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Abstract: UMTS systems will employ long-code wideband CDMA modulation schemes. Re-
ceivers for this system are for computational reasons usually based on simple matched-filter
techniques, and hence suffer from multiaccess interference. Decorrelating RAKE and MMSE
receivers do not have this problem but, until now, were considered as too complex, due to the
inversion of a large code matrix. As is shown in this paper, the code matrix can be interpreted
as a time-varying system. Efficient implementations are then possible by carrying out the
inversion using time-varying state space theory, yielding a complexity comparable to that of
the conventional RAKE receiver.
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1. INTRODUCTION

Current receivers for long-code (or aperiodic spread-
ing code) wideband CDMA are typically based on
RAKE receivers, i.e. banks of matched filters which
correlate the received data with the desired user’s code,
followed by a combining of the outputs (RAKE fin-
gers). Since multiuser interference is not completely
cancelled, the performance degrades, especially when
the network is heavily loaded and power control im-
perfect.

In this paper, we consider the uplink (mobiles to base
station) and assume that the base station knows all
codes. We model multiuser interference explicitly and
propose a blind decorrelating RAKE and MMSE re-
ceiver to estimate the channel and user symbols, based
on all samples in a frame. The decorrelating RAKE
was presented earlier by us in (Tong et al., 2002b; Tong
et al., 2002a) with an emphasis on identifiability and
performance; the MMSE receiver is similar. Here, we
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also take the noise covariance into account and focus
in particular on the efficient implementation of these
receivers.

The decorrelating matched filter asks for the inversion
of a code matrix whose long dimension is equal to the
number of chips over the complete frame. This is a
formidable task, but fortunately, the sparse structure
of this matrix admits computationally efficient tech-
niques. As an application of the work in (Dewilde and
van der Veen, 1998) on the inversion of infinite-size
matrices, we derive efficient time-varying state-space
implementations of the various steps in the algorithm.

Blind channel estimation and multiuser detection for
long code CDMA has been considered by a number
of other authors. In particular, second order moment
techniques (Zoltowski et al., 1996; Liu and Zoltowski,
1997; Sidiropoulos and Bro, 1999; Xu and Tsatanis,
2000; Escudero et al., 2001) rely on the convergence
of time averages, which often requires hundreds to
thousands of symbols. Although related, Weiss and
Friedlander (Weiss and Friedlander, 1999) focus on the
down link where users can be considered synchronous.
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Fig. 1. Structure of the code matrix T.

2. DATA MODEL

We consider the uplink of a slotted system with I asyn-
chronous users. In a frame, the i-th user transmits a
vector si consisting of Ki symbols sik. Each symbol
is spread by an aperiodic code cik of length Gi. After
multipath propagation over a channel with length Li

chips and relative delay Di, pulse shape matched filter-
ing and sampling at the chiprate, the receiver stacks the
received samples in a frame in a vector y. (Oversam-
pling is equivalent to a system with multiple receive
antennas.) The contribution of sik is a linear combina-
tion of the transmitted signal ciksik, plus delays of it,
properly scaled by the Li channel coefficients collected
in a vector hi, or

yik
� Tikhisik � k � 1 � · · · � Ki �

Tik is a Toeplitz matrix whose Li columns consist of
shifts of the code cik. Including all users and the noise,
we have

y � THs
�

w (1)

T : ���T11 · · ·T1 �Gi � · · · � TI1 · · ·TI �GI �
H : � diag 	 IK1 ⊗ h1 � · · · � IKI ⊗ hI 
��

where matrix H is block diagonal with I⊗hi as the ith
block, vector s is a stacking of all symbol vectors, and
w is a vector representing the additive Gaussian noise.
The structure of the code matrix T is illustrated in fig-
ure 1. Note that different spreading gains Gi are part of
the model. Multiple antennas are a simple extension.

We will assume that the code matrix T is known, “tall”
and has full column rank. This implies that the receiver
knows the codes, the delay offsets Di, and the number
of paths Li of all users.

3. BLIND RECEIVER ALGORITHMS

3.1 Conventional RAKE

The conventional RAKE receiver consists of a bank of
matched filters and projects the received signal into the
code domains of the individual users, by correlating
with several shifts of the code vectors, or r � THy.
Since the codes are not exactly orthogonal (let alone

shift-orthogonal), THT �� I, and contributions of each
user enter into the projections of any other user. This
makes the performance interference-limited.

