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Blind space-time equalization and separation of multi-user digital
communication signals presumes that the number of antennas M
and the oversampling rate P is sufficiently large to be able to detect
the number of sources and all channel lengths, and that the channel
matrix is sufficiently well conditioned to allow inversion. A sin-
gular value analysis of the channel matrix for bandwidth limited
signals provides necessary conditions for sufficient resolution, and
guidelines for the selection of suitable M, P and equalizer lengths
in relation to the bandwidth.

1. INTRODUCTION

A timely application area in signal processing is wireless (mobile)
communications. We consider a scenario where several cochan-
nel users are trying to talk to a central base-station over channels
with large delay spread. In this case, there is both intersymbol in-
terference and cochannel interference, requiring the use of multi-
ple receiver antennas and space-time equalizers. Mathematically,
the scenario is described as FIR-MIMO: finite impulse responses,
multiple input signals (sources), multiple outputs (receivers). Sev-
eral blind identification algorithms have been derived to solve in-
dividual aspects of the FIR-MIMO problem, in particular the more
recent subspace-based approaches, that exploit the cyclostationar-
ity property of digital signals by means of fractional sampling, and
separate the signals based on their finite alphabet property [1–5].

One aspect of the problem that is independent of the actual algo-
rithm is that of resolution: how many antennas and how much over-
sampling is needed to be able to detect the number of signals and
estimate all channel lengths. There is not a single answer to this
question. Generically, we have derived that the condition for iden-
tifiability is that MP � d, where M is the number of antennas, P
the oversampling rate, and d the number of sources [3]. However,
for bandlimited signals (as is likely the case in wireless RF com-
munications), the role played by oversampling is limited: P and M
are not equivalent any more. In this paper, we derive an expres-
sion that predicts the minimal number of antennas needed to sepa-
rate and equalize a certain number of sources, as a function of the
excess bandwidth, and assuming a large angle spread.

2. DATA MODEL

We use the data model of [3] which is summarized below. An array
of M sensors, with outputs x1

�
t ��� · · · � xM

�
t � , receives d digital sig-

nals s1
�
t ��� · · · � sd

�
t � through independent channels hi j

�
t � . Each im-

pulse response hi j
�
t � is a convolution of the shaping filter of the i-th

signal and the actual channel from the i-th input to x j
�
t � , including

propagation delays and fractional delays necessary because signals
need not be synchrounous. The data model is written compactly as
the convolution x

�
t ��� H

�
t � ∗ s
�
t ��� where

x
�
t �	�


�
x1
�
t �

...
xM
�
t �
�
� H � t �	�


�
h11
�
t � · · · h1d

�
t �

...
...

hM1
�
t � · · · hMd

�
t �
�
� s � t �	�


�
s1
�
t �

...
sd
�
t �
�
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For a normalized symbol period (T � 1), assume that all hi j
�
t � are

FIR filters of length at most L ∈ |N . Each xi
�
t � is sampled at a rate

P ∈ |N , where P is the oversampling factor. Starting at time t � 0,
and collecting samples during N symbol periods, we can construct
a data matrix X as

X � � x0 · · · xN−1 �
: �


���� x
�
0 � x

�
1 � · · · x

�
N − 1 �

x
� 1

P � x
�
1 � 1

P � ·
...

...
x
� P−1

P � · · · · x
�
N − 1 � P−1

P �

� �����

X has a factorization

X � HST

�

���� H
�
0 � H

�
1 � · · ·H � L − 1 �

H
� 1

P � · ·
...

...
H
� P−1

P � · · · ·H
�
L−1 � P−1

P �

� ��� 
�� s0 sN−2sN−1. . .
. . .

. . . sN−2
s−L � 2s−L � 3

. . .
. . .

s−L � 1s−L � 2
. . . sN−L

� �

H : MP × dL � ST : dL × N � block-Toeplitz
�

(1)

The blind identification problem is to estimate H and ST from X.
Note that for such a factorization to be unique, it is necessary that
H and ST have full column rank and row rank, respectively, which
implies a.o. MP ≥ dL. If this condition does not hold, we can extend
X to a block-Hankel matrix, by left-shifting and stacking m times,

� �

��� x0 x1 . .

.
xN−m

x1 x2 . .
.

. .
.

. .
.

. .
.

. .
.

xN−2
xm−1 . .

.
xN−2 xN−1

� ��
: mMP ×

�
N − m � 1 � �

The augmented data matrix
�

has a factorization� �����
�

��� 0 H

..
.

..
.

H
H 0

� �� 
�� sm−1 sN−2 sN−1. . .
. . .

