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Abstract

The finite alphabet property of digital communication signals,
along with oversampling techniques, enables the blind identifica-
tion and equalization of an unknown FIR channel carrying a su-
perposition of such signals, provided they have the same (known)
period. Applied to multi-user wireless communications, the same
framework allows the blind separation of multiple finite alphabet
signals received at an arbitrary antenna array through an unknown
multipath propagation environment with finite delay spread. An
algorithm is proposed and tested on simulated data.

1. INTRODUCTION

In the context of blind identification of channels carrying digital
communication signals, a number of algorithms have been pro-
posed to estimate�

A � a single FIR channel carrying one signal (FIR-SISO).

In one class of algorithms, initiated by Tong, Xu and Kailath [1],
the signal is recovered by oversampling the channel output (viz.
a.o. [2–6]). There are many other blind equalization methods, for
example based on high-order statistics.

In the context of array signal processing, another scenario
which admits blind identification is the case where�

B � M antennas receive a superposition of d � M synchronized
finite-alphabet (FA) input signals via memoryless channels.

One algorithm to recover the signals was recently proposed by
Talwar, Viberg and Paulraj [7, 8]. In the present paper, we com-
bine the above two scenarios and derive an algorithm to�

C � blindly identify multiple FIR channels carrying a superposi-
tion of unsynchronized digital FA input signals that have the
same symbol rate and alphabet (FIR-MISO or FIR-MIMO
case). See figure 1.

In a deterministic setting, the FIR-MIxO case has not yet re-
ceived much attention. Although a few adaptive antenna combin-
ing/equalizing algorithms have been proposed [9,10], these require
long data runs for convergence and are also not satisfying from a
theoretical perspective.

Our algorithm for
�
C � consists of two steps. The first step is an

extension from scalars to vectors of an algorithm for scenario
�
A �

to handle more than one signal. At this point, the ISI caused by the
channel is removed and the input signals are synchronized. How-
ever, the symbol sequences can be determined only up to a fixed
linear combination of them. This is precisely scenario

�
B � .
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Figure 1. Channel model.

A multiple-sensor version (the FIR-MIMO case) is covered by
the same algorithm. The additional sensors improve the condition-
ing of the problem, in particular in the case of bandlimited signals
and high noise levels. In the context of array signal processing, the
algorithm can be used to separate a number of incoming digital sig-
nals, arriving from different or possibly the same directions, and
distorted by multipath with finite delay spread. In theory, i.e., un-
der low noise conditions, the only fundamental restriction is that
the number of antennas times the oversampling factor should be
larger than the number of independent signals. The required sam-
pling period is typically in the order of 50 symbol periods.

2. DATA MODEL

We describe a digital signal s
�
t � as a sequence of dirac pulses,

s
�
t �	� ∑ 
 � 
 skδ

�
t � k �� For convenience, the symbol rate is nor-

malized to T � 1. An array of M sensors, with outputs x1
�
t ����������� xM

�
t � ,

receives d digital signals s1
�
t ����������� sd

�
t � through independent chan-

nels hi j
�
t � . Each impulse response hi j

�
t � is a convolution of the

shaping filter of the i-th signal and the actual channel from the i-th
input to x j

�
t � , including propagation delays and delays that allow

to model unsynchronous signals as synchronous. The data model
is written compactly as the convolution x

�
t �	� H

�
t � � s
�
t ��� where

x
�
t ���

��
� x1
�
t �

...
xM
�
t �
� �
� � H � t ���

��
� h11
�
t � ����� h1d

�
t �

...
...

hM1
�
t ������� hMd

�
t �
� �
� � s � t ���

��
� s1
�
t �

...
sd
�
t �
� �
�

If we assume that all hi j
�
t � are FIR filters of length at most L � �! :

hi j
�
t �	� 0 � t "�$# 0 � L ��� (1)



then at most L consecutive symbols of each signal play a role in x
�
t �

at any given moment: for t � n % τ, where n �'&& and 0 � τ ( 1,

xi
�
n % τ �)� L � 1

∑
k * 0

hi1
�
k % τ � s1 + n � k %,�����-% L � 1

∑
k * 0

hid
�
k % τ � sd + n � k 

Further suppose that each xi
�
t � is sampled at a rate P �.�! , where P

is the oversampling factor. If we start sampling at time t � 0 / and
collect samples during N symbol periods, then we can construct a
data matrix X as

X � # x0 ����� xN � 1 0
: �

����
�

x
�
0 � x

�
1 � ����� x

�
N � 1 �

x
� 1

P � x
�
1 % 1

P � �
...