3.2 Decorrelating RAKE

The proposed decorrelating RAKE uses a decorrelat-
ing matched filter, or T† � 	 THT 
 −1TH . This removes
all multi-user interference. The output of the decorre-
lating matched filter is given by

u � T†y � diag 	 I ⊗ h1 � · · · � I ⊗ hI 
 s � n � (2)

where n � T†w is now a colored noise vector. Af-
ter computing u, we estimate the channel and the data
symbols, blindly and independently for each user. Par-
tition u into segments uik of length Li. The structure of
u implies that uik corresponds to symbol k of user i,

uik
� hisik

�
nik � k � 1 � · · · � Ki � (3)

and is free from multiuser interference. Collecting all
data for user i gives Ui

�
� ui1 � · · · � uiKi � � hisT
i
�

Ni �
This is a rank-1 data model, and estimates of hi and
si (with an unknown scaling factor) are found from a
rank-one factorization of Ui. In other words, denoting

ΨΨΨ i : � 1
Ki

Ki

∑
k � 1

uikuH
ik � (4)

we obtain the least squares estimates

ĥi
� arg max�

g
� � 1

gH ΨΨΨ ig � ŝik
� ĥH

i uik � (5)

The solution ĥi is given as the dominant eigenvector of
ΨΨΨ i. The scaling ambiguity is resolved by a single pilot
symbol. See (Tong et al., 2002b; Tong et al., 2002a)
for further results and performance simulations.

3.3 Whitened Estimator

The channel and symbol estimator given in (5) did not
take into account that the noise process nik is colored,
both in k and in its components. If we ignore the col-
oring in k, then a simple whitening approach can be
applied. Specifically, since n � T†w, we have that nik ∼� 	 0 � σ2ΣΣΣ ik 
 where ΣΣΣ ik is an Li × Li submatrix on the
diagonal of T† 	 T† 
 H . We have

E 	 ΨΨΨ i 
 ��� si � 2
Ki

hihH
i
� σ2∆∆∆ i �

∆∆∆ i : � 1
Ki

Ki

∑
k � 1

ΣΣΣ ik

where ∆∆∆ i is a known matrix. The channel can then
be estimated from the following modification which
whitens the noise on ΨΨΨ i:



g∗
� arg max�

g
� � 1

gH 	 ∆∆∆−1 � 2
i ΨΨΨ i∆∆∆

−H � 2
i 
 g

ĥi
� ∆∆∆1 � 2g∗ �

The symbol estimator given in (5) is replaced by ŝik
�

ĥH
i ΣΣΣ−1

ik uik �
3.4 MMSE Receiver

Based on the data model (1), the estimated data se-
quence by a linear minimum mean square error (MMSE)
receiver is known to be

ŝ � 	 HHTHTH
� σ2I 
 −1HHTHy � (6)

This receiver can be implemented using the previously
estimated channel matrix H, and assuming that the
noise power σ2 is known. Compared to the decorre-
lating RAKE, the MMSE can have a significantly im-
proved performance. It is also one of two similar steps
in an iterative LS estimator (Hieu and van der Veen,
2003).

4. EFFICIENT IMPLEMENTATIONS

The code matrix T can be very large. Without an effi-
cient technique to compute and apply the left inverse
T† � 	 THT 
 −1TH , the proposed receiver structures
would not be feasible. Fortunately, T is sparse. Using
the Matlab sparse toolbox, u � T†y can be computed
efficiently via a sparse QR factorization T � QR, and
u � R−1QHy, or, avoiding the storage of Q, as�

R v
0 ε � : � qr 	 � sparse 	 T 
 y � 


u : � R \ v

v � QHy, and R \ v denotes R−1v, implemented effi-
ciently via backsubstitution. This does not reveal how
the sparse computations can actually be implemented
in a practical system. It is also unclear how the noise
whitening (computation of ΣΣΣ ik) can be implemented
efficiently. Explicit computation of ΣΣΣ � R−1R−H is to
be avoided because R−1 is not sparse even if R is. In
this section, we show how time-varying state space
representations can be used for this purpose. The the-
ory behind it is available in (Dewilde and van der Veen,
1998).

