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Zero/constant modulus (ZCM) signals are complex signals for
which every sample is either zero or has modulus 1. Such sig-
nals arise after imprecise carrier-to-baseband conversion of binary
{0 � 1}-modulated signals, or with intermittent phase-modulated
signals. We consider the separation of linear superpositions of such
signals using analytic techniques. An application is the separation
of multiple partly coinciding aircraft transponder signals (SSR re-
ply signals).

1. INTRODUCTION

Aircraft transponder signals (secondary surveillance radar (SSR)
mode-S reply signals [1,2]) are in essence binary PAM signals with
alphabet {0 � 1} and symbol period 0 � 5µs, modulated on a carrier
fc
� 1090MHz ± 3MHz. A data burst consists of 56 or 112 bits,

which are subsequently Manchester encoded (0 → 01, 1 → 10). It
does not contain training bits. Because transponders can be trig-
gered by neighboring ground stations, it frequently occurs that a
ground station receives a superposition of two such signals, par-
tially overlapping in frequency and time. We are interested in the
possibility of separating them using adaptive antenna arrays.

A simple and quite general data model is obtained by defining a
zero/constant modulus (ZCM) signal as a complex signal for which
every sample is either zero or has modulus 1. The received data
consists of several unknown linear combinations of such signals.
Indeed, the zero symbols in this model are either part of the mes-
sage, or can account for the fact that the message has finite duration.
Likewise, the wide tolerance on the carrier frequencies in the SSR
application implies that, after conversion to baseband, a residual
carrier is present so that we have a ZCM signal rather than a binary
{0 � 1}-signal.

Several techniques have been developed to estimate and separate
linear superpositions of signals. They can broadly be characterized
as (1) those that use properties of the channel, such as a parame-
trized multipath model and a known or structured antenna array,
and (2) those that use properties of the signals. Some of the prop-
erties used in the latter category are training (known data), con-
stant modulus, finite alphabet, cyclo-stationarity, and statistical in-
dependence. For each of these, several methods are available to
estimate the mixing matrix. Typical methods are based on cost-
function optimization using gradient-search or iterative techniques.
Such methods are very much dependent on accurate initial points.

Since data bursts are short, we are interested in algebraic algo-
rithms in which the mixing matrix is found as the best-fitting solu-
tion to a set of algebraic equations. For constant-modulus signals,
a successful algorithm is the Analytic CMA (ACMA) [3], which
solves an overdetermined set of quadratic equations. The algorithm
has been specialized to separate superpositions of binary {±1} or
{0 � 1} signals [4], and has interesting but unexplored connections to
algebraic techniques for stochastic source separation, cf. e.g., [5].
In the present paper, we explore ways to account for the present
more general conditions on the signals: data blocks due to indepen-

s2

x5

s1

+

w2

+

w1

s1

s2

X

blind
beamformer

x1 x2
x3

x4

Figure 1. Beamforming scenario

dent sources are not necessarily synchronized in time, and carrier
frequencies are not 100% identical.

2. SEPARATION BASED ON THE ZCM PROPERTY

2.1. Algorithm outline

We consider a scenario as depicted in figure 1. Suppose we have
collected a data block X ��� x1 · · ·xN � of received signals, consisting
of N complex-valued vector samples from M antennas. If d sources
are present and the multipath delay spread is small relative to the
sampling period, then the data matrix X : M ×N is described by the
standard model

X � AS � a1s1 � · · · � adsd �
where all entries � si � k ∈ ZCM. We assume that d ≤ M, and that
A and S have full rank d. The objective is to retrieve all (nontriv-
ial) ZCM signals present in X, i.e. to find all complex beamforming
vectors w that lead to linearly independent ZCM signals s � w∗X.
To avoid nonuniqueness in case d 	 M, we first replace X by any
full rank d matrix V �
� v1 · · ·vN � that has the same row span, for
example as obtained from an SVD of X. Thus we look for all d
linearly independent w �� 0 such that

w∗V � s ∈ ZCM �
Since A and S are assumed to have full rank d, this equation has at
least d solutions {w1 � · · · � wd}. If sufficient samples are taken, then
it is known for the CM case that generically there are precisely d so-
lutions (unique up to arbitrary initial phase) [4], and by extension,
this applies to the ZCM decomposition as well.

