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We investigate spatial filtering techniques for interference removal
in multichannel radio astronomical observations. The techniques
are based on the estimation of the spatial signature vector of the
interferer from short-term spatial covariance matrices followed by
a subspace projection to remove that dimension from the covari-
ance matrix, and by further averaging. The projections will also
modify the astronomical data, and hence a correction has to be ap-
plied to the long-term average to compensate for this. As shown by
experimental results, the proposed technique leads to significantly
improved estimates of the interference-free covariance matrix.

1. INTRODUCTION

The contamination of radio astronomical measurements by man-
made Radio Frequency Interference (RFI) is becoming an increas-
ingly serious problem and therefore the application of interference
mitigation techniques is essential. Most current techniques ad-
dress impulsive or intermittent interference and are based on time-
frequency detection and blanking, using a single sensor [1, 2] or
multiple sensors [3]. A start has been made in applying adaptive
filtering techniques using a reference signal [4–6].

In this paper, we investigate the efficacy of multichannel spa-
tial filtering for the removal of continuously present radio inter-
ference such as TV signals, radio broadcasts, or the GPS satellite
system. The proposed technique applies to interferometric radio
telescope arrays such as the Westerbork Synthesis Radio Telescope
(WSRT) in the Netherlands, the Very Large Array (VLA) in the
USA, or future massive phased array telescopes, such as the Square
Kilometer Array (SKA) currently in design.

In interferometric radio astronomy the signals from various
sensors (telescopes) are usually split into narrow frequency bins
(say 50 kHz), and correlated over 1–100 milliseconds to yield
short-term correlation matrices. These are then integrated over
longer periods of typically 10–60 seconds to yield long-term cor-
relation matrices (containing the “visibilities”), which are stored
onto tape and constitute the output of the telescope interferometer.
Astronomical images are usually constructed by Fourier tranform-
ing several hours of “visbility” data.

The long-term correlation matrices contain contributions from
the astronomical sources in the pointing direction through the main
lobe of the telescope, from interferers in the near and far field
through the side lobes, and from spatially white receiver noise. The
astronomical signals usually have a signal-to-noise ratio (SNR) of
−20 dB or less, and hence they are too weak to be detected over
short integration periods. Harmful interference may range from
−70 dB up to

�
50 dB with respect to the instantaneous system

noise level.
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Continually present interferers cannot be cut out in the time-
frequency plane and have to be removed using spatial filtering. As-
suming that the frequency bins are sufficiently narrow band, we can
associate a spatial signature vector to each interferer and estimate
these from the short-term correlation matrices. By projecting out
the corresponding dimensions, the interference is removed. How-
ever, this spatial filtering also modifies the correlation matrix of in-
terest to astronomers and therefore a correction must be applied.
The correction is possible under the assumption that the spatial sig-
natures of interferers are sufficiently changing over the 10 s period.
A schematical description of the procedure is shown in figure 1.

In the next sections, we first introduce the spatial filtering al-
gorithm and discuss the correction that has to be applied. We then
show the performance of the algorithm in simulated data, and real
data collected at the WSRT.

2. DATA MODEL

Assume we have a telescope array with p elements. We consider
a single frequency bin, with for simplicity at most q � 1 interferer
present. The array output vector x � t � is modeled in complex base-
band form as

x � t ��� a � t � s � t � � v � t � � n � t �
where x � t ����� x1 � t � �
	�	
	�� xp � t ��
 T is the p×1 vector of output signals
at time t (T is the transpose operator), s � t � is the interferer signal
with spatial signature vector a � t � which is assumed stationary only
over short time intervals, v � t � is the received sky signal, assumed
a stationary Gaussian vector with covariance matrix Rv, and n � t �
is the p × 1 noise vector with independent identically distributed
Gaussian entries and covariance matrix σ2I. We assume that σ2 is
known from a calibration observation, and that Rv � σ2I. Given
observations xn � x � nTs � , where Ts is the sampling period, the ob-
jective is to estimate Rv, containing the astronomical “visibilities”.

3. SPATIAL FILTERING ALGORITHM

Given the observations, we first construct short-term covariance es-
timates R̂k,

R̂k � 1
M

�
k � 1 � M
∑

n � kM

xnxH
n

where M is the number of short-term samples to average, MTs is in
the order of 1–100 millisecond (H denotes the Hermitian transpose).
In the usual procedure, these matrices are then further averaged to
obtain a long-term (say NMTs � 10 second) estimate

R̂10s � 1
N

N

∑
k � 1

R̂k 	
If there is only an astronomical signal and white Gaussian noise,
R̂10s is an unbiased estimate of the true covariance matrix R0 �
Rv

� σ2I 	
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Figure 1. Setup of the correlation procedure with spatial filtering

Consider now the situation where there is an interferer with
zero mean, power σ2

k and a spatial signature vector ak (normalized
to unit norm), assumed constant over the short integration periods.
The expected value of of the short-term estimates R̂k will then be

Rk � R0
� σ2

kakaH

k � Rv
� σ2I

� σ2
kakaH

k 	
In the construction of the long-term estimate, the interferer contri-
bution will be � 1 � N � ∑ σ2

kakaH

k . Depending on the variability of ak,
the contribution will somewhat average out, but if σk is strong, its
influence will be felt: the estimate of Rv will be biased and also
have an increased variance. It is therefore desired to filter the in-
terferer out.

Suppose that the spatial signature ak of the interferer is known.
We can then form a spatial filter Pk,

Pk : � I − ak � akaH

k � −1aH

k

which is such that Pkak � 0. Thus, when this spatial filter is applied
to the data covariance matrix all the energy due to the interferer will
be nulled. Denoting the modified covariance matrix by R̃k we have

R̃k : � PkR̂kPk ∼ PkR0Pk

where ∼ denotes that the right hand side is the expected value of the
left hand side. Note that the astronomical data is modified as well,
so that we will have to apply a correction at a later stage.