4.1 State Space Representation of a Matrix

Consider an input signal u and output signal y, with
arbitrary block-partitioning u �
� uT

1 � · · · � uT
N � T � y �� yT

1 � · · · � yT
N � T � The partitioning introduces the notion

of “time”, or a stage in a computational procedure.
The blocks do not need to be of equal size, and some
dimensions can even be zero (such a block is denoted
by “•”).

y1
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y � T � u1
u2 � u1

•

T � u2

•

ynun
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Fig. 2. Computational network for T ���T � 1 � T � 2 � � .
A time-varying state space realization has the form�

xn � 1
� Anxn

�
Bnun

yn
� Cnxn

�
Dnun

⇔�
xn � 1

yn � � Tn

�
xn

un � � Tn
� � An Bn

Cn Dn �
The realization starts at time 1 with x1

�
• (or: no state),

and ends with xN � 1
� •. Hence A1

� •, AN
� •, C1

� •,
BN
� •.

A time-varying state-space realization specifies a lin-
ear mapping of u to y, hence a matrix T such that y �
Tu � In particular, it defines a factorization of T into
factors Tn.

Lemma 1. Let be given a time-varying realization Tn
�

{An � Bn � Cn � Dn} of T. Then T � T̃N · · ·T̃2T̃1 where T̃n

is an embedding of Tn,

T̃n : �
����������� 
An Bn

I...
I

Cn Dn

I...
I

!#""""""""""$
(there are n − 1 and N − n identity matrices in the di-
agonal sequences, respectively.) Moreover, matrix T is
block-lower triangular and has the form

T � ���� D1

C2B1 D2
...

. . .
. . .

CNAN−1 · · ·A2B1 · · · CNBN−1 DN

!#"""$ �
Conversely, if a matrix T has this form, then it has a
state space realization Tn

� {An � Bn � Cn � Dn}.

The inherent causality translates to T being block-
lower triangular. However, by playing with dimen-



sions, any matrix can fit this model, as the next exam-
ples illustrate. Consider first an an arbitrary N × L ma-
trix T, with rows tH

n . A (trivial) realization that models
y � Tu is obtained by setting u1

� u, u2
� · · · � uN

�
•

(i.e., the complete input vector is entered at time 1),
and �

A1 B1

C1 D1 � � � • I
• tH

1 ��
An Bn

Cn Dn � � � I •

tH
n • � � n � 2 � · · · � N − 1�

AN BN

CN DN � � � • •

tH
N • �

As a second example, let T �%�T � 1 � T � 2 � � be an ar-
bitrary block-partitioned matrix, where T � 1 � has real-

ization {A � 1 �n � B � 1 �n � C � 1 �n � D � 1 �n } and T � 2 � has realization
{A � 2 �n � B � 2 �n � C � 2 �n � D � 2 �n }. Then

Tn
� �� A � 1 �n 0 B � 1 �n 0

0 A � 2 �n 0 B � 2 �n

C � 1 �n C � 2 �n D � 1 �n D � 2 �n

! "$
is a realization of T. Its structure is shown in Fig. 2.

The code matrix T in our case has a block structure as
shown in Fig. 1. By combining the two examples, we
can represent any code matrix T. The number of state
space time points equals the number of rows of T. The
input vector is partitioned in blocks of Li entries which
enter the system at appropriate time points, determined
by the starting points of the individual code blocks.
The state dimension at each time point is the number
of nonzero entries in the corresponding row of T.

4.2 QR Factorization and Inversion in State Space

To compute the left inverse T†, our aim is to first com-
pute a QR factorization T � QR where QHQ � I and
R is square and lower triangular, and then to invert
each of the factors: T† � R−1QH . The computation of
the QR factorization can be done in state space, as is
demonstrated by the following theorem (cf. (Dewilde
and van der Veen, 1998), p.156]).

For T with realization {An � Bn � Cn � Dn}n � 1 � ··· � N, con-
sider the recursion (economy-size QR factorizations)

YN � 1
�

•�
Yn � 1An Yn � 1Bn

Cn Dn � � :

�
AQ

n BQ
n

CQ
n DQ

n �& ')( *
Qn

�
Yn 0
CR

n DR
n � �

n � N � N − 1 � · · · � 1 (7)

where Qn is isometric (QH
n Qn

� I), and the right factor
is lower triangular (possibly staircase) and partitioned
such that Yn has the same number of columns as An,
DR

n has the same number of columns as Dn, and both
Yn and DR

n are full row rank.

