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Abstract: UMTS systemswill employ long-code wideband CDMA modul ation schemes. Re-
ceiversfor this system are for computational reasons usually based on simple matched-filter
techniques, and hence suffer from multiaccessinterference. Decorrelating RAKE and MM SE
receivers do not have this problem but, until now, were considered as too complex, dueto the
inversion of alarge code matrix. Asis shown in this paper, the code matrix can be interpreted
as a time-varying system. Efficient implementations are then possible by carrying out the
inversion using time-varying state space theory, yielding a complexity comparable to that of

the conventional RAKE receiver.
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1. INTRODUCTION

Current receivers for long-code (or aperiodic spread-
ing code) wideband CDMA are typically based on
RAKE receivers, i.e. banks of matched filters which
correlatethereceived datawith the desired user’scode,
followed by a combining of the outputs (RAKE fin-
gers). Since multiuser interference is not completely
cancelled, the performance degrades, especially when
the network is heavily loaded and power control im-
perfect.

In this paper, we consider the uplink (mobiles to base
station) and assume that the base station knows all
codes. We model multiuser interference explicitly and
propose a blind decorrelating RAKE and MM SE re-
ceiver to estimate the channel and user symbols, based
on al samples in a frame. The decorrelating RAKE
was presented earlier by usin (Tong et al., 2002b; Tong
et al., 2002a) with an emphasis on identifiability and
performance; the MM SE receiver is similar. Here, we
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also take the noise covariance into account and focus
in particular on the efficient implementation of these
receivers.

The decorrelating matched filter asks for the inversion
of acode matrix whose long dimension is equal to the
number of chips over the complete frame. Thisis a
formidable task, but fortunately, the sparse structure
of this matrix admits computationally efficient tech-
nigues. As an application of the work in (Dewilde and
van der Veen, 1998) on the inversion of infinite-size
matrices, we derive efficient time-varying state-space
implementations of the various stepsin the algorithm.

Blind channel estimation and multiuser detection for
long code CDMA has been considered by a number
of other authors. In particular, second order moment
techniques (Zoltowski et al., 1996; Liu and Zoltowski,
1997; Sidiropoulos and Bro, 1999; Xu and Tsatanis,
2000; Escudero et al., 2001) rely on the convergence
of time averages, which often requires hundreds to
thousands of symbols. Although related, Weiss and
Friedlander (Weissand Friedlander, 1999) focuson the
down link where users can be considered synchronous.
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Fig. 1. Structure of the code matrix T.
2. DATA MODEL

We consider the uplink of aslotted system with | asyn-
chronous users. In a frame, the i-th user transmits a
vector § consisting of K; symbols si. Each symbol
is spread by an aperiodic code cj of length G;. After
multipath propagation over a channel with length L;
chipsand relative delay D;, pul se shape matched filter-
ing and sampling at the chiprate, the receiver stacksthe
received samples in aframe in a vector y. (Oversam-
pling is equivalent to a system with multiple receive
antennas.) The contribution of s isalinear combina-
tion of the transmitted signal cikSi, plus delays of it,
properly scaled by the L; channel coefficientscollected
in avector h;j, or

Yik = Tikhisk, k=1,---Ki.
Tik is a Toeplitz matrix whose L; columns consist of
shifts of the code cik. Including all users and the noise,

we have

y = THs+w (@D}
T=[TuTig, TinTig]
H ::diag(IKlﬂhl,---,IK, |:|h|).

where matrix H isblock diagonal with | (0 h; astheith
block, vector sisastacking of all symbol vectors, and
w isavector representing the additive Gaussian noise.
The structure of the code matrix T isillustrated in fig-
ure 1. Notethat different spreading gains G; are part of
the model. Multiple antennas are a simple extension.

Wewill assumethat the code matrix T isknown, “tall”
and hasfull column rank. Thisimpliesthat the receiver
knows the codes, the delay offsets D;, and the number
of pathsL; of al users.

3. BLIND RECEIVER ALGORITHMS
3.1 Conventional RAKE

The conventional RAKE receiver consists of abank of
matched filtersand projectsthereceived signal into the
code domains of the individual users, by correlating
with several shifts of the code vectors, or r = THy.
Since the codes are not exactly orthogonal (let alone

shift-orthogonal), THT +# I, and contributions of each
user enter into the projections of any other user. This
makes the performance interference-limited.

