# RESOLUTION LIMITS OF BLIND MULTI-USER MULTI-CHANNEL IDENTIFICATION SCHEMES — THE BANDLIMITED CASE

Alle-Jan van der Veen

Delft University of Technology, Dept. Electrical Engineering/DIMES, 2628 CD Delft, The Netherlands

Blind space-time equalization and separation of multi-user digital communication signals presumes that the number of antennas M and the oversampling rate P is sufficiently large to be able to detect the number of sources and all channel lengths, and that the channel matrix is sufficiently well conditioned to allow inversion. A singular value analysis of the channel matrix for bandwidth limited signals provides necessary conditions for sufficient resolution, and guidelines for the selection of suitable M, P and equalizer lengths in relation to the bandwidth.

## 1. INTRODUCTION

A timely application area in signal processing is wireless (mobile) communications. We consider a scenario where several cochannel users are trying to talk to a central base-station over channels with large delay spread. In this case, there is both intersymbol interference and cochannel interference, requiring the use of multiple receiver antennas and space-time equalizers. Mathematically, the scenario is described as FIR-MIMO: finite impulse responses, multiple input signals (sources), multiple outputs (receivers). Several blind identification algorithms have been derived to solve individual aspects of the FIR-MIMO problem, in particular the more recent *subspace-based* approaches, that exploit the cyclostationarity property of digital signals by means of fractional sampling, and separate the signals based on their finite alphabet property [1–5].

One aspect of the problem that is independent of the actual algorithm is that of *resolution*: how many antennas and how much oversampling is needed to be able to detect the number of signals and estimate all channel lengths. There is not a single answer to this question. Generically, we have derived that the condition for identifiability is that MP > d, where M is the number of antennas, P the oversampling rate, and d the number of sources [3]. However, for bandlimited signals (as is likely the case in wireless RF communications), the role played by oversampling is limited: P and M are not equivalent any more. In this paper, we derive an expression that predicts the minimal number of sources, as a function of the excess bandwidth, and assuming a large angle spread.

### 2. DATA MODEL

We use the data model of [3] which is summarized below. An array of M sensors, with outputs  $x_1(t), \dots, x_M(t)$ , receives d digital signals  $s_1(t), \dots, s_d(t)$  through independent channels  $h_{ij}(t)$ . Each impulse response  $h_{ij}(t)$  is a convolution of the shaping filter of the *i*-th signal and the actual channel from the *i*-th input to  $x_j(t)$ , including propagation delays and fractional delays necessary because signals need not be synchrounous. The data model is written compactly as the convolution  $\mathbf{x}(t) = H(t) * \mathbf{s}(t)$ , where

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_M(t) \end{bmatrix}, \ H(t) = \begin{bmatrix} h_{11}(t) & \cdots & h_{1d}(t) \\ \vdots & & \vdots \\ h_{M1}(t) & \cdots & h_{Md}(t) \end{bmatrix}, \ \mathbf{s}(t) = \begin{bmatrix} s_1(t) \\ \vdots \\ s_d(t) \end{bmatrix}$$

IEEE ICASSP'96, Atlanta (GA), May 1996.

For a normalized symbol period (T = 1), assume that all  $h_{ij}(t)$  are FIR filters of length at most  $L \in \mathbb{N}$ . Each  $x_i(t)$  is sampled at a rate  $P \in \mathbb{N}$ , where *P* is the oversampling factor. Starting at time t = 0, and collecting samples during *N* symbol periods, we can construct a data matrix *X* as

$$X = \begin{bmatrix} \mathbf{x}_0 & \cdots & \mathbf{x}_{N-1} \end{bmatrix}$$
$$:= \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \cdots & \mathbf{x}_{N-1} \\ \mathbf{x}_1 & \mathbf{x}_1 & \cdots & \mathbf{x}_{N-1} \\ \mathbf{x}_1 & \mathbf{x}_1 & \mathbf{x}_1 & \mathbf{x}_1 \\ \mathbf{x}_1 & \mathbf{x}_1 & \mathbf{x}_1 & \mathbf{x}_1 \\ \mathbf{x}_1 & \mathbf{x}_1 & \mathbf{x}_1 & \mathbf{x}_1 \\ \mathbf{x}_1 & \mathbf{x}_1 & \mathbf{x}_1 \\ \mathbf{x}_1 & \mathbf{x}_1 & \mathbf$$

