
SUBSPACE TRACKING USING A CONSTRAINED HYPERBOLIC URV DECOMPOSITION

Alle-Jan van der Veen

Delft University of Technology, Dept. Electrical Engineering/DIMES, 2628 CD Delft, The Netherlands

The class of Schur subspace estimators provides a parametrization
of all minimal-rank matrix approximants that lie within a specified
distance of a given matrix, and in particular gives expressions for
the column spans of these approximants. In this paper, we derive an
updating algorithm for an interesting member of the class, making
use of a constrained hyperbolic URV-like decomposition.

1. INTRODUCTION

Fast adaptive subspace estimation plays an increasingly important
role in modern signal processing. It forms the key ingredient in
many sensor array signal processing algorithms, system identifica-
tion, and several recently derived blind signal separation and equal-
ization algorithms.

The generic subspace estimation problem in these applications
might be stated as follows. Suppose that we are given a data ma-
trix X : m×n, measured column-by-column, that satisfies the model
X � X̃

�
Ñ, where X̃ is a low rank matrix and Ñ is a disturbance.

Knowing only X, we can try to estimate X̃ by solving

min
X̂

�
X − X̂

�
s.t. rank � X̂ � � d (1)

where
�

·
�

denotes the matrix 2-norm (largest singular value). The
value of the rank d is either given or is estimated from the singular
values of X. The usual truncated SVD (TSVD) solution is to set
all but the largest d singular values of X equal to zero. In subspace
estimation, we are primarily interested in the column span of X̃. For
the TSVD solution, this space is estimated by the span of the first
d left singular vectors of X, the so-called principal subspace.

Because directly computing and updating the TSVD is com-
putationally expensive, several other subspace estimators based
on cheaper decompositions have been proposed, such as the rank-
revealing QR (RRQR, viz. [1]) or the URV [2]. Alternatively, there
are efficient subspace tracking and approximate SVD-updating al-
gorithms which under stationary conditions gradually converge to-
wards the principal subspace or the SVD, e.g., [3–5].

A more recent development is the Schur subspace estimation
(SSE) technique [6, 7]. It is based on the knowledge of an upper
bound to the noise,

�
Ñ
�

≤ γ, and gives a parametrization for all X̂
that satisfy

min
X̂

rank � X̂ � s.t.
�
X − X̂

�
≤ γ � (2)

It is readily shown that the resulting approximants X̂ have rank d,
where d is equal to the number of singular values of X that are larger
than γ. The TSVD is within the class, but it is not explicitly iden-
tified. The prime advantage of the SSE technique is that it gives
subspace estimates that have the correct dimension and a known
performance (in terms of γ), but are substantially easier to compute
and update than the TSVD.

The computation of Schur subspace estimates is based on an
implicit signed Cholesky factorization

XX∗ − γ2I � : BB∗ − AA∗

IEEE ICASSP’98, Seattle, May 1998

where A � B have minimal dimensions. (∗ denotes the hermitian
transpose.) Thus, the spectrum of XX∗ is shifted such that the small
eigenvalues become negative, which enables their separation from
the large eigenvalues. It is readily shown from inertia considera-
tions that, even though A and B are not unique, if X has d singular
values larger than γ and m−d less than γ, then B has d columns and
A has m−d columns. The main result of [6] is that, for any such pair� A � B � , all principal subspace estimates leading to approximants X̂
satisfying (2) are given by the column span of B − AM, where M is
any matrix of compatible size with

�
M
�

≤ 1. The factorization can
be computed via a hyperbolic factorization�

γI X � Θ � � � A 0 �	� B 0 �
�
where Θ is a J-unitary matrix (this notion is defined in section 2).

Straightforward generalizations are possible. Suppose that in-
stead of

�
Ñ
���

γ, we know ÑÑ∗ ≤ γ2RN, where RN could be an
estimate of the noise covariance matrix. An implicit factorization
of XX∗ − γ2RN leads to minimal rank approximants X̂ such that�

R−1 2
N � X − X̂ � � ≤ γ. The subspace estimates are computed from�

N X � Θ � � � A 0 ��� B 0 ��� where N is any matrix such that NN∗ �
γ2RN , and are still given by the range of B − AM, for any

�
M
�

≤ 1.
Hence, without extra effort, we can take knowledge of the noise co-
variance matrix into account. Note that, asymptotically, a suitable
N simply consists of scaled sample vectors of the noise process, and
can be updated in similar ways as X.