Theorem 2. If T is full column rank, then all DR
n are

square, lower triangular and invertible. Define the re-
alizations

Qn
� � AQ

n BQ
n

CQ
n DQ

n � � Rn
� � An Bn

CR
n DR

n � �
Then T � QR, where Q is specified by Qn and is iso-
metric (QHQ � I), and R is specified by Rn and is
lower triangular and invertible.

PROOF Recall the factorization T � T̃NT̃N−1 · · · T̃1 and
consider the first factor, TN . Since AN

�
•, BN

�
•, and

YN � 1
� •,

TN
� � AN BN

CN DN � � � YN � 1AN YN � 1BN

CN DN � �
The first step in the recursion is the QR factorization

QH
N TN

�,+ AQ
N BQ

N

CQ
N DQ

N - H �
YN � 1AN YN � 1BN

CN DN � � � YN 0
CR

N DR
N �

Premultiplying T by Q̃H
N gives

Q̃H
N T �� � AQ

N BQ
N

I
CQ

N DQ
N

!$ H � 
YN � 1AN YN � 1BN

I
CN DN

!$ T̃N−1 · · · T̃1

� ����� YN 0
I...

I
CR

N DR
N

!#""""$
����� AN−1 BN−1

I...
CN−1 DN−1

I

!#""""$ T̃N−2 · · · T̃1

� ������ YNAN−1 YNBN−1

I
. . .

CN−1 DN−1

CR
NAN−1 CR

NBN−1 DR
N

! """""$ T̃N−2 · · · T̃1

We subsequently obtain

Q̃H
N−1Q̃H

N T ������ YN−1 0
I...

CR
N−1 DR

N−1
CR

NAN−1 CR
NBN−1 DR

N

! """"$
����� AN−2 BN−2

I
CN−2 DN−2

I
I

! """"$
·T̃N−3 · · · T̃1

������ YN−1AN−2 YN−1BN−2

I
CN−2 DN−2

CR
N−1AN−2 CR

N−1BN−2 DR
N−1

CR
NAN−1AN−2 CR

NAN−1BN−2 CR
NBN−1 DR

N

! """"$
·T̃N−3 · · ·T̃1

Following the recursion this way, we finally obtain



Q̃H
1 · · ·Q̃H

N T ������� Y1

CR
1 DR

1
CR

2 A1 CR
2 B1 DR

2
...

...
. . .

. . .
CR

NAN−1 · · ·A1 CR
NAN−1 · · ·A2B1 · · · · · · DR

N

! """""$ �
Note that A1

� • so that the first column has zero width.
Hence Y1

� • (since the Yk are wide) and also the first
row has empty dimensions. It follows that

Q̃H
1 · · ·Q̃H

N T� ���� DR
1

CR
2 B1 DR

2
...

. . .
. . .

CR
NAN−1 · · ·A2B1 · · · · · · DR

N

! """$ � R

This is equal to QHT � R, where R is lower triangular.
Lemma 1 shows that R � R̃N · · · R̃1, so that R has the
advertised state space realization. Since T is full col-
umn rank, all DR

N are square and invertible, so that R is
square and invertible. Q is isometric since each of its
factors Qn is isometric. .
The structure of the factorization is shown in Fig. 3(a).
Note that in our application, An and Bn are trivial:
embeddings of identity matrices of appropriate sizes.
Hence the multiplication by Yn � 1 is trivial and the only
actual work in (7) is the QR factorization.

Theorem 3. Suppose that R is a square invertible lower
triangular matrix. Then its inverse is lower triangular
too. If R has state space realization

