25].

1 s

] ,  cl4+ss=1.
s 1

5. CASCADE FACTORIZATION OF LOSSLESSMULTI-PORTS

In the previous section, it was discussed how a strictly contractive transfer operator T can be embedded into
a lossless scattering operator 2. We will now derive minimal structural factorizations, and corresponding
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lossless cascade networks, for arbitrary lossless multi-ports X with square unitary reaizations {Z}. The
network synthesisis a two-stage algorithm:

1. Using unitary state transformations, bring £ into a form that allows a minimal factorization (i.e., a
minimal number of factors). We choose to make the A-matrix of Z upper triangular. Thisleadsto a
QR-iteration onthe{ A} and isthe equivalent of the Schur decomposition (eigenval ue computations)
of A that would be required for time-invariant systems.

2. Using Givens rotations extended by | to the correct size, factor X into a product of such elementary
sections. From this factorization, the lossless cascade network follows directly.

While the factorization strategy is more or less clear-cut, given a state space matrix that allows a minimal
factorization, the optimal (or desired) cascade structure is not. We will present a solution based on X itself.
However, many other solutions exist, for example based on a factorization of a J-unitary transfer operator
related to 3, yielding networks with equal structure but with different signal flow directions; this type of
network isfavored in thetime-invariant setting for selectivefilter synthesisand wasfirst derived by Depret-
tere and Dewilde [26] (see also [27]). To avoid eigenvalue computations, cascade factorizations based on a
state transformation to Hessenberg form are also possible [28, 29]. In the time-varying setting, eigenvalue
computationsare in anatural way replaced by recursions consisting of QR factorizations, so this motivation
seems no longer to be an issue.

5.1. Time-varying Schur decomposition

Let A¢ bethe A-matrix of  at time k. Thefirst step in the factorization algorithm is to find square unitary
state transformations Qy such that

QE A Qk+1 = R« (6)

has Ry upper triangular. If Ay isnot square, say of size dy % dy1, then R will be of the same size and also
be rectangular. In that case, ‘upper triangular’ is understood as usual in QR-factorization, i.e., the lower-left
dxd corner (d = min[dy, dx+1]) of R« consists of zeros (figure 5). In thetime-invariant case, expression (6)
would read Q“AQ = R, and the solution is then precisely the Schur-decomposition of A. In that context, the
main diagonal of A consists of its eigenvalues, which are the (inverses of the) poles of the system. In the
present context, relation (6) is effectively the (unshifted) QR-iteration algorithm that is sometimes used to
compute eigenvaluesif all Ay arethe same[20]:

QAT = RS
QA = RQ§
QJA; = RsQy

Each step in the computation amounts to a multiplication by the previously computed Qy, followed by a
QR-factorization of the result, yielding Q.1 and Ry. Since we are in the context of finite upper triangular
matrices whose state realization starts with O states at instant k = 1, we can take as initial transformation

Q=[]

5.2. Elementary Givens Rotations
We say that 5 is an elementary orthogonal rotation if 5 isa 2 x 2 unitary matrix,

i:[_C:D i] @
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Figure 5. Schur formsof 2. (a) Constant state dimension, (b) shrinking state dimension, (c) growing state dimension.

with cc+ s"s= 1. Animportant property of elementary rotationsisthat they can be used to zero a selected
entry of agiven operator: for given a and b, there exists an elementary orthogonal rotation & such that

311

i.e., such that s"a+ c'b = 0 and a’ = (a"a+ btb)Y/2. In this case, 5 is called a Givens rotation, and we
write s = givenga; b] in algorithms. Givensrotationswill be used in the next section to factor a given state
realization into pairs of elementary rotations, or elementary sections. The basic operation, the computation
of one such pair, is merely the application of two elementary Givensrotations. let T be a 3 x 3 matrix

such that it satisfies the orthogonality conditions[a” b b5]T=[1 0 0], then there exist elementary
rotations £, £, such that £5Z7T = T', with

¢ s 5 S 1/0 O
z1 = _f C1 3 zZ = 1 ) T = 0 d]I_]_ ]l_z
1 - C2 0|dy dp

5.3. Factorization

Let begiven alossless state realization X of alosslesstwo-port X. For each timeinstant k, we will construct
a cascade factorization of X by repeated use of the above generic factorization step. Assumethat a prepro-
cessing state transformation based on the Schur decomposition has been carried out, i .e., that each Z hasits
Ay upper triangular. For the sake of exposition, we specialize to the case where Ay is a square d x d matrix
and X has a constant number of two inputs and outputs, but the method is easily generalized. Thus

[ a . e C T
A¢ G
3 = 8
K [ B. Dy (8)
by 3 5 -|dn dpp
L b 4 6 -|dn do |

Fori=1,---,d,j=1,2let iij be an elementary (Givens) rotation matrix, and denote by Z;; the extension
of 3j; to an elementary rotation of the same size as Z, with Zi; = | except for the four entries (i,i), (i,d +
i), (d+j,i), (d+ j,d+ j), which together form the given iij . Then X, admits a (minimal) factorization
2 =[Z11Z12] [Z21Z20] - [Zg1Za2] - 2. )
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In: )2 (in Schurform; Ay : dy X dyy1, N1 iNputs, Ny outputs)
Out:  {Zij},{Z{}} (elementary rotations: factors of Zy)

