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Singular value analysis of a GMSK-modulated signal such as em-
ployed by GSM reveals that it admits a reasonably accurate linear
model, enabling the use of linear space-time equalizers to retrieve
the data symbols. The analysis also shows that one antenna does
not provide sufficient resolution to allow estimation of the channel
length, so that the performance of equalizers is limited. An algo-
rithm is proposed for the blind space-time equalization and sepa-
ration of multiple co-channel GMSK signals, based on their fixed
symbol rate, finite alphabet and constant modulus properties.

1. INTRODUCTION

Under conditions, multi-user wireless channels transmitting finite
alphabet symbols can be identified blindly. The algorithms in [1–3]
take observed data from multiple oversampled antennas, and as-
sume linear modulation and linear FIR channels. In this paper, we
apply the algorithm from [3] to GMSK phase modulated signals
received by base stations in the GSM mobile system. Since this
modulation scheme is nonlinear, we first investigate whether such
signals are aptly described by a linear model. This turns out to be
the case. Subsequently, we look at the transmission of GMSK sig-
nals over the ETSI-specified hilly terrain channel model [4]. Based
on the singular values of the data matrix, it is seen that the informa-
tion from only one antenna does not provide sufficient resolution to
even identify the channel length, implying that exact equalization
is not possible, and that equalizers will be sensitive to noise even
if they are based on training sequences. This resolution problem is
basically due to the bandlimited nature of the GMSK signal, and
agrees with a recently developed theory [5].

Finally, we look at blind identification algorithms to separate and
equalize GMSK signals of multiple co-channel users transmitted
over FIR channels. A number of properties of the signal can be
used:

1. fixed symbol rate of the signals, which allows to obtain in-
dependent linear combinations of the same symbols by us-
ing oversampling and/or multiple antennas (assuming linear
modulation),

2. the constant modulus (CM) of the signals,
3. the finite alphabet (FA) of the symbols.

The algorithms proposed in [1–3] use only properties 1 and 3. Sim-
ulations on GMSK signals indicate that they are easily confused
by ambiguities in the symbol constellation (caused by the nonlin-
ear modulation scheme), and are sensitive to parameter settings
because channel lengths are ill-defined and perhaps unobservable.
The first problem is solved by a certain transformation to a re-
duced symbol constellation. At this point, the CM property coin-
cides with the FA property. By looking at the singular values of a
“CM condition matrix”, we show that the CM property is strongly
present and provides the means for a reliable equalization and sep-
aration. The resulting algorithm is similar to that of [2,3], but with
the FA step replaced by a variant of the recently derived “analytic
CM algorithm” [6]. The FA property is subsequently used for op-
timization of the estimates.
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2. LINEAR DATA MODEL

To describe the FIR-MIMO (multi-input multi-output) scenario,
consider the linear data model as detailed in [2]. Assuming M an-
tennas, P times oversampling, and an equalizer length of m sym-
bols, the data vectors xk ∈ |C MP received at the antenna array dur-
ing N symbol periods are collected in a block-Hankel matrix
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With d users and a maximum channel length of L symbols per chan-
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H contains the impulse response of the channel, convolved with the
modulating pulse shape function; sk is a d ×1 vector containing the
symbols transmitted by the d users in the k-th interval. If mMP is
large enough and

�
has full column rank, then

�
is rank deficient

and is expected to have rank

d � � d 	 L 
 m − 1 �� (2)

The blind FIR-MIMO identification problem may be stated as a
matrix factorization problem: given

�
, find factors

�
and
�

with
the indicated structure. Algorithms to solve this problem under
more or less ideal circumstances were proposed in [1–3], and use
two properties: (1) the Toeplitz structure of

�
, which is exploited

by subspace intersections on the row span of
�

and shifts of this
space; (2) the finite alphabet property of the entries of

�
, which is

exploited by alternating projections of candidate signals onto this
alphabet and the residual row span after subspace intersections [3].
With only one signal present (d

�
1), the first property by itself is

already sufficient for estimating
�

. With more than one signal, the
second property is necessary for separation. However, even if only
one signal is present, use of the second property improves the ac-
curacy and is essential in cases where channel lengths are not well-
defined.
In this paper, we are in particular interested in the singular value
analysis of