Rn
� � AR

n BR
n

CR
n DR

n � � n � 1 � · · · � N
then S : � R−1 has state space realization

Sn
�/+ AR

n − BR
n DR

n
−1

CR
n BR

n DR
n

−1

−DR
n

−1
CR

n DR
n

−1 - � n � 1 � · · · � N
PROOF Note that Ru � y ⇔ Sy � u, hence S maps y
to u. Since S is lower triangular (causal),

yn
� CR

n xn
�

DR
n un

⇔ un
� −DR

n
−1

CR
n xn
�

DR
n

−1
yn

Backsubstitution in xn � 1
� AR

n xn
�

BR
n un gives the re-

sult. .
The left-inverse of the isometric factor Q is QH , with
anticausal state space realization (backward recursion)0

xn
� AQ

n
H

xn � 1
�

CQ
n

H
un

yn
� BQ

n
H

xn � 1
�

DQ
n

H
un

n � N � N − 1 � · · · � 1 �

The preceding theorems can be used to invert more
general matrices, in particular the code matrix T. We
obtain an implementation of T† � SQH in factored
form, where T†, R and Q are never explicitly eval-
uated. The structure of the computational network is
shown in Fig. 3(b). As is seen from this structure, the
“complexity” of T and T† is the same, even if T† is a
full matrix without visible sparse structure.

4.3 Computation of ΣΣΣ ik

In the computation of the noise covariance, expres-
sions for ΣΣΣ ik are needed. We can apply the following
theorem:

Theorem 4. Let T have state space realization
{An � Bn � Cn � Dn}. A realization for the lower triangular
part of N : � TTH is given by

Nn
� � An AnΛΛΛnCH

n
�

BnDH
n

Cn CnΛΛΛnCH
n
�

DnDH
n �

where ΛΛΛn is specified by the forward recursion

ΛΛΛ1
�

• ; ΛΛΛn � 1
� AnΛΛΛnAH

n
�

BnBH
n

n � 1 � 2 � · · · � N �
PROOF By inspection of Fig. 3 	 c 
 and following the
mapping of xn � un to xn � 1 � yn. The causal part of the
state is xn, the non-causal part is x 1n, and ΛΛΛn represents
the transfer of x 1n to xn. (A formal proof appears in
(Dewilde and van der Veen, 1998, p.366).) .
The preceding recursions are useful in the computation
of the noise covariance after the decorrelating matched
filter. If w is a white noise vector with power normal-
ized to σ2 � 1, and n � T†w � 	 THT 
 −1THw, then the
covariance of n is given by

ΣΣΣ : � E 	 nnH 
 � 	 THT 
 −1 � SSH

where T � QR and S � R−1. A state space realization
of S was derived before. Thus, theorem 4 (applied to S)
gives a recursion to compute a realization for the lower
part of SSH . The upper part is simply the transpose.

In the identification algorithm in section 3.3, we are
only interested in the main (block)-diagonal of E 	 nnH 

(the auto-covariances of size Li × Li). In this case, it
suffices to compute

E 	 nnnH
n 
 � CS

nΛΛΛnCS
n

H �
DS

nDS
n

H

ΛΛΛn � 1
� AS

nΛΛΛnAS
n

H �
BS

nBS
n

H

4.4 Computation of the MMSE Receiver in State Space

Recall the MMSE receiver (6). It is known that equa-
tions of this form can be efficiently computed via a QR
factorization. Indeed, note that
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Fig. 3. 	 a 
 Structure of the QR factorization, 	 b 
 structure of the inverse, 	 c 
 structure of TTH .

ŝ � 	 HHTHTH
� σ2I 
 −1HHTHy (8)� 	 HHTHTH
� σ2I 
 −1 8HHTH σI 9 � y

0 �� � TH
σI � †& ':( *
M

�
y
0 �

Thus, if M � : QMRM is an economy-size QR factor-
ization for M (where RM is square triangular, and QM

is tall and isometric), then

ŝ � 	 RM 
 −1 	 QM 
 H � y0 � �
The QR factorization and factor inversion can be done
in state space as before. Thus, ŝ is the output of a com-
putational structure similar to the one in Fig. 3(b). The
only new aspect is the derivation of a realization for M.

A realization {An � Bn � Cn � Dn} for T is already known.
H is block-diagonal, with blocks hi matching the in-
puts of T. Define

Hn : � �� 
βββ1 � n

. . .
βββ I � n
!#"$

βββ i � n : � � hi � T has an input for user i at n
• � otherwise.

A realization for TH is then given by	 TH 
 n � � An BnHn

Cn DnHn � � n � 1 � · · · � N �
Finally, a realization for M is simply obtained by ex-
tending the D-matrix by σI:

Mn
� � An BnHn

Cn DnHn

0 σI

!$ � n � 1 � · · · � N �
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