In [6], two subspace estimators within the SSE-class were de-
fined as

SSE-1 : USSE1
� B (3)

SSE-2 : USSE2
� B − AMΘ � MΘ

� �
Im−d 0� Θ−1

11 Θ12

�
Id
0 � (4)

The “central” (M � 0) estimator SSE-1 is simple to compute and
straightforward to update using hyperbolic rotations, but it is bi-
ased in cases with zero noise and γ � 0. SSE-2 is designed to
give X̂ � X in cases with zero noise, is almost always more ac-
curate than SSE-1, and simulation results are remarkably close to
the TSVD subspace estimate [6, 7]. It is “unbiased” in the sense
that ran � USSE2 � ⊂ ran � X � , and satisfies

�
USSE2

�
≤
�
X
�
: the basis is

nicely bounded [6]. However, updating SSE-2 is apparently non-
trivial: Θ has growing dimensions and a direct implementation of
(4) is prohibitive.

In this paper, we present a new SSE-2 updating algorithm. We
first show that SSE-2 subspace estimates are obtained from a cer-
tain constrained “hyperbolic URV” decomposition. This decompo-
sition can be updated and downdated efficiently, without storing Θ,
and requires approximately 2m2 rotations plus m2 multiplications
per update vector of dimension m. (A spherical updating variant
can reduce this further to order md.) In addition, the principal sub-
space estimate takes the form of an orthonormal basis.

Table 1. Elementary J-unitary zeroing rotations

In:
�
r x � with signature j̃1;

Out: θ̃, j̃2 such that
�
r x � θ̃ � �

r � 0� , θ̃ j̃2θ̃∗ � j̃1

1 � j̃1 � �
1

−1 � � |r| � |x| ⇒ j̃2
� �

1
−1 � � s � x

r
� θ̃ � �

1 −s
−s∗ 1 � 1

c

2 � j̃1 � �
1

−1 � � |r|
�

|x| ⇒ j̃2
� �

−1
1 � � s � r

x
� θ̃ � �

−s∗ 1
1 −s � 1

c

3 � j̃1 � �
−1

1 � � |r|
�

|x| ⇒ j̃2
� �

1
−1 � � s � r

x
� θ̃ � �

−s∗ 1
1 −s � 1

c

4 � j̃1 � �
−1

1 � � |r| � |x| ⇒ j̃2
� �

−1
1 � � s � x

r
� θ̃ � �

1 −s
−s∗ 1 � 1

c

5 � j̃1 � �
1

1� ⇒ j̃2
� �

1
1 � � s � x���

r x � � � θ̃ � �
c∗ −s
s∗ c �

6 � j̃1 � �
−1

−1 � ⇒ j̃2
� �

−1
−1 � � s � x���

r x � � � θ̃ � �
c∗ −s
s∗ c �

where c ��� 1 − |s|2

2. J-UNITARY MATRICES

At this point, we review some material on J-unitary matrices
from [6]. A square matrix Θ is J-unitary if it satisfies Θ∗JΘ �
J � ΘJΘ∗ � J � where J is a signature matrix which follows some
prescribed � p � q � × � p � q � block-partitioning of Θ:

Θ � � p q

p Θ11 Θ12
q Θ21 Θ22 � � J � �

Ip
−Iq � � (5)

If Θ is applied to a block-partitioned matrix
�
A B � , then

�
A B � Θ ��

C D � ⇒ AA∗ − BB∗ � CC∗ − DD∗ � Hence, J associates a positive
signature to the columns of A � C, and a negative signature to those
of B � D.

For updating purposes, it is necessary to work with column per-
mutations of

�
A B � and

�
C D � , which induces row and column per-

mutations of Θ. Thus we introduce matrices Θ̃ that are J-unitary
with respect to unsorted signature matrices J̃ (the tilde reminds
of the absence of sorting), satisfying Θ̃∗J̃1Θ̃ � J̃2 � Θ̃J̃2Θ̃∗ � J̃1 �
where J̃1 and J̃2 are diagonal matrices with diagonal entries equal
to ±1. If MΘ̃ � N, then MJ̃1M∗ � NJ̃2N∗, so that J̃1 associates its
signature to the columns of M, and J̃2 associates its signature to the
columns of N. By inertia, the total number of positive entries in J̃1
has to be equal to that in J̃2, and likewise for the negative entries.