X has a factorization

$$X = HS_T$$

$$= \begin{bmatrix} H(0) & H(1)\cdots H(L-1) \\ H(\frac{1}{P}) & \cdot & \cdot \\ \vdots & \vdots \\ H(\frac{P-1}{P}) & \cdot & \cdots H(L-1+\frac{P-1}{P}) \end{bmatrix} \begin{bmatrix} \mathbf{s}_0 & \mathbf{s}_{N-2}\mathbf{s}_{N-1} \\ \vdots & \cdot & \cdot & \mathbf{s}_{N-2} \\ \mathbf{s}_{-L+2}\mathbf{s}_{-L+3} & \cdot & \cdot \\ \mathbf{s}_{-L+1}\mathbf{s}_{-L+2} & \cdot & \mathbf{s}_{N-L} \end{bmatrix}$$

$$H : MP \times dL, \quad S_T : dL \times N, \text{ block-Toeplitz.}$$
(1)

The blind identification problem is to estimate H and  $S_T$  from X. Note that for such a factorization to be unique, it is necessary that H and  $S_T$  have full column rank and row rank, respectively, which implies a.o.  $MP \ge dL$ . If this condition does not hold, we can extend X to a block-Hankel matrix, by left-shifting and stacking m times,

$$\mathcal{X} = \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 & \ddots & \mathbf{x}_{N-m} \\ \mathbf{x}_1 & \mathbf{x}_2 & \ddots & \ddots \\ \vdots & \vdots & \ddots & \mathbf{x}_{N-2} \\ \mathbf{x}_{m-1} & \ddots & \mathbf{x}_{N-2} & \mathbf{x}_{N-1} \end{bmatrix} : mMP \times (N-m+1).$$

The augmented data matrix  $\mathcal{X}$  has a factorization

$$\begin{split} \mathcal{X} &= \mathcal{HS} \\ = \begin{bmatrix} \mathbf{0} & \boxed{H} \\ \vdots & \vdots \\ \hline H \\ H \end{bmatrix} \begin{bmatrix} \mathbf{s}_{m-1} & \mathbf{s}_{N-2} & \mathbf{s}_{N-1} \\ \vdots & \vdots & \mathbf{s}_{N-2} \\ \mathbf{s}_{-L+2} & \mathbf{s}_{-L+3} & \vdots \\ \mathbf{s}_{-L+1} & \mathbf{s}_{-L+2} & \vdots & \mathbf{s}_{N-L-m+1} \end{bmatrix} \\ \mathcal{H} : mMP \times d(L+m-1), \text{ block-Hankel}, \\ \mathcal{S} : d(L+m-1) \times (N-m+1), \text{ block-Toeplitz.} \end{split}$$

The stacking parameter *m* can be viewed as the length of an equalizer that tries to reconstruct S by forming linear combinations of the *m* block rows of  $\mathcal{X}$ . Necessary conditions for  $\mathcal{X}$  to have a unique factorization  $\mathcal{X} = \mathcal{HS}$  are that  $\mathcal{H}$  is a 'tall' matrix and S is a 'wide' matrix. The first condition leads to

$$MP > d$$
,  $m \ge \frac{d(L-1)}{MP-d}$ . (2)

MP > d is a fundamental restriction. If MP > d, then we can always take *m* large enough to satisfy the second condition.



**Figure 1**. Singular values of  $\Phi$ ;  $m = 1, \beta = 0$ , varying *P*, *L* 

Algorithms to find  $\mathcal{H}$  and  $\mathcal{S}$  from  $\mathcal{X}$  under the condition that  $\mathcal{H}$  has full column rank d(L + m - 1) were proposed in [1, 3], and extensions to unequal channel lengths in [2, 4, 5]. The effectiveness of these algorithms is limited by the conditioning of  $\mathcal{H}$ , which goes beyond the (practically useless) requirement of the "absence of common zeros" of the multidimensional channels.