3.2 Decorrelating RAKE

The proposed decorrelating RAKE uses a decorrelat-
ing matched filter, or TT = (THT)™TH. Thisremoves
all multi-user interference. The output of the decorre-
lating matched filter is given by

u=Tly=diag(l Ohy,---,IOh)s+n, (2

where n = TTw is now a colored noise vector. Af-
ter computing u, we estimate the channel and the data
symbols, blindly and independently for each user. Par-
tition u into segments uji of length L;. The structure of
u impliesthat u;k corresponds to symbol k of user i,
Uik = hisk +nik, k=1,---,Kj, ©)
and is free from multiuser interference. Collecting all
data for user i gives Ui = [ui1, -, Uik ] = his" + N;.
This is arank-1 data model, and estimates of h; and
s (with an unknown scaling factor) are found from a
rank-one factorization of U;. In other words, denoting

uikuly 4)

we obtain the least squares estimates

hi = arg max g"Wig, &k = hMui. (5)

llgll=1

The solution h; isgiven asthe dominant eigenvector of
;. The scaling ambiguity isresolved by asingle pilot
symbol. See (Tong et al., 2002b; Tong et al., 2002a)
for further results and performance simulations.

3.3 Whitened Estimator

The channel and symbol estimator givenin (5) did not
take into account that the noise process njy is colored,
both in k and in its components. If we ignore the col-
oring in k, then a simple whitening approach can be
applied. Specifically, sincen = Tw, wehavethat nj [
N(0,0%Z;) where i is an L; x Lj submatrix on the
diagonal of TT(T)H. We have

sl oh . 2
EW) = hhf 4%,
1 <
A = Ekglzik

where 4; is a known matrix. The channel can then
be estimated from the following modification which
whitens the noise on W;:



90 = arg max o (8w, %)g
g =
ﬁi = Al/zgm.

The symbol estimator given in (5) isreplaced by Sk =
hiHZi‘kluik .

3.4 MMSE Receiver

Based on the data model (1), the estimated data se-
guence by alinear minimum mean square error (MM SE)
receiver is known to be

8= (H"THTH 4+ 02)tHHTHy. (6)

Thisreceiver can beimplemented using the previously
estimated channel matrix H, and assuming that the
noise power ¢ is known. Compared to the decorre-
lating RAKE, the MM SE can have a significantly im-
proved performance. It is also one of two similar steps
in an iterative LS estimator (Hieu and van der Veen,
2003).

4. EFFICIENT IMPLEMENTATIONS

The code matrix T can be very large. Without an effi-
cient technique to compute and apply the left inverse
TT = (THT)"1TH, the proposed receiver structures
would not be feasible. Fortunately, T is sparse. Using
the Matlab sparse toolbox, u = TTy can be computed
efficiently viaa sparse QR factorization T = QR, and
u = R™1Q"y, or, avoiding the storage of Q, as

5 4| = artisparse(m) y)
u:=R\v

v = Q'y, and R\ v denotes R™1v, implemented effi-
ciently via backsubstitution. This does not revea how
the sparse computations can actually be implemented
in apractical system. It is aso unclear how the noise
whitening (computation of ;) can be implemented
efficiently. Explicit computation of £ = R™IR™H isto
be avoided because R™ is not sparse even if R is. In
this section, we show how time-varying state space
representations can be used for this purpose. The the-
ory behinditisavailablein (Dewildeand van der Veen,
1998).

4.1 Sate Space Representation of a Matrix

Consider an input signa u and output signa y, with
arbitrary block-partitioning u = [u], -, uf]", y =
[y, -+, yi]T . The partitioning introduces the notion
of “time”, or a stage in a computational procedure.
The blocks do not need to be of equal size, and some
dimensions can even be zero (such ablock is denoted

by “.").
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Fig. 2. Computational network for T = [T() T()],

A time-varying state space realization has the form

Yn = CnXn+Dnun

Xnt+1| _ Xn _ | An Bn
o] =l =[G 3

Theredlization startsat time 1 withx; = - (or: no state),
and endswith xn41 = .. HenceA; =.,Ay=.,C1 =+,
Bn =-.

{ Xn+1 = AnXn+ BnUn

A time-varying state-space realization specifies a lin-
ear mapping of u toy, henceamatrix T such thaty =
Tu. In particular, it defines a factorization of T into
factors Tp.