A 2 × 2 matrix θ̃ is an elementary J-unitary rotation if it satis-
fies θ̃∗ j̃1θ̃ � j̃2, θ̃ j̃2θ̃∗ � j̃1, for unsorted signature matrices j̃1, j̃2.
Similar to Givens rotations, it can be used to zero specific entries
of vectors: for a given vector

�
r x � and signature j̃1, we can find θ̃,

r � , and j̃2 such that
�
r x � θ̃ � �

r � 0 � . The precise form that θ̃ assumes
depends on j̃1 and whether |r| � |x| or |r|

�
|x|, as listed in table 1.

Cases 5 and 6 in the table occur when j̃1 is definite and lead to or-
dinary circular (unitary) rotations. Situations where |r| � |x| with
an indefinite signature j̃1 are degenerate (c � 0): the result

�
0 0 � is

well defined but θ is unbounded.

3. A HYPERBOLIC URV DECOMPOSITION

Let N : m × n1 and X : m × n2 be given matrices. We consider im-
plicit factorizations of XX∗ − NN∗ as

XX∗ − NN∗ � BB∗ − AA∗ � (6)

where A and B together have m columns. A and B follow from the
factorization �

n1� n2
−

m N X � Θ � �
n1� n2

−
m A � B � � ; (7)

A � � �
m−d n1−m

�
d

m A 0 � � B � � �
d n2−d

m B 0 �
where Θ is a J-unitary matrix partitioned conforming to the equa-
tion. The factorization always exists although Θ will be unbounded
when XX∗ − NN∗ is singular [6]. However, the factorization is not
unique.

One way to find a factorization (7) is by the hyperbolic QR fac-
torization (HQR) [6, 8, 9]� �

N
−
X � Θ̃ � � ±

R
±

0m× � n1
�

n2−m � ��� (8)

in which R is a lower or upper triangular m × m matrix, and Θ̃ is� J̃1 � J̃2 � -unitary. Here, J̃1
� J � In1 ⊕ −In2 is given from the out-

set, and J̃2 is a resulting unsorted signature matrix (signified by ±
in (8)), which is determined along with R. J̃2 specifies the signature
of the columns of R and hence their membership in either A or B.
Although this factorization is simple to update, it has the drawback
that it does not always exist [6]: the triangular form of R is too re-
strictive. The set of exceptions is finite, but in the neighborhood of
an exception it may happen that A and B are unbounded with nearly
collinear column spans.

To get around this, introduce a QR factorization of
�
A B � : R ��

RA RB � � Q∗ � A B ��� where R is triangular and Q is unitary. This
leads to the more general two-sided decomposition

Q∗ � �N −
X � Θ � � �

RA

�
0 |

−
RB

−
0 ��� (9)

Note that still
�
A 0 | B 0 � � �

N X � Θ. This two-sided decomposition
always exists. We can choose to have R upper triangular or lower
triangular, or even permute the columns of

�
A B � before introducing

the QR factorization. It is convenient to take R lower triangular: if
we split Q � �

QA QB � accordingly, then

ran � B � � ran � QB ���
Hence, for this choice, QB is an orthonormal basis of the (central)
principal subspace estimate. If our objective is to estimate a null
space basis, then we would swap � A � B � or take R upper triangular
so that ran � A � � ran � QA � .

We are interested in SSE-2 subspace estimates, as defined in
(4). This definition involves the inversion of submatrices of Θ. We
will now show how this can be avoided by posing additional struc-
tural restrictions on Θ, which is possible because A � B and Θ are not
unique. We can use this freedom to transform MΘ in (4) to zero, as
shown in the following lemma.
Lemma 1. For given A � B � Θ, consider a transformation by a J-
unitary matrix ΘM:�

A 0 | B 0 � ΘM
� �

A � 0 | B � 0 � (10)
ΘΘM

� Θ � (11)

where ΘM only acts on the columns of A � B (and corresponding
columns of Θ).

Then ran � B−AMΘ � � ran � B � −A � MΘ � � , i.e., the SSE-2 subspace
is invariant under ΘM. Furthermore, there exists a ΘM such that
MΘ � � 0, i.e., such that ran � B � � is the SSE-2 subspace.