. . . sN−2
s−L � 2 s−L � 3

. . .
. . .

s−L � 1 s−L � 2
. . . sN−L−m � 1

� �

� : mMP × d
�
L � m − 1 ��� block-Hankel �� : d

�
L � m − 1 � × � N − m � 1 ��� block-Toeplitz

�
The stacking parameter m can be viewed as the length of an equal-
izer that tries to reconstruct � by forming linear combinations of
the m block rows of

�
. Necessary conditions for

�
to have a

unique factorization
� ����� are that � is a ‘tall’ matrix and �

is a ‘wide’ matrix. The first condition leads to

MP � d � m ≥
d
�
L − 1 �

MP − d

�
(2)

MP � d is a fundamental restriction. If MP � d, then we can al-
ways take m large enough to satisfy the second condition.
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Figure 1. Singular values of Φ; m � 1 � β � 0, varying P� L
Algorithms to find � and � from

�
under the condition that �

has full column rank d
�
L � m − 1 � were proposed in [1, 3], and

extensions to unequal channel lengths in [2, 4, 5]. The effective-
ness of these algorithms is limited by the conditioning of � , which
goes beyond the (practically useless) requirement of the “absence
of common zeros” of the multidimensional channels.

3. BANDLIMITED SIGNALS

In view of Shannon’s theorem, it would appear unlikely that it is
possible to separate two bandwidth limited signals based on over-
sampling only: sampling beyond the Nyquist rate does not pro-
vide independent information. Typical communication signals use
some excess bandwidth, i.e., the Nyquist rate is larger but still close
to the symbol rate. As a consequence, some information is gained
by oversampling, but the role of P is limited, and MP � d is not a
sufficient condition to separate and equalize d signals.

If (2) holds and � and � have full rank, then rank
� � ��� d

�
L � m−

1 � . As we show in this section, bandlimited signals generally lead
to an ill-conditioned � and

�
. Our objective is to derive minimal

values for M and P in relation to the excess bandwidth β such that
1. a change in m by ∆m increases the rank of

�
by d ∆m,

2. a change in channel length L by ∆L increases the rank of
�

by d ∆L.

Unless these two properties hold, we cannot expect any algorithm
to provide good separation and equalization, since the number of
signals and differences in channel lengths are not resolved.

3.1. One signal, one antenna

We start with the case where there is one signal and one antenna:
d � 1, M � 1. A bandlimited signal is generated by a pulse shape
function whose Fourier transform has only a limited number of
non-zero coefficients, and since the channel is modeled as a linear
system, the same holds for the convolution h

�
t � of them. Let β rep-

resent the excess bandwidth, i.e., the spectrum of the continuous-
time signal is limited to | f | ≤

�
1 � β ��� 2. The block Hankel matrix� can be constructed from � 0 H � and cyclic shifts of it. Thus con-

sider the augmented impulse response

h ��� � 0 · · · 0! "$# %&
m−1 ' P h0 h1 ( P · · · hL−1 ( P � �

which has length L � : � L � m − 1. The Fourier transform of h � has
only α : � L � � 1 � β � nonzero coefficients out of L � P, thus can be

written as

h � ��� f1 · · · fα �

���� 1 1 · · · 1

1 φ · · · φL ) P−1

...
...

...
1 φα−1 · · · φ

&
L ) P−1 ' & α−1 '

� ���

φ � exp
� j2π

L ) P ��� α � � L � m − 1 � � 1 � β � �
A cyclic shift of h � leads to a cyclic shift of the columns of the DFT
matrix, which can also be represented by premultiplying the DFT
matrix with diag � 1 � φP � · · · � φ & α−1 ' P � . After some manipulations, it
follows that � can be factored as

�*� ΦFV �
�������������

1 1 · · · 1
...

...
...

1 φP−1 · · · φ
&
P−1 ' & α−1 '

1 φP · · · φP
&
α−1 '

...
...

...
...

...
...

1 φmP−1 · · · φ
&
mP−1 ' & α−1 '

� ������������

�� f1 0

. . .
0 fα

� � 
���� 1 1 · · · 1
1 φP · · · φ

&
L ) −1 ' P

...
...

...
1 φP
&
α−1 ' · · ·φ

&
L ) −1 ' P & α−1 '

� ���

Φ : mP × α � F : α × α � V : α ×
�
L � m − 1 � (3)

The rows of V are orthogonal, because they are full rows of a
DFT(L � )-matrix. F contains the non-zero channel Fourier coeffi-
cients, and we will assume in this analysis that it is not the limiting
factor in the conditioning of � , although, for β � 0, the coefficients
are usually designed to taper off at the edges. Φ has dimensions
mP × α and is a principal submatrix of the DFT(L � P) matrix. As a
Vandermonde matrix, its conditioning can be quite bad, depending
on m, P and β.