...
x
� P � 1

P � � ����� x
�
N � 1 % P � 1

P �

� ���
� 

The k-th column xk of X contains the MP samples taken in the k-
th symbol period. With the model of xi

�
t � , it follows that X has a

factorization
X � HST

where

H : �
����
�

H
�
0 � H

�
1 �1����� H

�
L � 1 �

H
� 1

P � � �
...

...
H
� P � 1

P � � ����� H
�
L � 1 % P � 1

P �

� ���
�

H : MP 2 dL �

ST : �
��������
�

s0
. . . sN � 2 sN � 1

. . .
. . .

. . . sN � 2

s � L 3 2 s � L 3 3
. . .

. . .

s � L 3 1 s � L 3 2
. . . sN � L

� �������
�

ST : dL 2 N � block-Toeplitz.

The blind identification problem is to estimate H and ST from X .
Note that for such a factorization to be unique, it is necessary that
H and ST have full column rank and row rank, respectively, which
implies a.o. MP 4 dL. If this condition does not hold, we can ex-
tend X to a block-Hankel matrix, by left-shifting and stacking m
times,

5 �
���
�

x0 x1 . .
.

xN � m
x1 x2 . .

.
. .

.

. .
.

. .
.

. .
.

xN � 2
xm � 1 . .

.
xN � 2 xN � 1

� ��
�

5
: mMP 2 � N � m % 1 ��

The augmented data matrix
5

has a factorization5 �7698
�
���
�

0 H
..

.
..

.

H
H 0

� ��
�
�������
�

sm � 1
. . . sN � 2 sN � 1

. . .
. . .

. . . sN � 2

s � L 3 2 s � L 3 3
. . .

. . .

s � L 3 1 s � L 3 2
. . . sN � L � m 3 1

� ������
�

6 : mMP 2 d
�
L % m � 1 � : block-Hankel �8 : d

�
L % m � 1 �:2 � N � m % 1 � : block-Toeplitz ;

This is for notational convenience and without loss of generality.

Now, necessary conditions for
5

to have a minimal-rank factoriza-
tion
5 �<6=8 are that 6 is a ‘tall’ matrix and 8 is a ‘wide’ matrix,

which for L > 1 leads to

MP > d

m 4 dL � d
MP � d

N > dL % � d % 1 � � m � 1 �� (2)

Only MP > d is a fundamental restriction.

3. BLIND IDENTIFICATION

Suppose that the conditions (2) are satisfied. Then

6 full column rank ? row
� 5 �	� row

� 8@�8 full row rank ? col
� 5 �A� col

� 6B�
To factor

5
into
5 �C698 , the strategy is to find either 8 : a block-

Toeplitz matrix with a specified row span, or 6 : a block-Hankel
matrix with a specified column span. In the scalar case (d � 1
signal), a number of algorithms have been proposed for doing this
[1–6]. It is straightforward to extend these algorithms to the vec-
tor case (d > 1). However, for d > 1 subspace information alone
leads to an ambiguity:

5 � � 6 D
� 1 � � D 8@� is a factorization with

the same subspaces, for D � diag # A ��������� A 0 and A any invertible
d 2 d matrix. This ambiguity is resolved in a second step, by taking
advantage of the finite-alphabet property of the signals.