The proof is rather technical and omitted.
Hence, there is a matrix ΘM which transforms Θ to Θ � � ΘΘM ,

such that after the transformation we simply take B � and have the
desired SSE-2 subspace basis. Knowing this, there are easier ways
to find this transformation. Suppose

�
Θ11 Θ12 � is partitioned as

�
Θ11 Θ12 � � � m−d n1− � m−d � d n2−d

m−d � Θ11 � 11 � Θ11 � 12 � Θ12 � 11 � Θ12 � 12
n1− � m−d � ∗ ∗ ∗ ∗ �

From the definition of MΘ in (4), it is seen that to have MΘ � � 0, it
suffices to find a transformation on Θ such that Θ � −1

11 Θ �12 has a zero� 11 � -block. This will be the case, for example, if both � Θ �11 � 12
�

0 and � Θ �12 � 11
� 0. The latter can always be effected by a suit-

ably chosen ΘM which cancels � Θ12 � 11 against � Θ11 � 11. However,
to apply lemma 1, ΘM is not allowed to change the columns of� Θ11 � 12. To zero this block, we may apply any invertible transfor-
mation Te to the rows of

�
Θ11 Θ12 � :�

Θ �11 Θ �12 � � Te
�
Θ11 Θ12 �

because Θ � −1
11 Θ �12

� Θ−1
11 Θ12 is invariant under Te. This leads to a

new characterization of SSE-2 estimates:
Theorem 2. The following factorization always exists and pro-
vides an SSE-2 subspace estimate. For given N : m×n1, X : m×n2,
with n1 ≥ m, find the subspace dimension d, Q (unitary), Θ (J-
unitary), R � �

RA RB � (lower triangular), T : � m−d � ×n1 (full rank)
such that

Q∗

�
n1� n2

−
N X � Θ � m−d� n1− � m−d �� d

−
n2−d

−
RA 0 RB 0 ! � (12)

T

�
n1� n2

−
I 0 � Θ � m−d� n1− � m−d �� d

−
n2−d

−
I 0 0 ∗ ! � (13)

With the partitioning Q � �
QA QB � , an orthonormal basis for the

SSE-2 subspace estimate is given by QB.
By virtue of [6, thm. 2.1], the above factorization always exists.

If XX∗ −NN∗ is singular, then certain columns of Θ are unbounded
and corresponding columns of R are identically zero.

The factorization in (12) is reminiscent of the URV decompo-
sition [2], but with a J-unitary Θ. The following corollary shows
that the constraint (13) ensures certain desirable norm properties.
Corollary 3. The factorization (12)-(13) is such that ran � QB � ⊂
ran � X �"� � RB

�
≤
�
X
� � � RA

�
≤
�
N
� �

PROOF Using the fact that MΘ
� 0, lemma 3.4 in [6] implies

BB∗ ≤ XX∗, AA∗ ≤ NN∗. It remains to apply the definition
�
A B � ��

QA QB � �RA RB � where Q is unitary and R is lower. #
4. UPDATING THE SSE-2

Now that we have identified (12)-(13) as a factorization which pro-
vides an SSE-2 subspace, we investigate how this factorization can
be updated when new columns for X and N become available. The
update consists of two phases, one to update (12), and a second to
restore the zero structure of (13). Several updating algorithms are
possible, depending on one’s objectives.

4.1. Updating Q∗ �N X � Θ
Suppose we have already computed the decomposition Q∗ �N X � Θ̃ ��
R 0 � , where R � �

RA RB � is lower triangular and sorted according
to signature. In principle, updating the factorization with a new

Table 2. Two ways to zero ci
col: 1. Compute θ̃ and j̃2 s.t.