�
. The singular values give information on the rank of�

, which allows the determination of both the number of signals
d and the channel lengths L. With prior knowledge, they enable to
judge whether the number of antennas and amount of oversampling
provides sufficient resolution to be able to equalize the channel us-
ing linear equalizers. This is relevant also for non-blind algorithms
that use training sequences.
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Figure 1. 	 a � Singular values of
�

for m
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2 � · · · � 10, 	 b � blindly identified modulating bits, 	 c � estimated pulse shape function.
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Figure 2. Real part of x 	 t � and x̂ 	 t � .
3. LINEAR APPROXIMATION OF A GMSK SIGNAL

We first analyze GMSK signals in the absence of a channel. Thus
let x 	 t � be a GMSK signal with a normalized period (T

�
1),

x 	 t � � exp jφ 	 t �� φ 	 t � � N

∑
k � 0

dkq 	 t − k ���
where the “phase impulse response” q 	 t � is the integral of a gaussian-
shaped pulse whose precise form can be found in [7]. q 	 t � is (ap-
proximately) zero for t � −1 � 5, (approximately) π

2 for t � 1 � 5, and
has a smooth transition in between. The modulating symbols dk
are differentially encoded from the original data sk ∈ {−1 � 1} via
dk
�

1 if sk
�

sk−1, dk
�

−1 if sk
�

−sk−1. Hence we obtain a
 π
2 phase increase (smeared over 3 symbol periods) if there is no

change in symbols in going from time k − 1 to k, and − π
2 if there is

a change. In this perspective, it is also relevant to define the MSK
symbol constellation s̃k ∈ {±1 � ± j},�

s̃k
�

js̃k−1 if sk
�

sk−1 �
s̃k
�

− js̃k−1 if sk
�

−sk−1
(3)

which would be the samples of x 	 k � at integer sampling instants in
case MSK modulation is used (i.e., q 	 t � � π

2 t � 0 ≤ t ≤ 1).

From x 	 t � , construct
�

as in (1). The singular values of
�

for vary-
ing m are plotted in figure 1 	 a � . It is seen that, mathematically
speaking,

�
is full rank, but in practice, it can be truncated at the in-

dicated threshold since the gap is relatively large at that point. This
leads to a reasonably accurate low-rank approximation of

�
. E.g.,

for m
�

4, we obtain d̂ � ≈ 6, so that the “channel length” Lp is es-
timated from equation (2) to be Lp

�
3, as expected.

Blindly identifying the modulating symbols (i.e.
�

) is straightfor-
ward since there is only one signal and the channel length is well-
determined. Using subspace intersections only, the algorithm in

[2,3] produced symbol estimates that cluster around the MSK con-
stellation points {±1 � ± j}, with phase changes of ± π

2 : we have re-
trieved s̃k as defined in (3). See figure 1 	 b � . From

�
and the s̃k, we

obtain that the corresponding modulating pulse shape function is
as depicted in figure 1 	 c � . The remodulated signal using this pulse
and the MSK constellation gives a linearly modulated signal x̂ 	 t �
which matches x 	 t � quite well, in particular in phase (figure 2).

Hence we see that the linear data model in section 2 is reason-
ably accurate for GMSK, despite its nonlinear (phase) modulation.
For the purpose of blind identification, however, there is a catch.
Because of the nonlinear modulation, other symbol constellations
may occur, and we frequently obtain a constellation that is {±1± j},
with phase changes of 0 or π

2 for even k, and 0 or − π
2 for odd k.

The existence of a second constellation leads to some problems for
blind identification algorithms that only force the Toeplitz structure
and the FA constellation {±1 � ± j}, since it is not known beforehand
which constellation we end up with, and the recovery of the original
data sk depends on this. In section 5 a remedy is proposed, essen-
tially consisting in forcing the constellation to be {±1} on even k,
{± j} on odd k.

4. CHANNEL ANALYSIS BY SVD

Now that we know that GMSK signals are well approximated by
a linear model

�������
, we analyze transmission over wireless

channels. We use the ETSI-specified standard 12-tap “HT0” hilly
terrain model [4], which has a channel length of Lc

�
5 symbol pe-

riods, so that the overall channel length (including ISI due to the
GMSK modulation) is in the order of L

�
7 or 8. Figure 3 	 a � shows

the singular values of
�

, for varying m, and with P
�

3 times over-
sampling and N

�
500 samples. From the ranks of

�
, the channel

length is estimated as L
�

3 rather than 7 or 8: clearly, oversam-
pling alone does not provide enough resolution to identify the chan-
nel length. The explanation is that the signal is bandlimited: the
Nyquist rate is approximately equal to the symbol rate. As a conse-
quence, the role of oversampling is limited: it does not make sense
to have P � 2 because the extra samples can be obtained by inter-
polation as well and do not introduce new information. Without
sufficient resolution, perfect equalization is in general impossible.
Nonetheless, the HT channel usually allows satisfactory equaliza-
tion because the long-delay echos are rather weak.