3.1. Direct estimation of 8
A standard procedure to find 8 as a block-Toeplitz matrix with
row
� 8D��� row

� 5 � is to rewrite these conditions as

# s � L 3 1 s � L 3 2 ����� sN � L � m 3 1 0 � row
� 5 ������# sm � 1 sm ����� sN � 1 0 � row
� 5 ��

Hence, S : �E# s � L 3 1 s � L 3 2 ����� sN � 1 0 is in the intersection of the
rowspan of

5
and shifts of this row span (suitably embedded with

zeros). Alternatively, we can say that S is orthogonal to the union of
the complement of these row spans. The latter space might be eas-
ier to construct, except perhaps for large N. Thus let G be a matrix
whose columns constitute a basis for ker

� 5 � . If 6 has full column
rank, then G has dimensions

�
N � m % 1 �)2 � N � m % 1 � d

�
L % m �

1 ���	� : mG 2 NG. Moreover,
5

G � 0 ?F8 G � 0. Using the fact
that 8 is block-Toeplitz, we obtain

8 G � 0 G SGT H L I � 0 �

GT H JKI : �

����������
�

0
G

G
. . .
. . .
. . . G

0

� ���������
�

GT H JKI : � N %9LA� 1 �:2 NG
� LM% m � 1 ��

(3)

The number of block-columns of GT H JKI is equal to LN% m � 1, whereL is a parameter chosen equal to the channel length L (or maybe
smaller, viz. section 3.5).

If GT H L I is a wide matrix (this gives additional conditions on
m and N), then ker

�
G /T H L I � determines S, but only up to a left in-

vertible d 2 d matrix A, because Y � AS also satisfies YGT H L I � 0.
2



Given GT H L I , we take Y to be a matrix whose rows form a basis for
ker
�
G /T H L I � . To identify S, we have to find the factorizationY � AS,

which, in the case of finite alphabet signals, can be done using the
the ILSP algorithm.

3.2. The ILSP algorithm

For a given Y , the ILSP algorithm [7, 8] solves the factorization�
Y � AS : A � S full rank ��# S 0 i j �BOQP9��� where OQP is a pre-specified

finite alphabet. In its simplest formulation, the algorithm consists
of alternating projections: starting, e.g., with S H 0 I � Y ,R Project S H k I onto row

�
Y � : S H k ITS : � S H k I Y U Y ,R Project each # S H k ITS 0 i j onto the closest member of the alpha-

bet, resulting in S H k 3 1 I .
The iteration generally converges very rapidly. Note that if we took
Y to be an orthonormal basis, then Y U � Y / .
3.3. Computation of 6 first

Instead of estimating 8 directly, we can also first estimate 6 and
invert the resulting channel to estimate 8 . This is potentially more
interesting, since dimensions do not grow with N.

The approach we take here is basically that of [5]. Let G S be
a basis of the left kernel of

5
. Assuming 8 to be of full rank, we

have G S 5 � 0 ? G S 6V� 0. Write

H � : #H0 ����� HL � 1 0 � Hi : P 2 d
G S � : #G S1 ����� G Sm 0 � G Si : mG W 2 P

6 �
�� 0 H0 H1 ����� HL � 1

. .
.

. .
.

H0 H1 ����� HL � 1 0

��
Then G S 6'� 0 G���������

�

G Sm 0
...

. . .

G S1 . . . G Sm
. . .

...
0 G S1

� ��������
�
��
� H0

...
HL � 1

� �
� � 0 

This specifies H, up to a right block-diagonal factor diag # A ��������� A 0 .8 is found as 8X�Y6BU 5 , and is block-Toeplitz in the no-noise case.
With noise, we can average along the diagonals of 8 to obtain a
Toeplitz structure. At this point, the ILSP algorithm is employed
to remove the ambiguity that A represents.

For the estimation of 6 , it is only required that 8 be of full row
rank, which is a mild condition. In particular, it is not necessary that
all channels have equal length. In general, estimating 6 is compu-
tationally easier (for large N), but our experience with simulations
is that estimating 8 directly might be more accurate.