The ZCM property can be written as

s � 0 or |s| � 1 ⇔ s � s∗s − 1 � � 0 ⇔ ss∗s � s �
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Substitution of w∗vk
� sk gives

s � w∗V ∈ ZCM ⇔ w∗vkv∗
kww∗vk

� w∗vk ∀k �
The next step is to use a Kronecker product notation to separate the
unknown w from the known vk’s. Note that the left-hand side con-
tains only third-order terms of the entries of w, whereas the right-
hand side only has first-order terms. This imbalance is overcome
by defining

α �
� w � 2 � w∗w

(which is constant for each w) and multiplying the right-hand side
by 1 � 1

α w∗w:

s � w∗V ∈ ZCM
⇔ w∗vkv∗

kww∗vk
� 1

α w∗ww∗vk ∀k
⇔ � vk ⊗ v̄k ⊗ vk � T � w̄ ⊗ w ⊗ w̄ � �� 1

α vec � Id ⊗ vk � T � w̄ ⊗ w ⊗ w̄ � ∀k �
Define matrices P1, P2 with rows � vk ⊗ v̄k ⊗vk � T and vec � Id ⊗vk � T,
respectively. Then then ZCM separation problem is seen to be
equivalent to finding all solutions � α � y � , α �� 0 to

αP1y � P2y where y � w̄ ⊗ w ⊗ w̄ � (1)

This is a (singular) matrix pencil problem of the form Ax � λBx,
with “tall” A and B that are perhaps not full rank. If P1 has full
column rank (which requires at least N � d3, and an additional
processing step outlined in section 2.3 below), then it can be shown
that the pair � P1 � P2 � has precisely d generalized eigenvalues (rank-
reducing numbers), necessarily equal to αi

��� wi
� 2. If there are no

repeated nonzero eigenvalues, then the corresponding eigenvectors
are yi ∼ w̄i ⊗wi ⊗w̄i, from which wi is immediately obtained, up to
scaling. The correct scaling of wi follows from the corresponding
eigenvalue αi.

2.2. Repeated eigenvalues

If some of the nonzero eigenvalues in (1) are repeated, then the
corresponding eigenvectors form an arbitrary basis of a subspace
which contains the structured vectors we are looking for, and we
need to find the correct linear combinations such that the Kronecker
structure holds. In particular, if α is repeated δ times, with eigen-
vectors {yi}δ

1, then we need to find δ independent vectors � λ1 · · ·λδ � ,
each such that the resulting combination admits a factorization

λ1y1 � · · · � λδyδ
� w̄ ⊗ w ⊗ w̄ �

This leads to a generalized “tensor-eigenvalue” problem that can
be solved, much as in [4]. We omit the details of this in this pa-
per. Note that, if V was taken to have orthonormal rows, then
αi
� w∗

i wi
� s∗

i si, so that there are repeated eigenvalues whenever
two signals have an equal number of nonzero entries. The case of
repeated eigenvalues can generically be avoided by not taking an
orthonormal V .

In the simulations in section 4, we test both versions of the algo-
rithm: AZCMA1 solves the generalized tensor-eigenvalue prob-
lem on the full collection of eigenvectors {yi}d

1 , whereas AZCMA2
simply assumes that all eigenvalues are distinct and omits the extra
processing step.

2.3. Singular pencils

The above technique relied on the assumption that P1 is full rank.
However, this is never the case: the structure of the rows of P1 im-
plies that some of its columns are repeated. Similarly, y � w̄ ⊗
w ⊗ w̄ has repeated entries, and we want our solutions to satisfy
this property. Because it is known which entries are repeated, it is
straightforward to enforce this: define a selection matrix J of size
d3 × 1

2 d2 � d � 1 � , such that

y � Jy � �
where y � generically has no repeated entries. Set P �1 : � P1J, P �2 : �
P2J, then generically P1 has no repeated columns and has full rank.
At this point, the pencil problem αP1y � P2y is replaced by

αP �1y � � P �2y ���
Note that P �2 has only d nonzero columns. Hence, there are (at
most) d nonzero eigenvalues α. If P �1 has full rank, then necessar-
ily, these must be equal to the αi

��� wi
� 2. After finding solutions

y �i, we set yi
� Jy �i to add back the repeated entries, which brings

us back to the case considered before.