Lemma 1. Letbegivenatime-varyingrealization Tp =
isan embedding of T,

An| B

—2
>
I

Cn Dn

|
(there are n—1 and N —n identity matrices in the di-
agonal sequences, respectively.) Moreover, matrix T is
block-lower triangular and has the form

D,
CyBq D>
T= . )
CNAN-1--"A2B1 -+ CnBn-1 Dn

Conversely, if amatrix T has this form, then it has a
state space realization T = { An,Bn, Cn, Dn} -

The inherent causality trandlates to T being block-
lower triangular. However, by playing with dimen-



sions, any matrix can fit this model, as the next exam-
plesillustrate. Consider first an an arbitrary Nx L ma-
trix T, with rowstH. A (trivial) realization that models
y = Tuisobtained by settingu; =u,up =---=uy =-
(i.e., the complete input vector is entered at time 1),

and

[A; By] [ |

_Cl Di| — .'[T

[An Bn| _ [1 - B B
_Cn Dn:|_|:tﬁ .:|a n—2; 7N 1
[An Bn R
|Cn Dn a tH-

As a second example, let T = [T® T(?)] be an ar-
bitrary block-partitioned matrix, where T has real-
ization {A,BY,cY, DV} and T has realization
{Al?,B{?,ci?,DP}. Then

AP o [BY o
Ta=| 0 AP 0 BY
Ct(‘ll) CSIZ)‘DI('Il) Dl(12)

isarealization of T. Its structure is shown in Fig. 2.

The code matrix T in our case has a block structure as
shown in Fig. 1. By combining the two examples, we
can represent any code matrix T. The number of state
space time points equal s the number of rowsof T. The
input vector is partitioned in blocks of L; entrieswhich
enter the system at appropriate time points, determined
by the starting points of the individual code blocks.
The state dimension at each time point is the number
of nonzero entries in the corresponding row of T.

4.2 QR Factorization and Inversion in Sate Space

To computethe leftinverse T, our aimisto first com-
pute a QR factorization T = QR where QHQ =1 and
R is sguare and lower triangular, and then to invert
each of the factors: TT = R™1QH. The computation of
the QR factorization can be done in state space, asis
demonstrated by the following theorem (cf. (Dewilde
and van der Veen, 1998), p.156]).

For T with realization {An,Bn,Cn,Dn}n=1,...N, CON-
sider the recursion (economy-size QR factorizations)

YNt =+
Ynt1An Ynp1Bn] _ AQ BY] [Yn O
Cn Dn | [CRDR|[CRDR" (7
N ——r
Qn

n=N,N-1,---,1

where Q,, isisometric (QHQn = 1), and theright factor
islower triangular (possibly staircase) and partitioned
such that Y, has the same number of columns as A,
Dﬁ has the same number of columns as Dy, and both
Y, and DR are full row rank.

Theorem 2. If T is full column rank, then all DR are
square, lower triangular and invertible. Define the re-

dlizations
an |:An Bn:| -

Ag B9
’ C of

Q”:[CSDS

Then T = QR, where Q is specified by Qn and isiso-
metric (Q"Q = 1), and R is specified by R, and is
lower triangular and invertible.

PROOF Recall thefactorization T = Ty Tn-1 - T1 and
consider thefirst factor, Ty. Since Ay =+, By =+, and
YNt1 =+,

Ty — AN Bn | _ | YN+2AN Yn+1BN
N=lceDn| | Cn Dn |-

Thefirst step in the recursion is the QR factorization

Q RBQ
AN By

H
QTN = N By [YN+1AN YN+lBN:| _ [YN 0]
CN Dy

Cn Dn cR DR

Premultiplying T by QX gives

QNT =

_ H
AS| BS Yn1AN  Yn41Bn . .
_CS DS Cn Dn
Y| 07 [An-1] B
| |
= A - Tn2-- Ty
| Cn-1| Dn-1
Y| DX '
[Y NAN-1| Y NBn-1
|
= . Tz Ty
Cn-1 Dn-1
| CRANA CRBn-1 D}
We subsequently obtain
&1L, OKT =
Yn-1 | 0 An-7 Bn-2
| |
. . Cn-2 Dn-2
CR-1 DRN-1 |
|CRAN-1] CRBn-1 DR ) |
TNz T1=
[ Yn-1An-2 | Yn-1Bae2
|
Cn-2 Dn-2
CR-1AN-2 CR-1Bn-2 DR
| CRAN-1AN-2| CRAN-1Bn-2 CRBn-1 DR |

TNz T1

Following the recursion this way, we finally obtain



8- BHT =
Y1 |
ct D}
CEAN—l A CEAN—l"'AZBl ...... DE

Notethat A; = - so that thefirst column has zero width.
HenceY; =. (sincethe Yy arewide) and a so the first
row has empty dimensions. It follows that
QY --QRT
DY
c3B; D}

CEAN—l e ABg e e DE

Thisisequal to QHT = R, whereR islower triangular.
Lemma 1 shows that R = Ry ---Ry, so that R has the
advertised state space redlization. Since T is full col-
umn rank, al DR aresquareand invertible, sothat R is
square and invertible. Q isisometric since each of its
factors Qp, isisometric. O

The structure of thefactorization isshownin Fig. 3(a).
Note that in our application, A, and B, are trivia:
embeddings of identity matrices of appropriate sizes.
Hencethemultiplicationby Y 41 istrivia and theonly
actual work in (7) isthe QR factorization.