For example, suppose β � 0, m � 1, so that α � L. The singular
values of the corresponding Φ are plotted in figure 1 for a range of
values for P and L. The objective is to see whether we can estimate
L for cases where P ≥ L: it was predicted by (2) that this is possi-
ble. The figure shows that, for P ≥ 2, L ≥ 2, the singular value plots
are almost overlapping each other. The main effect of a larger P or
L is that increasingly smaller singular values are added. For L ≥ 5,
say, we have to take such small singular values into account that the
addition of only a tiny amount of noise (SNR around 60 dB) will al-
ready obscure these singular values and make the equalization fail.
It is impossible to reliably estimate L.

For large m, Φ is a large submatrix of the full DFT matrix: its
columns have length mP out of a total length of

�
L � m − 1 � P, and

consequently, they are more independent of each other than was the
case for m � 1. More precisely, one can prove that (for β � 0) Φ
has a subset of m orthogonal columns, interleaved with L − 1 other
columns. Consequently, Φ has m large and approximately equal
singular values. For general β, we obtain a similar result:

Proposition 1. If Φ in (3) is a tall matrix, then it has m
�
1 � β �

large and approximately equal singular values out of a total of
�
L �

m − 1 � � 1 � β � .
V is a tall matrix with orthonormal rows and reduces the dimension
of ΦF from α ≡

�
L � m − 1 � � 1 � β � columns to L � m − 1. Grosso

modo, the effect of multiplication by V can be modeled as a selec-
tion procedure which (statistically) retains the dominant L � m − 1

2



singular values of ΦF. The model gets more reliable for larger re-
duction factors (here 1 � β). Since Φ and V are generated from
the same DFT matrix, they are not independent, and this selection
property is only true if F is sufficiently random. Note that F is gen-
erated by only L

�
1 � β � independent numbers (the nonzero Fourier

coefficients of h), the other
�
m − 1 � � 1 � β � nonzero entries are ob-

tained by interpolation. Hence, there are limits to the effective-
ness of a large m, and the above selection model fails once approx-
imately m � 2L.

Proposition 1 allows to derive parameter values that are necessary
for a good conditioning of � in the case of 1 antenna, 1 signal.

• Φ is a tall matrix if mP ≥
�
L � m − 1 � � 1 � β � , i.e.,

P � 1 � β � m ≥
L − 1

P −
�
1 � β � � (4)

To enable m ≤ 2
�
L − 1 � , we should have P ≥ 1 1

2 � β. There
is no reason to take P much larger than that, as it will not
improve the conditioning of � .

• Only in case Φ has more large singular values than � has
columns, m

�
1 � β � ≥ L � m−1, we can hope that all L � m−1

singular values of � are large. We refer to this as a “level
0” performance. It is equivalent to

m ≥
L − 1

β
[level 0]

�
(5)

This gives a minimal necessary condition on m. It may not be suf-
ficient for detection of L. Note that m

�
1 � β � ≥ L � m − 1 replaces

the old condition mP � L � m − 1: effectively, P � 1 � β. To en-
able m ≤ 2

�
L − 1 � , we should have β ≥ 0

�
5. Simulations show that

from that point on, changes in L affect the singular value plots of � .
For larger β the performance improves because the selection proce-
dure by V is more reliable, but this is at the expense of an increased
bandwidth. Simulations using raised-cosine pulse shape functions
indicate that we need at least β � 1 for detection of L from a gap in
singular values.

3.2. General singular value model for � : M ≥ 1 � d ≥ 1

With M antennas and d signals, we have a total of Md individual
impulse responses. With some obvious rearrangements, the model
for � is an extension of the model of section 3.1:

� ∼


�� ΦF11V · · · ΦF1dV
...

...
ΦFM1V · · ·ΦFMdV

� � �

�
Φ 0...
0 Φ

�
! "$# %

ΦM


�� F11 · · · F1d
...