2.4. Degenerate cases

Depending on the signals, there are other cases in which P �1 does not
have full column rank. E.g., if two signals are purely CM, without
zero entries, then one can show that P �1 is rank-deficient. In general,
the columns of the signal matrix S should have “sufficiently many”
different combinations with zero/nonzero entries. P �1 is also singu-
lar if two sources share exactly the same frequency.

Cases with singular P �1 are hard to solve. A more general Schur
form is needed to reveal the eigenvalue structure [6], the eigenval-
ues are not equal to � wi

� 2, and we end up with extra solution vec-
tors y � : a basis of the null space of P �1. Hence, we cannot assume
that the individual basis vectors yi factor as w̄i ⊗ wi ⊗ w̄i, and we
have to solve the generalized tensor-eigenvalue problem. A com-
plication is that now the number of basis vectors is larger than the
number of solutions. This case is not treated by the technique in [4]
and remains a topic for future research.

2.5. Postprocessing

A further improvement of the estimate for W �
�w1 · · ·wd � is ob-
tained by using it as initial point in an iterative algorithm to min-
imize the cost function minW � S∈ZCM

� W∗X − S � F . A simple al-
gorithm based on alternating projections mimics the Gerschberg-
Saxton constant-modulus algorithm GSA [7] (cf. [4]), and the ILSP
algorithm for digital signal separation in [8]:

ZCMA
for k � 1 � 2 � · · ·

a. S � i � : � ProjZCM

�
W � k � ∗X �

b. W � k � 1 � ∗ : � S � k � X†

where ProjZCM � a � � U � |a| − 1
2 � · a

|a| , and U � a � is the unit step func-
tion. Note that, unlike GSA and ILSP, this iterative algorithm relies
on a proper initial scaling of W , or else the projection might map
everything to 0. Initialized by one of the algebraic algorithms, the
iterative algorithm converges in 2–3 iterations.
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3. SEPARATION BASED ON FREQUENCY ESTIMATION

3.1. Algorithm outline

In section 2, our source data model was sk
� 0∨|sk | � 1. However,

for a binary {0 � 1}-source with some unknown residual carrier fre-
quency f , more structure is available:

sk
� 0 ∨ ei2π f k ∀k �

Call φ � ei2π f (|φ| � 1). The influence of k is removed by looking
at s∗

k−1sk, which is either 0 or φ. Altogether, we have�
s∗
ksk

� 0 ∨ 1
s∗
k−1sk

� 0 ∨ φ ∀k

⇔ �
s∗
ksk � s∗

ksk − 1 � � 0
s∗
k−1sk � s∗

k−1sk − φ � � 0 ∀k � (2)

Similar as before, substitute sk
� w∗vk . Define the Kronecker

products y � w̄ ⊗ w, p � 0 �k
� vk ⊗ v̄k , p � 1 �k

� vk ⊗ v̄k−1. Then (2)
becomes � � p � 0 �k ⊗ p � 0 �k � T � y ⊗ y � � p � 0 � Tk y� p � 1 �k ⊗ p � 1 �k � T � y ⊗ y � � φp � 1 � Tk y ∀k � (3)

Collecting all equations into matrices as before, we obtain�
P11 P12
P21 φP22 � � zy � � 0 � |φ| � 1 � y � w̄ ⊗ w � z � y ⊗ y � � (4)

and we have to find all d solution triples � φ � z � y � of the indicated
structure.

Again, the problem is essentially a generalized eigenvalue prob-
lem. This is immediately seen by writing (4) as�

P11 P12
P21 0 � � zy � � −φ

�
0 0
0 P22 � � zy � � (5)

Hence, −φ is one of the generalized eigenvalues of the above ma-
trix pair, and � zT yT � T is its corresponding eigenvector. In fact,
there are d2 finite eigenvalues, and we must choose the d eigen-
values that are on the unit circle (the others are located randomly
throughout the plane). If the resulting {φi} are distinct (the residual
frequencies modulo the sampling rate are not the same), then the
second block of the corresponding eigenvectors {yi} can directly
be factored as yi

� w̄i ⊗ wi, which gives the desired beamforming
vectors. On the other hand, if frequencies are exactly coinciding,
then again we need to solve a tensor-eigenvalue problem to find out
which linear combinations of the corresponding eigenvectors lead
to the desired Kronecker structure.