Since GMSK signals do not have excess bandwidth, a result in [5]
indicates that at least M

�
2 antennas are needed for detection of

the channel length. Singular value plots for M
�

2, P
�

3 appear
in figure 3 	 b � . From the plots, the channel length is correctly esti-
mated as L

�
7. For 2 users, [5] claims that 3 antennas are (barely)

sufficient. This is confirmed by figure 3 	 c � .
2
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Figure 3. 	 a � Singular values of
�

, HT channel, 1 antenna, 	 b � 2 antennas, 	 c � 2 co-channel signals with 3 antennas.

5. BLIND CHANNEL IDENTIFICATION

The blind symbol estimation algorithm in [3] is in principle suited
for the equalization and separation of multiuser GMSK signals. It
consists of two steps: (1) forcing the Toeplitz property of

�
, by

finding a basis for the row span of its generator  s−L � 1 · · ·sN−1 ! (re-
quiring the intersection of L 
 m − 1 subspaces), (2) separating the
signals using the FA property, by finding which independent linear
combinations of the rows of the basis leads to sequences with en-
tries belonging to the symbol constellation. So far, we have used
the (suboptimal) iterative projection algorithm ILSP for that pur-
pose [8]. The number of subspaces that are intersected can be re-
duced to n � 1 ≤ n ≤ L 
 m−1, which gives a larger basis from which
ILSP has to form symbol sequences. Although theoretically this
yields more accurate results (the intersection step with a large n
amplifies the noise), the performance of ILSP is often limited by
the initialization of the iteration, which is harder for large bases
and constellations larger than 2 points. A second problem, specific
to GMSK signals, is that projection onto the symbol constellation
{±1 � ± j} does not always lead to the MSK constellation, requiring
an additional noncoherent demodulation step. In this section, we
propose solutions to both problems.

5.1. Derotation

The complex MSK constellation symbols {s̃k} in (3) can be trans-
formed into the original real data symbols {sk} ∈ {±1} by a tech-
nique sometimes called “derotation”: s0 s1 · · · ! �  s̃0 	 − j � s̃1 	 −1 � s̃2 · · · ! D�  s̃0 s̃1 · · · ! D � D :

�
diag  "	 − j � k ! N−1

k � 0 �
Similarly, we can transform the Toeplitz matrix ˜� constructed from
s̃k to

�
by premultiplying with a diagonal matrix D−1# as well:�$�
D−1# ˜� D � D−1# :

�
diag  1 j − 1 · · · ! � diag  "	 j � k ! N−1

k � 0 �
Thus

�
D
�%���

, where
�&� ˜� D # . All entries of

�
are ±1, hence�

is a real matrix. Consequently, we can work with�
R
��' re 	 � D �

im 	 � D �)( ��' re 	 � �
im 	 � �)( � (4)

which is a data model in which all entries are real. Given
�

, we
form

�
R and try to find the factorization (4). This brings us back

to the problem of blind estimation of BPSK signals as considered
in previous publications [2, 3]. Since only the MSK constellation
transforms to a real-valued

�
, the constellation ambiguity has been

resolved.
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5.2. Real ACMA

To find accurate initial points for the ILSP algorithm, the constant
modulus (CM) property of the signals can be used. This step fits
in between the subspace intersection step, which is mainly used to
reduce the dimensionality of the problem by 2dn rows, and the FA
step (ILSP), which is used for accurately converging to the symbols
and the channel model. Although the CM step fits after the trunca-
tion of

�
to low rank and the intersection step, we will, for nota-

tional simplicity and without loss of generality, omit that step in the
discussion in this section (i.e., we set the number of intersections to
n
�

1 for the moment). The idea is to specialize the so-called “An-
alytic CMA” [6] to real signals. The main advantage of the ACMA
in comparison with other CMAs is that it gives a non-iterative ex-
act solution to the CM problem in the absence of noise, and that it is
quite robust in finding all solutions, even with a substantial amount
of noise added to

�
.