3.4. Detection of d and L

If 6 and 8 have full column rank and row rank, respectively, then
the rank of

5
is d Z : � d

�
L % m � 1 � . In principle, the number of

signals d can be estimated by increasing the blocking factor m of5
by one, and looking at the increase in rank of

5
. This prop-

erty provides a useful detection mechanism even if the noise level
is quite high since it is independent of the actual (observable) chan-
nel length L̂. Furthermore, it still holds if all channels do not have
equal lengths (see section 3.5 below). If they do, then L can be esti-
mated from the estimated rank of

5
, d̂ Z , and the estimated number

of signals, d̂, by L̂ � d̂ Z " d̂ � m % 1.

3.5. Unequal channel lengths

If the channels do not have equal length, but lengths Li j , say, then6 is not full rank and a modification of the algorithm for esti-
mating 8 is necessary. Define L j � maxi Li j , the maximum num-
ber of symbols of signal j that play a role in a single sample vec-
tor x
�
t � . Furthermore, define the overall channel length as L �

max j L j , which is the same as before in (1). Then H has only

∑d
j * 1 L j columns that are not identical to zero. The remaining dL �

∑ j L j zero columns show up in the right block columns of H, so

that, generically, U rank
� 6B� is also reduced to

�
∑ j L j ��% d

�
m � 1 � .

Hence, the rank of
5

is rank
� 5 �	� � ∑ j L j ��% d

�
m � 1 � . (Note that

it is still possible to detect d by increasing m by one.) Since cer-
tain columns of 6 are zero, the corresponding rows of 8 are not in
row
� 5 � , and the corresponding signals do not satisfy sGT H L I � 0.

Hence dimker
�
G /T H L I �:� #

�
L j [ L � is equal to the number of sig-

nals for which L j � L, and only these signals are obtained after pro-
cessing the basis of the kernel by ILSP. We can, however, underes-
timate L by L̂, say, and thus take less row span intersections, or less
shifts in GT H J\I . Then

d̂ : � dimker
�
G /T H L̂ I �]� #

�
L j 4 L̂ �^% #

�
L j 4 L̂ % 1 �_%`�����a% #

�
L j 4 L ��

In this case, signals for which L j 4 L̂ are represented in ker
�
GT H L̂ I � ,

as well as their shifts over up to
�
L j � L̂ � positions. If we take L̂ �

minL j , then all signals are represented at least once in the kernel.

As before, the d̂ basis vectors in the kernel of GT H L̂ I are pro-
cessed by ILSP to remove the ambiguity in the choice of the ba-
sis. At this point, it is straightforward to detect whether a signal is
a shifted version of another signal in the collection, in which case
one of them has to be discarded. For L̂ � minL j , the signals that
remain are the d independent signals.

3.6. Remarks

The above approach of underestimating L and overestimating d ap-
pears to make the overall algorithm more robust in the presence of
noise as well, also in the case that all signals do have the same chan-
nel length. The reason is that ILSP gets a larger responsibility in
separating the signals and their echos, which is favorable because
the finite alphabet property is quite powerful.

Singular value decompositions are used to estimate subspaces
in the presence of noise. Fast subspace techniques which estimate
only a few singular vectors are clearly a method of choice in the
estimation of dimker

�
G /T H L̂ I � .

4. SIMULATION RESULTS

To demonstrate the viability of the identification scheme by an ex-
ample, we consider the following multiray scenario. In the simu-
lation, d � 2 BPSK signals are broadcast from certain locations,
each modulated by a raised cosine waveform W

�
t �b� sin

�
t ��" t �

cos
�
βt ��" � 1 � 2βt � , truncated at a length of 6 baud periods, and with

modulation parameter β � 0  35. The signals are received by M � 2
identical omnidirectional antennas, spaced by half a wavelength.
The simulated channel consists of four paths per signal, where each
path is specified by an angle-of-arrival α, delay τ, and complexc