�
Ri $ i ci � θ̃ � �

∗ 0 �
2. Apply θ̃ to the i-th column of R and c; update signatures

row: 1. Determine q s.t. q∗ � ci
ci % 1

� � � 0
∗ ���

2. Apply q∗ to rows � i � i � 1 � of R; apply q to Q
3. Compute θ̃ and j̃2 s.t.

�
Ri $ i Ri $ i � 1 � θ̃ � �

∗ 0 �
4. Apply θ̃ to columns � i � i � 1 � of R; update signatures

5 �
6 �

1 �
2 �

4 �1

6

2

4
5

c RA RB

±

7

� −

3

Figure 1. Order in which zero entries are created by algorithm
zero-c. Only column operations (rotations 3 and 7) are
possibly hyperbolic and may lead to signature changes

column x or n is straightforward. Indeed, let us say that we want
to find a new factorization Q � ∗ �N � X �&� Θ̃ � � �

R � 0��� where either
N � � �

N n � or X � � �
X x � . Making use of the previously computed

decomposition, it suffices to find Qc and Θ̃c such that

Q∗
c
 m−d� d

−
1
jc

RA RB c ! Θ̃c
� m−d �� d �

−
1
j �c

R �A R �B 0 ! (14)

Q � : � QQc �
where c � Q∗n or c � Q∗x. (Note that we need to store and update
Q to apply this transformation. Storage of Θ̃ will not be needed.) In
the first case, c has a positive signature jc � 1; in the second case,
jc � −1. Denote the signature of R by J � Im−d ⊕ −Id .

To compute the factorization (14), the entries c1 � c2 � · · · � cm of
c are zeroed in turn. As listed in table 2, there are two possibilities
to do this: by elementary column rotations θ̃ or by elementary row
rotations q. The “col” scheme to zero entry ci is the most natural
and efficient, and directly zeros ci against Ri $ i. The “row” scheme
first computes an elementary circular (unitary) rotation q to zero
ci against ci

�
1, and then a θ̃-rotation to zero the resulting fill-in in

Ri $ i � 1 against Ri $ i. For reasons of numerical stability, it is desirable
to minimize the number of hyperbolic rotations, i.e. rotations θ̃ that
act on columns with unequal signatures. Hence, we propose to zero
most entries ci using row operations, in spite of the added complex-
ity, and to use column operations only for zeroing cm−d and cm.

A graphical representation of this scheme is given in figure
1. Hyperbolic rotations and signature changes are only possible in
steps m−d and m. The θ-rotations in the row stages act on columns
of equal signatures, so that they are circular rotations without sig-
nature changes. The resulting signature of R depends on the initial
and final signature of c, i.e., jc and j �c: see figure 2.

The second phase is to restore the sorting of the columns of R
according to their signature. This is only necessary in cases � b � and� d2 � of figure 2, and it suffices to move the last column of R by a se-
ries of d swaps with its right neighbors. After each permutation, the
resulting fill-in in Ri $ i � 1 has to be zeroed by a q-rotation. If desired,
this phase can be made data-independent by always performing the
permutations, independent of the signatures.

0
0
0

0
0

0

0
0
0

0
0

0

0
0
0

0
0

0

0

0

0
0

0

0

0
0

0
0

R �B
0

0

c

�−�� � −� a �
R �A R �B c � c c �

−��� � −� b �
R �BR �A c R �A R �B c �

�−−−� c �
� −

c R �A c �
−−�−� d1 �

� −

R �B c R �A c �
−�−−� d2 �

� −

Figure 2. The four possible signature changes of c, c � , and the resulting possible signatures J � (after zero-c, before sorting). Only columns
m − d and d of R may have changed signature.

Table 3. SSE-2 updating algorithm

In: c, jc; R (lower), J � diag
�
J1 � · · · � Jm � (sorted), Q (unitary); d

Out: updated versions of R, J, Q, d

Algorithm SSE2-update:
zero-c: c : � Q∗c

ec
� 0 � em−d

� 1 � em
� 0 �

for i � 1 to m
if i � m − d or i � m

zero ci using col (θ̃)�
ei ec � : � �

ei ec � θ̃
else

zero ci using row
end

sort-R: for i � m − 1 down to m − d
�

1
permute columns i and i

�
1 of R (and Ji, Ji

�
1)

compute q to zero the fill-in Ri $ i � 1 against Ri
�

1 $ i � 1
apply q to rows � i � i � 1 � of R and columns of Q

end

MΘ-trans.: if Jm−d
� −1 and Jm−d

�
1
� �

1, (case � d �)
compute θ̃ � j̃2 s.t.

�
em−d em � θ̃ � �

∗ 0 �
apply θ̃ to columns � m − d � m − d

�
1 � of R

compute q to zero fill-in Rm−d $m−d
�

1
apply q to rows � m − d � m − d

�
1 � of R and to Q

end
update d : d : � d

� 1
2 � j �c − jc �

(A matlab implementation is available upon request.)