#### 3. BANDLIMITED SIGNALS

In view of Shannon's theorem, it would appear unlikely that it is possible to separate two bandwidth limited signals based on oversampling only: sampling beyond the Nyquist rate does not provide independent information. Typical communication signals use some excess bandwidth, *i.e.*, the Nyquist rate is larger but still close to the symbol rate. As a consequence, some information is gained by oversampling, but the role of P is limited, and MP > d is not a sufficient condition to separate and equalize d signals.

If (2) holds and  $\mathcal{H}$  and  $\mathcal{S}$  have full rank, then rank( $\mathcal{X}$ ) = d(L+m-1). As we show in this section, bandlimited signals generally lead to an ill-conditioned  $\mathcal{H}$  and  $\mathcal{X}$ . Our objective is to derive minimal values for M and P in relation to the excess bandwidth  $\beta$  such that

- 1. a change in *m* by  $\Delta m$  increases the rank of  $\mathcal{X}$  by  $d\Delta m$ ,
- 2. a change in channel length *L* by  $\Delta L$  increases the rank of  $\mathcal{X}$  by  $d\Delta L$ .

Unless these two properties hold, we cannot expect any algorithm to provide good separation and equalization, since the number of signals and differences in channel lengths are not resolved.

#### 3.1. One signal, one antenna

We start with the case where there is one signal and one antenna: d = 1, M = 1. A bandlimited signal is generated by a pulse shape function whose Fourier transform has only a limited number of non-zero coefficients, and since the channel is modeled as a linear system, the same holds for the convolution h(t) of them. Let  $\beta$  represent the excess bandwidth, *i.e.*, the spectrum of the continuoustime signal is limited to  $|f| \le (1 + \beta)/2$ . The block Hankel matrix  $\mathcal{H}$  can be constructed from  $[\mathbf{0} \ H]$  and cyclic shifts of it. Thus consider the augmented impulse response

$$h' = \begin{bmatrix} \underbrace{0 \cdots 0}_{(m-1)P} & h_0 & h_{1/P} & \cdots & h_{L-1/P} \end{bmatrix},$$

which has length L' := L + m - 1. The Fourier transform of h' has only  $\alpha := L'(1 + \beta)$  nonzero coefficients out of L'P, thus can be

2

written as

$$h' = [f_1 \cdots f_{\alpha}] \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & \phi & \cdots & \phi^{L'P-1} \\ \vdots & \vdots & \vdots \\ 1 & \phi^{\alpha-1} & \cdots & \phi^{(L'P-1)(\alpha-1)} \end{bmatrix}$$
  
$$\phi = \exp(\frac{j2\pi}{LP}), \qquad \alpha = (L+m-1)(1+\beta).$$

A cyclic shift of h' leads to a cyclic shift of the columns of the DFT matrix, which can also be represented by premultiplying the DFT matrix with diag $[1, \phi^P, \dots, \phi^{(\alpha-1)P}]$ . After some manipulations, it follows that  $\mathcal{H}$  can be factored as

$$\begin{split} \mathcal{H} &= \Phi F V = \\ \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots \\ \frac{1 & \phi^{P-1} & \cdots & \phi^{(P-1)(\alpha-1)}}{1 & \phi^P & \cdots & \phi^{P(\alpha-1)}} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ 1 & \phi^{mP-1} & \cdots & \phi^{(mP-1)(\alpha-1)} \end{bmatrix} \begin{bmatrix} f_1 & \mathbf{0} \\ \vdots \\ f_n \\ \mathbf{0} \\ f_n \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & \phi^P & \cdots & \phi^{(L'-1)P} \\ \vdots \\ 1 & \phi^{P(\alpha-1)} & \cdots & \phi^{(L'-1)P(\alpha-1)} \end{bmatrix} \end{split}$$

$$\Phi: mP \times \alpha, \quad F: \alpha \times \alpha, \quad V: \alpha \times (L+m-1)$$
(3)

The rows of *V* are orthogonal, because they are full rows of a DFT(*L'*)-matrix. *F* contains the non-zero channel Fourier coefficients, and we will assume in this analysis that it is not the limiting factor in the conditioning of  $\mathcal{H}$ , although, for  $\beta > 0$ , the coefficients are usually designed to taper off at the edges.  $\Phi$  has dimensions  $mP \times \alpha$  and is a principal submatrix of the DFT(*L'P*) matrix. As a Vandermonde matrix, its conditioning can be quite bad, depending on *m*, *P* and  $\beta$ .