...
FM1· · ·FMd

� � 
� V 0...
0 V

�

Φ : mP × α � Fi j : α × α (diagonal) � V : α ×
�
L � m − 1 �

α ≡
�
L � m − 1 � � 1 � β � �

ΦM is a tall matrix under the same conditions (4) as before. In that
case, and assuming a large angle spread so that antennas give in-
dependent observations, ΦM has approximately Mm

�
1 � β � large

singular values. The Fourier coefficient matrix F selects the d
�
L �

m − 1 � � 1 � β � largest out of these, and the V-matrices further re-
duce this to the d

�
L � m − 1 � largest singular values out of d

�
L �

m − 1 � � 1 � β � .
The level-0 criterion is the requirement that ΦM has more large sin-
gular values than are ultimately selected, i.e.,

Mm
�
1 � β � ≥ d

�
L � m − 1 � (6)

�
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Figure 2.
�
a � Minimal values for the number of antennas M to de-

tect the number of sources d (equation (7)),
�
b � Minimal

values for M to detect changes in channel length L (equa-
tion (11), p � 2, ε � 0

�
1; dashed: ε � 0

�
2)

(Note that, again, P is effectively reduced to P � 1 � β.) This im-
plies, for L � 1,

M � d
1 � β

[level 0]
�

(7)

This relation is plotted in figure 2(a). From simulations at each of
the grid points in the figure, we have observed that it is a minimal
condition on M such that increasing m by ∆m increases the rank of� with d∆m, enabling detection of d, but perhaps not of L. With
M satisfying (7), (6) gives conditions on m:

m ≥
d
�
L − 1 �

M
�
1 � β � − d

[level 0]
�

(8)

An improved “level-1 performance” is obtained when ΦM has
more large singular values than are selected by the Fi j, i.e., Mm

�
1 �

β � ≥ d
�
L � m − 1 � � 1 � β � , which implies

M � d � m ≥
d
�
L − 1 �

M − d
[level 1]

�
(9)

Simulations using raised-cosine pulses indicate that level-1 perfor-
mance usually gives a clear gap in singular values, enabling the es-
timation of L. An exception has to be made for small β (β + 0

�
2),

because such signals have a very long impulse response of their
own, requiring m to be very large. Especially when M � d � 1,
equation (9) might ask for m , L. As noted before, it does not
make sense to take m much larger than 2L, say, since data gets
repeated and no new information is introduced. A performance
somewhere between level 0 and 1 is such that a change of ∆L in
L increases the rank of � by d ∆L.
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Figure 3. Singular value plots of � for varying m, 2 antennas, 2 signals.
�
a � β � 0,

�
b � β � 1,

�
c � β � 2.
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Figure 4. Singular value plots of � for varying L, 2 antennas, 2 signals.
�
a � β � 0

�
5,
�
b � β � 1,

�
c � β � 2.

4. SELECTION OF P AND M

We summarize the above conditions into criteria for the selection
of the oversampling rate P and the number of antennas M. A per-
formance level ε between 0 and 1 is obtained when

M
�
1 � β � m ≥ d

�
L � m − 1 � � 1 � εβ ��� 0 ≤ ε ≤ 1

�
(10)

Further suppose that m : � p
�
L−1 � where we will restrict p to p ≤ 2.

This reduces (4) and (10) to

P ≥ 1 � 1
p
� β � M ≥ d

1 � p
p

1 � εβ
1 � β

�
If we settle for p � 2, then we obtain

P ≥ 1 1
2 � β � M ≥ 1 1

2 d
1 � εβ
1 � β

�
[level ε] (11)

Figure 2(b) shows this relation for ε � 0
�
1 and ε � 0

�
2 (dashed).

Lines of constant M are hyperbolas in the graph. Note that the re-
quired number of antennas is linear in d. The obtained values of M
should be regarded as minimal values, below which an increase of
L by ∆L will not increase the rank of � by d∆L. To have a clear gap
between the large and small singular values of � requires more:
ε ≥ 0
�
5 or so. For ε � 0, we can essentially only expect that d can

be detected from changes in m, and that an increase of L has “some
effect” in the singular value plots. For small L (say L + 5), the val-
ues of figure 2(a) are already sufficient.

As an example, figure 3 shows the singular values of � for simu-
lated channels for d � 2 signals, M � 2 antennas, constant L � 15

and varying m. To detect d from variations in m, figure 2
�
a � pre-

dicts that we need β ≥ 0, and indeed, even for β � 0 the rank in-
creases as it should, although L cannot be estimated correctly. Fig-
ure 4 shows what happens when L is varied, for constant m. Ac-
cording to figure 2, we need at least β � 0

�
75 or so to observe an

effect in changes of L. Indeed, for β � 0, the channel length cannot
be determined at all: all lines overlap (plot omitted). For β � 0

�
5,

some effect of changing L is seen, but not at all well-determined.
For β � 1, it is possible to detect that ∆L � 2, provided m is large
enough in relation to L (as determined by (10)). For β � 2, the rank
of � is clear and it becomes possible to estimate L itself as well.
Backward calculation shows that this case has level ε � 0

�
5.
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