4.2. Restoring the structure of Θ
The next step is to modify the candidate Qc and Θ̃c by some QM and
Θ̃M in order to satisfy the structural conditions (13) on Θ. Equation
(13) shows that we do not have to keep track of T and Θ at all: we
only have to update a matrix

�
Im−d 0m−d×d � . The columns marked

‘∗’ in (13) never change, so we do not have to track them. Obvi-
ously, we do not have to store

�
Im−d 0 � . Hence, updating is possible

by only storing matrices Q and R � �
RA RB � .

With regard to the zero-structure, there are four possibilities,
which match the four cases � a � – � d � we had before. The investiga-
tion of each of the cases separately is technical and omitted, but the
result is simple: only in case � d � , i.e., jc � −1, j �c � −1, an action in-
volving Θ̃M is required. Moreover, it suffices to keep track of only
three entries of

�
I 0 � during the update, which will be denoted by

em−d , em, ec.
The resulting algorithm is summarized in table 3. The MΘ-

transformation, if needed, consists of a single θ-rotation on the
columns of R, followed by a q-rotation on the rows of R to zero the
fill-in. The sorting stage sorts unconditionally for simplicity and

uniformity, and only up to column m − d
�

1.
The updating algorithm can be initialized by R � 0, d � 0,

Q � Im. The computational complexity is assessed as m2 mul-
tiplications (for the initial transformation of c by Q), and about
2m2 � 2md elementary rotations. This is four times more than the
original HQR scheme for computing the SSE-1.

5. DISCUSSION

The updating algorithm which we derived has the following prop-
erties. Its main feature is a localized, piecewise regular, data-
independent computational flow using plane J-unitary rotations.
The algorithm consists of two phases: a forward phase to zero the
update vector, and a backward phase to restore the sorting and at
the same time satisfy a structural constraint. Each phase is fully
pipelineable, but unfortunately the combination is not, unless they
can be meshed together (with some effort, this is sometimes possi-
ble, cf. [4]). Per update vector, there are at most 3 hyperbolic rota-
tions, which is not minimal, but significantly less than the HQR up-
dating algorithm proposed previously in [6]. Updating and down-
dating uses the same computational structure, since downdating X
by a vector x can be done by updating N by x. Exponential win-
dowing and several interesting updating/downdating schemes are
possible, which will be reported separately.

References

[1] S. Chandrasekaran and I.C.F. Ipsen, “On rank-revealing fac-
torisations,” SIAM J. Matrix Anal. Appl., vol. 15, pp. 592–622,
Apr. 1994.

[2] G.W. Stewart, “An updating algorithm for subspace tracking,”
IEEE Tr. Signal Proc., vol. 40, pp. 1535–1541, June 1992.

[3] P. Comon and G.H. Golub, “Tracking a few extreme singu-
lar values and vectors in signal procesing,” Proceedings of the
IEEE, vol. 78, pp. 1327–1343, Aug. 1990.

[4] M. Moonen, P. Van Dooren, and F. Vanpoucke, “On the QR al-
gorithm and updating the SVD and URV decomposition in par-
allel,” Lin. Alg. Appl., vol. 188/189, pp. 549–568, July 1993.

[5] B. Yang, “Projection approximation subspace tracking,” IEEE
Trans. Signal Processing, vol. 43, pp. 95–107, Jan. 1995.

[6] A.J. van der Veen, “A Schur method for low-rank matrix ap-
proximation,” SIAM J. Matrix Anal. Appl., vol. 17, pp. 139–
160, Jan. 1996.

[7] J. Götze and A.J. van der Veen, “On-line subspace estimation
using a Schur-type method,” IEEE Trans. Signal Processing,
vol. 44, pp. 1585–1589, June 1996.

[8] A. Bunse-Gerstner, “An analysis of the HR algorithm for com-
puting the eigenvalues of a matrix,” Lin. Alg. Appl., vol. 35,
pp. 155–173, 1981.

[9] R. Onn, A.O. Steinhardt, and A.W. Bojanczyk, “The hyper-
bolic singular value decomposition and applications,” IEEE
Trans. Signal Processing, vol. 39, pp. 1575–1588, July 1991.