The real-valued CM problem is to find all (real-valued) indepen-
dent vectors w such that wT �

R is a sequence with all its entries
equal to ±1. Denoting the i-th column of

�
R by xi, this is equiv-

alent to
wT xix

T
i w
�

1 � i
�

0 � · · · � N − 1 � (5)

Similar as in [6], these conditions can be rewritten in linear form
by using Kronecker products:  xi ⊗ xi ! T  w ⊗ w ! � 1 � but because
xi and w are real, it makes sense to remove duplicate entries in the
Kronecker products. Thus define, for a p× p real symmetric matrix
Y
�  yi j ! , a stacking of the lower triangular part of the columns:

rvec 	 Y � �  y11 y21 - 2 · · · yp1 - 2 y22 y32 - 2 · · · yp . p−1 - 2 ypp ! T :
p 	 p 
 1 �

2
�

This allows to write (5) as rvec 	 xix
T
i � ! T rvec 	 wwT � � 1 � i

�
0 � · · · � N − 1 �

3
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Figure 5. 	 a � Performance for varying number of intersections n, 1 antenna, 	 b � 2 antennas, 	 c � separation of 2 signals using 4 antennas.

Collect all rows  rvec 	 xixT
i � T ! into a matrix P. Then

Py
�

1 � y
�

rvec 	 wwT ��
where 1

�  1· · ·1 ! T . Hence, we have replaced the quadratic equa-
tions (5) by a linear system Py

�
1, subject to a quadratic con-

straint, which imposes a certain structure on y. Similar as in [6],
we can transform the linear system to

P̂y
�

0 � 3 y 34� 0

of which the general solution is

y
�

α1y1 
 · · · 
 αδyδ 	 αi ∈ ||R ��
where {yi} is a basis of the null space of P̂, and δ is the dimension
of this space. To force the structural property y

�
rvec 	 wwT � , write

Yi
�

rvec−1 	 yi � , which gives

α1Y1 
 · · · 
 αδYδ
�

wwT �
We have to find all parameter vectors  α1 · · ·αδ ! such that the lin-
ear combination of the matrices {Yi} is of rank 1 and symmetric, in
which case it can be factored as wwT . This is essentially a general-
ized eigenvalue problem. A technique for computing all α-vectors
is detailed in [6], for the general complex case, but a specialization
to the present real case is immediate.

This RACMA algorithm appears to be quite reliable in finding es-
timates for all independent weight vectors w. As in the complex
case, the accuracy of the weight vectors is limited by the accu-
racy of the CM property, i.e., the amount of noise and the “struc-
tured noise” (or ISI) introduced by truncating the SVD of

�
. Im-

proved results are obtained by subsequently using 2–3 iterations
of the ILSP algorithm. The number of independent CM signals
is indicated by δ, the dimension of the null space of P̂. Without
long-delay multipath, this number is equal to d, the number of co-
channel users; with multipath, the dominant echos add to δ. Simu-
lations on the HT channel model indicate that δ is equal to d̂ � , the
estimated rank of

�
. More generally, if n subspace intersections

are employed in the first step, then δ is reduced to d̂ � − d 	 n − 1 �
(figure 4).

5.3. Simulations

Figure 5 	 a � shows the BER performance of the resulting blind al-
gorithm [derotation/truncation/intersection/RACMA/ILSP] for 1
signal and 1 antenna, with varying Eb 5 N0, where Eb 5 N0 :

�
SNR - P

is the “inband” signal-to-noise ratio. The simulation is based on
400 experiments of the 12-tap HT0 channel [4], and included

Rayleigh fading, simulated by 40 local scatterers around the source.
(The signal power was normalized in each experiment, so that the
SNR is independent of the fading.) The graph shows that better
results are obtained with less intersections, in which case the per-
formance is comparable to that of a Viterbi equalizer [7, p. 732].
The performance saturates for large SNR, probably because of the
resolution problem mentioned in section 4. Significant improve-
ments are obtained by the addition of a second antenna at λ 5 2 (fig-
ure 5 	 b � ). The angles of arrival of the echos were set at 0 6 ± 2 6 for
the short-delay echos, and 100 6 ±40 6 for the large-delay ( � 15 µs)
echos. (For small BERs, the BER is computed from the variance
of the estimates.)

Figure 5 	 c � shows the performance for 2 co-channel users and 4 an-
tennas. The second user has a similar (slightly modified) HT chan-
nel. Angle offsets were, for signal 1:  0 6 ±3 6 ;80 6 ±20 6 ! ; for signal
2:  40 6 ± 3 6 ;−40 6 ± 20 6 ! . The SNR was set at Eb 5 N0

�
16 dB for

signal 1, and the power of signal 2 was varying between 0–12 dB
below signal 1. With a reduced number of intersections, signal 1 is
recovered virtually error-free, and signal 2 is found quite reliably
as well, with a performance comparable to that of the single-user
scenario with 2 antennas.
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