For example, suppose  $\beta = 0$ , m = 1, so that  $\alpha = L$ . The singular values of the corresponding  $\Phi$  are plotted in figure 1 for a range of values for *P* and *L*. The objective is to see whether we can estimate *L* for cases where  $P \ge L$ : it was predicted by (2) that this is possible. The figure shows that, for  $P \ge 2, L \ge 2$ , the singular value plots are almost overlapping each other. The main effect of a larger *P* or *L* is that increasingly smaller singular values are added. For  $L \ge 5$ , say, we have to take such small singular values into account that the addition of only a tiny amount of noise (SNR around 60 dB) will already obscure these singular values and make the equalization fail. It is impossible to reliably estimate *L*.

For large m,  $\Phi$  is a large submatrix of the full DFT matrix: its columns have length mP out of a total length of (L+m-1)P, and consequently, they are more independent of each other than was the case for m = 1. More precisely, one can prove that (for  $\beta = 0$ )  $\Phi$  has a subset of m orthogonal columns, interleaved with L-1 other columns. Consequently,  $\Phi$  has m large and approximately equal singular values. For general  $\beta$ , we obtain a similar result:

**Proposition 1.** If  $\Phi$  in (3) is a tall matrix, then it has  $m(1+\beta)$  large and approximately equal singular values out of a total of  $(L+m-1)(1+\beta)$ .

*V* is a tall matrix with orthonormal rows and reduces the dimension of  $\Phi F$  from  $\alpha \equiv (L + m - 1)(1 + \beta)$  columns to L + m - 1. Grosso modo, the effect of multiplication by *V* can be modeled as a selection procedure which (statistically) retains the dominant L + m - 1 singular values of  $\Phi F$ . The model gets more reliable for larger reduction factors (here  $1 + \beta$ ). Since  $\Phi$  and *V* are generated from the same DFT matrix, they are not independent, and this selection property is only true if *F* is sufficiently random. Note that *F* is generated by only  $L(1 + \beta)$  independent numbers (the nonzero Fourier coefficients of *h*), the other  $(m-1)(1+\beta)$  nonzero entries are obtained by interpolation. Hence, there are limits to the effectiveness of a large *m*, and the above selection model fails once approximately m > 2L.

Proposition 1 allows to derive parameter values that are necessary for a good conditioning of  $\mathcal{H}$  in the case of 1 antenna, 1 signal.

•  $\Phi$  is a tall matrix if  $mP \ge (L+m-1)(1+\beta)$ , *i.e.*,

$$P > 1 + \beta, \qquad m \ge \frac{L - 1}{P - (1 + \beta)}. \tag{4}$$

To enable  $m \le 2(L-1)$ , we should have  $P \ge 1\frac{1}{2} + \beta$ . There is no reason to take *P* much larger than that, as it will not improve the conditioning of  $\mathcal{H}$ .

• Only in case  $\Phi$  has more large singular values than  $\mathcal{H}$  has columns,  $m(1+\beta) \ge L+m-1$ , we can hope that all L+m-1 singular values of  $\mathcal{H}$  are large. We refer to this as a "level 0" performance. It is equivalent to

$$m \ge \frac{L-1}{\beta}$$
 [level 0]. (5)

This gives a minimal necessary condition on *m*. It may not be sufficient for detection of *L*. Note that  $m(1 + \beta) \ge L + m - 1$  replaces the old condition mP > L + m - 1: effectively,  $P = 1 + \beta$ . To enable  $m \le 2(L-1)$ , we should have  $\beta \ge 0.5$ . Simulations show that from that point on, changes in *L* affect the singular value plots of  $\mathcal{H}$ . For larger  $\beta$  the performance improves because the selection procedure by *V* is more reliable, but this is at the expense of an increased bandwidth. Simulations using raised-cosine pulse shape functions indicate that we need at least  $\beta > 1$  for detection of *L* from a gap in singular values.