Because of the arbitrary normalization of eigenvectors, the factor-
ization y � w̄⊗w determines the direction of w, but not its scaling.
The latter can be computed by looking at the norm of the corre-
sponding z: since z � y ⊗ y, we have � w � 2 ��� z ����� y � .
3.2. Real processing

Because of its symmetries, it is possible to transform � zT yT � T to
a real vector without duplicates: there is a matrix J with a simple
fixed structure, such that

J

�
z �
y � � � � zy � �

where z � and y � are real-valued without duplicate entries. We have
to transform the Pi j to P �i j

� Pi jJ accordingly. After this transfor-
mation, P �11 � P �12 � z � � y � are real-valued, and since |φ| � 1, we can
come up with an additional relation P̄ �22y � � −φP̄ �21z � . Using this
relation, the generalized eigenvalue problem (5) becomes !

P �11 P �12
P �21 0
0 P̄ �22 "# � z �y � � � −φ

 !
0 0
0 P �22

P̄ �21 0 "# � z �y � � �
As it turns out, this data extension greatly improves the quality of
the estimates. This algorithm is called AFZA in the simulations in
section 4.

3.3. Alternative

Alternatively, we can try to combine both algorithms, by multiply-
ing (3) by 1 � 1

α w∗w. This then leads to a pair of coupled eigen-
value equations of the form� αP11 � P12 � z � 0� βP21 � P22 � z � 0 � z � � w̄ ⊗ w � ⊗ � w̄ ⊗ w � �
where |β| � α. Unfortunately, it is not clear how such equations are
optimally solved.

4. SIMULATION RESULTS

To get a crude understanding of the performance of the proposed
algorithms, we simulated a scenario with d � 2 sources, arriving
at an antenna array consisting of M � 2 antennas spaced at half-
wavelength. The signals were Manchester coded binary signals
(i.e. “0” is transmitted as “01”, and “1” is transmitted as “10”). The
data block covers 40 symbols (corresponding to N � 80 symbol pe-
riods of the coded signal), and signal 1 is present throughout. The
sampling period T is equal to the coded (shorter) symbol period.
The first signal has a randomly selected residual carrier frequency
and arrives from 0 $ (broadside). The second signal has a differ-
ent residual carrier frequency and direction and starts after a certain
time separation, so that it is only partially present in the data block.
It has the same power as the first signal.

The algorithms are tested for a range of SNRs, angle, time and fre-
quency separations, and the results are averaged over 300 runs. The
resulting worst residual signal-to-interference ratio (SIR) among
the recovered signals is plotted in figure 2, labeled with ‘+’ signs.
The initial worst SIR before separation is 0 dB.

As discussed in section 2.5, the resulting estimates of W can also be
used as initial points in the ZCMA iterative algorithm. This usually
gives a significant improvement in the performance, as is shown by
the ‘o’ curves. For comparison, we also plot the results of the itera-
tive algorithm initialized with the true A, which indicates the ‘best’
(be it non-ML) type of performance that can be expected for this
problem. It is seen that the algorithms after postprocessing usually
reach the same performance.

Other observations are

• All three algorithms fail for precisely equal frequencies. For
AFZA this is because the eigenvalues coincide, which is
not taken into account in the implementation. For the two
AZCMA algorithms, this is because the P1 matrix becomes
singular, for which there is yet no solution. The problem
goes away already if the frequency difference is more than
about 1 % of the symbol rate, or 1 cycle in the entire data
batch.
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Figure 2. Average worst residual SIR among the recovered signals, as a function of � a � SNR, � b � DOA separation, � c � frequency separation,� d � time separation.

• The time separation is critical for AZCMA2. If it is small,
then the number of 1’s in both signals is approximately the
same, so that the nonzero eigenvalues of P1 coincide. This
is not accounted for in AZCMA2, so that the algorithm fails
in these cases.

• AFZA is usually less accurate than the other two methods.
This is partly due to the fact that it is based on 4-th powers
of the data rather than 3-rd. An important effect is also that
the estimate of the frequencies is based on information on
s∗
k−1sk, which is nonzero only if both sk−1 and sk are nonzero.

This makes these estimates much more sensitive to noise.

The main conclusion to be drawn from the exploration in this pa-
per is that it is certainly possible in theory to separate ZCM signals
based on algebraic algorithms. Practical issues and efficient imple-
mentations have not been studied yet. The problem is rich in struc-
ture, and admits significant further improvements.
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