Theorem 3. Supposethat R isasquareinvertiblelower
triangular matrix. Then itsinverse is lower triangular
too. If R has state space realization

AR B
Rn_[CE DE ) n_la"'aN

then S:= R™! has state space realization

AR-BRDRCR gRDR™
-DR'CR DR

S, = ,n=1,-,N

PrROOF Notethat Ru=y = Sy =u, hence Smapsy
to u. Since Sislower triangular (causal),

yn = CﬁXn + DEUn
-1 -1
And Un == _DE CEXn + Dﬁ yn

Backsubstitution in xn,1 = ARx, + BRup, givesthe re-
sult.
O

The left-inverse of the isometric factor Q is Q™ with
anticausal state spacerealization (backward recursion)

H H
yn = Bs Xn+1+ DS Un
n=N,N-1,-,1.

H H
{Xn = AS Xn+1+C$ Un

The preceding theorems can be used to invert more
general matrices, in particular the code matrix T. We
obtain an implementation of TT = SQ" in factored
form, where TT, R and Q are never explicitly eval-
uated. The structure of the computational network is
shown in Fig. 3(b). Asis seen from this structure, the
“complexity” of T and TT isthe same, evenif TTisa
full matrix without visible sparse structure.

4.3 Computation of Zjx

In the computation of the noise covariance, expres-
sions for Zjx are needed. We can apply the following
theorem:

Theorem4. Let T have state space realization
{An,Bn,Cnh,Dn}. A redlization for thelower triangular
part of N := TTH isgiven by

An ApALCH 4+ B,DH
Np = H H
Cn CnAnCn + DnDn

where A, is specified by the forward recursion

Ar=-; Anii=AAAY +BBY
n:1,2,"',N,

PROOF By inspection of Fig. 3(c) and following the
mapping of Xn,Un t0 Xpnt1,Yn. The causal part of the
state is xp, the non-causal part isxj,, and Ap, represents
the transfer of xj, to x,. (A forma proof appears in
(Dewilde and van der Veen, 1998, p.366).) m|

The preceding recursions are useful in the computation
of the noise covariance after the decorrel ating matched
filter. If w is awhite noise vector with power normal-
izedtoo?=1,andn=T'w = (THT)1THw, then the
covariance of n isgiven by

2 :=Emn™) = (THT)? = 55

where T = QR and S= R, A state space realization
of Swasderived before. Thus, theorem 4 (appliedto S)
givesarecursionto computearealization for thelower
part of SS™. The upper part is simply the transpose.

In the identification algorithm in section 3.3, we are
only interested in the main (block)-diagonal of E(nn™)
(the auto-covariances of size L; x L;). In this case, it
suffices to compute

H
E(nant) = cSA,CS 4 DSDS
H H
Ans1=ANAAS +BSBY

4.4 Computation of the MM SE Recelver in Sate Space
Recall the MM SE receiver (6). It is known that equa

tions of thisform can be efficiently computed viaaQR
factorization. Indeed, note that
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Fig. 3. (a) Structure of the QR factorization, (b) structure of the inverse, (c) structure of TTH.

8= (H"T"TH + 0?) 1HHTHy

(8)

(HATHTH + )P [HPTH ol]
y
0

Thus, if M =: QMRM is an economy-size QR factor-
ization for M (where RM is square triangular, and QM
istall and isometric), then

y

ol

The QR factorization and factor inversion can be done
in state space as before. Thus, Sisthe output of acom-
putational structure similar to theonein Fig. 3(b). The
only new aspect isthe derivation of arealizationfor M.

A redlization{An,Bn,Cn,Dn} for T isaready known.
H is block-diagonal, with blocks h; matching the in-
putsof T. Define

d

5]

ol
M

8= (RM)1(QU)H [

Bin
Hn =
Bin
B = hi, T hasan input for useri at n
T ., otherwise.

A readlization for TH isthen given by

.

Finally, arealization for M is simply obtained by ex-
tending the D-matrix by ol:

An
Cn

BnHn

(TH)n = [ DoHn
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