#### **3.2.** General singular value model for $\mathcal{H}$ : $M \ge 1, d \ge 1$

With *M* antennas and *d* signals, we have a total of *Md* individual impulse responses. With some obvious rearrangements, the model for  $\mathcal{H}$  is an extension of the model of section 3.1:

$$\mathcal{H} \sim \begin{bmatrix} \Phi F_{11}V \cdots \Phi F_{1d}V \\ \vdots & \vdots \\ \Phi F_{M1}V \cdots \Phi F_{Md}V \end{bmatrix} = \underbrace{\begin{bmatrix} \Phi & \mathbf{0} \\ \vdots & \vdots \\ \mathbf{0} & \Phi \end{bmatrix}}_{\Phi_M} \begin{bmatrix} F_{11} \cdots F_{1d} \\ \vdots & \vdots \\ F_{M1} \cdots F_{Md} \end{bmatrix} \begin{bmatrix} V & \mathbf{0} \\ \vdots \\ \mathbf{0} & V \end{bmatrix}$$
$$\Phi : mP \times \alpha, \quad F_{ij} : \alpha \times \alpha \text{ (diagonal)}, \quad V : \alpha \times (L+m-1)$$
$$\alpha \equiv (L+m-1)(1+\beta).$$

 $\Phi_M$  is a tall matrix under the same conditions (4) as before. In that case, and assuming a large angle spread so that antennas give independent observations,  $\Phi_M$  has approximately  $Mm(1+\beta)$  large singular values. The Fourier coefficient matrix *F* selects the  $d(L+m-1)(1+\beta)$  largest out of these, and the *V*-matrices further reduce this to the d(L+m-1) largest singular values out of  $d(L+m-1)(1+\beta)$ .

The level-0 criterion is the requirement that  $\Phi_M$  has more large singular values than are ultimately selected, *i.e.*,

$$Mm(1+\beta) \ge d(L+m-1) \tag{6}$$

3





(Note that, again, *P* is effectively reduced to  $P = 1 + \beta$ .) This implies, for L > 1,

$$M > \frac{d}{1+\beta} \qquad [\text{level 0}]. \tag{7}$$

This relation is plotted in figure 2(*a*). From simulations at each of the grid points in the figure, we have observed that it is a minimal condition on *M* such that increasing *m* by  $\Delta m$  increases the rank of  $\mathcal{H}$  with  $d\Delta m$ , enabling detection of *d*, but perhaps not of *L*. With *M* satisfying (7), (6) gives conditions on *m*:

$$m \ge \frac{d(L-1)}{M(1+\beta)-d} \qquad \text{[level 0]}.$$
(8)

An improved "level-1 performance" is obtained when  $\Phi_M$  has more large singular values than are selected by the  $F_{ij}$ , *i.e.*,  $Mm(1 + \beta) \ge d(L+m-1)(1+\beta)$ , which implies

$$M > d$$
,  $m \ge \frac{d(L-1)}{M-d}$  [level 1]. (9)

Simulations using raised-cosine pulses indicate that level-1 performance usually gives a clear gap in singular values, enabling the estimation of *L*. An exception has to be made for small  $\beta$  ( $\beta < 0.2$ ), because such signals have a very long impulse response of their own, requiring *m* to be very large. Especially when M = d + 1, equation (9) might ask for  $m \gg L$ . As noted before, it does not make sense to take *m* much larger than 2*L*, say, since data gets repeated and no new information is introduced. A performance somewhere between level 0 and 1 is such that a change of  $\Delta L$  in *L* increases the rank of  $\mathcal{H}$  by  $d\Delta L$ .



**Figure 3**. Singular value plots of  $\mathcal{H}$  for varying *m*, 2 antennas, 2 signals. (*a*)  $\beta = 0$ , (*b*)  $\beta = 1$ , (*c*)  $\beta = 2$ .