—if dy > dy1 (“shrink’), movefirst di —dyy1 rows of [Ax Cy] to [Bx Dyl
—if dx < dir1 (‘grow’), movefirst di1 —dy rows of [Bx Dy] to [Ax Ck].

fori=1,---,dk
forj=1,---,m
[ %5j = givens{A(i,i);By(j,i)]
Zk = }Z,DJZK
end
end
2, =Ds5, (also factor ‘residue’)

fori=1,---,ng

forj=1,---,m

[ii'j = givens[Z'(i,i); Z'(j,i)]
= Y

Algorithm 3. The factorization algorithm.

into extended elementary rotations, where the ‘residue’ X' is a state realization matrix of the same form as
2y, but with A=1,B=C =0, and D unitary. The factorization is based on the cancellation, in turn, of the
entries of By of Zy in equation (8). To start, apply the generic factorization of section 5.2 to the equally-
named entries a, by, b, etc. in equation (8), yielding Givensrotations £ 1 and 21 », which are extended by |

to £33 and £; . Theresulting state space matrix [£7,Z71] Zi has (1,1)-entry a’ = |, and of necessity zeros
on theremainder of thefirst column and row. The factorization can now be continued in the sameway, inthe
order indicated by the labeling of the entries of By in equation (8) by focusing on the second-till-last columns
and rows of thisintermediate operator. The result isthe factorization of Zy in (9). Algorithm 3 summarizes
the procedure for the general case of non-square Agx-matrices. In the case that the state dimension shrinks,
i.e., dg > diy1, thenthefirst dy —di 1 Statesaretreated asinputsrather than states, but the actual factorization
algorithm remains the same. If the state dimension grows (dx < di.1), then the states that are added can be
treated as extra outputs in the factorization algorithm.

With the above factorization, it is seen that the actual operations that are carried out are pairs of rotations.
The network corresponding to thisfactorization schemeisasdepicted in figure 6, where each circleindicates
an elementary section asin equation (7). This pictureis obtained by considering the sequence of operations
that are applied to avector [Xyk Xak -+ Xd k ; Uk Z] when it ismultiplied by Z in factored form. Each
state variable interacts with each input quantity [ux z], after which it has become a ‘next state’ variable.
Theresidue X’ appearsasthe singlerotation at theright. In the picture, we put z, = Oto obtain T astransfer
Uk - Yk. Thesecondary output of X is discarded.
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Figure6. Lossless cascade redlizations of a contractive system T, stage k. (a) Constant state dimension, (b) shrinking
state dimension, (c) growing state dimension. Outputs marked by ‘O are ignored.
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6. CONCLUDING REMARKS

In the preceding sections, we have presented algorithmsto compute, for a given upper triangular matrix, a
computational model of lowest possible complexity. We have aso derived synthesis algorithms to realize
this model as a lossless cascade network in which the basic processors are elementary (Givens) rotations.
This provides a numerically stable implementation in which a minimal number of parameters (the rotation
angles) are used. The number of operations needed to implement a matrix-vector multiplication is O(2dy)
elementary rotations for a stage with dy states, or O(8dy) multiplications per stage. The total number of
multiplications that are required is O(8dn) if d < n is some averaged number of states, as compared to
O(1/2n?) for adirect matrix-vector multiplication. Of course, it ispossibleto select other structuresthan the
lossless cascade structureto realize agiven computational model. Finaly, if the number of statesat any point
islarger than desired, then it is possible to find optimal approximating matrices. for agiven error tolerance,
measured in the Hankel norm, it is known how many states the approximating computational network will
require at least.

The realization and approximation theory presented in this paper are consegquences of time-varying systems
theory. Thistheory can be applied in many waysto reduce matrix computationsif the given matrix exhibits
what was called a state structure, and can be used to determine new types of matrix approximations for en-
forcing such a state structure onto matrices. The computational expensive part of the presented schemeis
theretrieval of the structure of the given matrix, and it is even more expensive to compute a reduced order
model. Thisisan instance of amore general property on computationswith structured matrices: algorithms
which exploit the structure can be efficient only after the structure has been captured in some way, which
either requires advance knowledge of this structure (for example, the fact that a matrix is Toeplitz or has
zeros at specific entries), or will be computationally expensive, because all entries of the matrix must be op-
erated upon at least once. In the case of matrices with state structure, the derivation of an (approximating)
model will make sense only if one isinterested in a sparse representation of the given matrix, that is, if the
resulting model is heavily used in other computational procedures. The focus of the paper on matrix-vector
multiplications must in this respect be regarded only as an example on how one can exploit knowledge of
such sparse models.

Additional results obtained during the review process include the inversion of a general (not necessarily
upper triangular) matrix using time-varying state spacetechniques[30]. Moredetailson the discussed topics
areavailablein[31].
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