Here, ‘generically’ means provided the overall channel is otherwise
identifiable, i.e., unless the channels have ‘common zeros’ in the sense of
[3]. Precise identifiability conditions are beyond the scope of the paper.
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Table 1. Bit error rates, standard deviations, and number of times a signal is not detected (over 50 runs).
m � 3 L̂ � 2 L̂ � 3 L̂ � 4
d̂ Z d̂ BERs (%) STDs ND BERs (%) STDs ND BERs (%) STDs ND
11 2 8.86 15.27 0.53 0.49 2 13 8.58 24.73 0.52 0.56 2 17 13.94 20.06 0.57 0.68 7 9

4 4.37 5.22 0.39 0.38 1 2 3.96 6.73 0.42 0.43 0 2 8.62 12.09 0.58 0.63 1 1
6 2.47 1.25 0.30 0.26 0 0 3.38 5.19 0.39 0.42 0 0 7.40 9.51 0.56 0.58 0 0

12 2 8.31 13.51 0.52 0.48 2 9 8.27 25.69 0.51 0.58 3 19 12.04 14.66 0.55 0.63 6 3
4 3.41 5.24 0.39 0.38 0 1 3.31 4.04 0.38 0.40 1 1 7.00 8.45 0.52 0.57 1 0
6 2.24 2.20 0.29 0.27 0 0 3.08 2.92 0.33 0.35 0 0 4.58 6.98 0.46 0.52 1 0

13 2 8.55 12.65 0.53 0.48 2 9 8.42 25.65 0.51 0.58 2 19 9.21 13.94 0.56 0.62 2 3
4 3.75 3.37 0.40 0.37 1 0 3.27 3.46 0.38 0.42 1 0 5.89 7.96 0.49 0.54 0 0
6 2.27 0.86 0.30 0.25 0 0 2.35 2.73 0.32 0.34 0 0 4.75 6.53 0.46 0.49 0 0

14 2 8.31 13.94 0.53 0.47 2 11 8.88 26.27 0.52 0.58 3 20 12.75 13.74 0.56 0.61 6 2
4 3.20 3.94 0.40 0.37 1 1 2.31 2.62 0.38 0.40 0 0 6.55 7.96 0.53 0.53 1 0
6 2.16 1.29 0.30 0.24 0 0 2.50 2.23 0.34 0.33 0 0 4.23 5.85 0.45 0.46 0 0
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Figure 2.
�
a � Singular values of

5
, for different blocking factors

m.
�
b � Singular values of GT H L̂ I .

damping factor p, as by the following table:

Signal 1: α : � 10 ij� 2 ij� 120 i 160 i
τ : 0 0  3 1  2 2  1k
p
k
: 1 0  8 0  4 0  4

Signal 2: α : 10 i 15 i � 40 i 150 i
τ : 0  5 0  9 1  5 2  8k
p
k
: 1 0  9 0  5 0  3

The resulting channel length is L � 9. The complex phase of each
damping factor p was selected randomly from # 0 � 2π 0 with a uni-
form distribution. We took N � 50 sampling intervals, P � 5 times
oversampling, and SNR = 10 dB per signal.

The singular values of one instance of the data matrix
5

are
plotted in figure 2

�
a � , for blocking factors m � 2 � 3 � 4. The esti-

mated numerical rank of
5

is about d̂ Zl� 10 � 12 � 14, respectively,
so that, with d Zl� d

�
L % m � 1 � , the number of signals is detected

as d̂ � 2, and the channel length is detected as L̂ � 4, rather than 9.
Figure 2(b) shows the singular values of GT H L̂ I , for m � 3, d̂ ZY� 12,

and L̂ � 3 � 4. For L̂ � 4, the number of small singular values is in-

deed equal to d̂ � 2, for L̂ � 3, we also obtain shifted copies of the
two signals. Table 1 gives the bit-error rates and symbol standard
deviations (before classification as % 1 or � 1), for various choices
of L̂, d̂ Z and d̂, and averaged over 50 independent runs. We also list
how often a signal was not in the kernel (ND). It is seen that choos-
ing L̂ smaller than estimated, in combination with overestimating d̂
so that more singular vectors are processed by the ILSP algorithm,
leads to an important decrease in bit errors and parameter standard
deviations. The choice of d̂ Z appears to be not critical.
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