**Figure 4.** Singular value plots of  $\mathcal{H}$  for varying *L*, 2 antennas, 2 signals. (*a*)  $\beta = 0.5$ , (*b*)  $\beta = 1$ , (*c*)  $\beta = 2$ .

4

## 4. SELECTION OF P AND M

We summarize the above conditions into criteria for the selection of the oversampling rate P and the number of antennas M. A performance level  $\varepsilon$  between 0 and 1 is obtained when

$$M(1+\beta)m \ge d(L+m-1)(1+\varepsilon\beta), \qquad 0 \le \varepsilon \le 1.$$
 (10)

Further suppose that m := p(L-1) where we will restrict p to  $p \le 2$ . This reduces (4) and (10) to

$$P \ge 1 + \frac{1}{p} + \beta$$
,  $M \ge d \frac{1+p}{p} \frac{1+\epsilon\beta}{1+\beta}$ .

If we settle for p = 2, then we obtain

$$P \ge 1\frac{1}{2} + \beta, \qquad M \ge 1\frac{1}{2}d\frac{1+\epsilon\beta}{1+\beta}.$$
 [level  $\epsilon$ ] (11)

Figure 2(*b*) shows this relation for  $\varepsilon = 0.1$  and  $\varepsilon = 0.2$  (dashed). Lines of constant *M* are hyperbolas in the graph. Note that the required number of antennas is linear in *d*. The obtained values of *M* should be regarded as minimal values, below which an increase of *L* by  $\Delta L$  will not increase the rank of  $\mathcal{H}$  by  $d\Delta L$ . To have a clear gap between the large and small singular values of  $\mathcal{H}$  requires more:  $\varepsilon \ge 0.5$  or so. For  $\varepsilon = 0$ , we can essentially only expect that *d* can be detected from changes in *m*, and that an increase of *L* has "some effect" in the singular value plots. For small *L* (say *L* < 5), the values of figure 2(*a*) are already sufficient.

As an example, figure 3 shows the singular values of  $\mathcal{H}$  for simulated channels for d = 2 signals, M = 2 antennas, constant L = 15

and varying *m*. To detect *d* from variations in *m*, figure 2(a) predicts that we need  $\beta \ge 0$ , and indeed, even for  $\beta = 0$  the rank increases as it should, although *L* cannot be estimated correctly. Figure 4 shows what happens when *L* is varied, for constant *m*. According to figure 2, we need at least  $\beta > 0.75$  or so to observe an effect in changes of *L*. Indeed, for  $\beta = 0$ , the channel length cannot be determined at all: all lines overlap (plot omitted). For  $\beta = 0.5$ , some effect of changing *L* is seen, but not at all well-determined. For  $\beta = 1$ , it is possible to detect that  $\Delta L = 2$ , provided *m* is large enough in relation to *L* (as determined by (10)). For  $\beta = 2$ , the rank of  $\mathcal{H}$  is clear and it becomes possible to estimate *L* itself as well. Backward calculation shows that this case has level  $\varepsilon = 0.5$ .

### 5. REFERENCES

- H. Liu and G. Xu, "A deterministic approach to blind symbol estimation," *IEEE Signal Processing Letters*, vol. 1, pp. 205– 207, Dec. 1994.
- [2] H. Liu and G. Xu, "Multiuser blind channel estimation and spatial channel pre-equalization," in *Proc. IEEE ICASSP*, (Detroit), pp. 1756–1759 vol.3, May 1995.
- [3] A.J. van der Veen, S. Talwar, and A. Paulraj, "Blind estimation of multiple digital signals transmitted over FIR channels," *IEEE Signal Processing Letters*, vol. 2, pp. 99–102, May 1995.
- [4] A.J. van der Veen, S. Talwar, and A. Paulraj, "Blind identification of FIR channels carrying multiple finite alphabet signals," in *Proc. IEEE ICASSP*, (Detroit), pp. 1213–1216, May 1995.
- [5] A.J. van der Veen, S. Talwar, and A. Paulraj, "Blind estimation of multiple digital signals transmitted over multipath channels," in *Proc. IEEE MILCOM*, (San Diego), Nov. 1995.