When the spatial signature of the interferer is unknown, it can
be estimated by an eigenanalysis of the sample covariance matrix,

Rk � : UkΛkUH

k � R̂k � : ÛkΛ̂kÛH

k

where Uk and Ûk are unitary matrices containing the eigenvectors,
and Λk and Λ̂k are diagonal matrices containing the eigenvalues.
Assuming that the noise is white and the astronomical contribution
is small, it is well known that the number of interferers can be de-
tected from the eigenvalues of R̂k, and that the subspace spanned
by the spatial signatures of the interferers can be estimated by the
corresponding eigenvectors. This allows us to construct the projec-
tion matrix Pk [3].

When we average the modified covariance matrices R̃k, we ob-
tain the long-term estimate

R̃10s : � 1
N

N

∑
k � 1

R̃k � 1
N

N

∑
k � 1

PkR̂kPk 	
We now discuss the correction that has to be applied to R̃10s to
recover an unbiased estimate of R0, assuming that the interferer
has been projected out completely. We employ the matrix identity

vec � ABC ����� CT ⊗ A � vec � B � where vec � · � denotes a stacking of
the columns of a matrix, and ⊗ the Kronecker product,

A ⊗ B � ��� a11B a12B · · ·
a21B a22B · · ·

...
. . .

� �� 	
This gives

vec � R̃10s ��� 1
N

N

∑
k � 1

� PT
k ⊗ Pk � vec � R̂k �

∼ � 1
N

N

∑
k � 1

� PT
k ⊗ Pk �! vec � R0 �� Cvec � R0 �

where C : � 1
N ∑N

k � 1 � PT
k ⊗ Pk � . Thus, we can obtain an unbiased

estimate of R0 by applying the inverse of C to vec � R̃10s � ,
R̂10s : � unvec � C−1vec � R̃10s �"� ∼ R0 � Rv

� σ2I 	 (1)

In short, to obtain the covariance matrix due to the astronomical
sources, we can average the projected short-term covariance matri-
ces as usual to long-term averages, but have to apply the correction
matrix C which is formed in the same way by averaging PT

k ⊗ Pk.
At this point, we can make several remarks.

– The invertibility of C is crucial to be able to recover the corre-
lation matrix of the astronomical signals. If all Pk are the same
(ak is stationary), then C will not be invertible. One can show
that an average of only a few different Pk is needed to ensure
invertibility. Indeed, if the ak are random independent vectors,
then C → I as N → ∞. Thus we need ak to be sufficiently vari-
able over the long integration period. On the other hand, to be
able to estimate ak from the data, the interferer signature has to
be constant over short integration periods. An analysis of the
spatial stationarity properties of the interferer gives suitable in-
formation to determine the partitioning of a long integration in-
terval into short intervals where ak can be considered constant.

– The stationarity of the interferer is dependent not only on its
own movement (in case of mobile telephones or satellites), but
also on the geometrical delay compensations applied to the
telescope signals to compensate for the rotation of the earth
meanwhile tracking the desired astronomical objects. Depend-
ing on the baseline length and the elevation angle of the point-
ing direction, the stationarity is limited to about 0.05–0.5 sec
in the case of WSRT, and hence sufficiently varying over the
usual integration period of 10 seconds.



−30 −25 −20 −15 −10 −5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

INR [dB]

M
S

E
 (

fr
ob

 n
or

m
 o

f c
ov

. m
od

el
 m

is
m

at
ch

)
effect of spatial projections

unfiltered
RFI−free
perfect filter
eigenfilter RFI−free
eigenfilter
detection and eigenfiltering

N−short = 100

N−long  = 100

SNR = −20 dB

p = 4

q = 1

P
fa

 = 0.1

Figure 2. MSE as function of interferer power.

– A good estimate of the interferer signature can be obtained only
if it is sufficiently strong to be detected. This is dependent also
on the short-term integration length, and thus limited by the
period over which the interferer can be considered stationary.
The accuracy of this estimate determines the amount of resid-
ual interference.
If we always project out the principal eigenvector, regardless
of the interference power, then a bias will result if the power is
weak. Thus, we propose to detect the presence of an interferer
using a standard test for this, and to apply a projection only if
the interferer is detected.

– Another issue is that of computational expenditure. C will be a
matrix of size p2 × p2. Online constructing and inverting such
a large matrix may be time consuming. We therefore consider
storing the projection directions {ak} and applying the correc-
tion off-line.

4. SIMULATION RESULTS

In a computer simulation, we considered a scenario in which there
are p � 4 telescopes, a weak astronomical signal (−20 dB), and a
single interferer of varying power and random unit-norm ak . The
received data is correlated over M � 100 samples, the projection
is applied, and the result further averaged over N � 100 such ma-
trices. The performance measure is the mean-squared estimation
error MSE � E #%$ R̂10s − R0 $ F & 	 Figure 2 shows the MSE curves
for several cases:

– Unfiltered interference: the long-term covariance estimate is
computed as traditionally done,

– RFI-free: the data does not contain interference and the covari-
ance is estimated as traditionally done,

– Perfect filter: assumes that the spatial signatures of the inter-
ferer are perfectly known,

– Eigenfilter: the spatial signatures are estimated from the eigen-
value decomposition of the short-term data covariance matri-
ces,

– Detection + eigenfilter: first it is seen whether the interference
is observable in the data using a standard likelihood test (white-
noise test with known σ) on the short-term covariance esti-
mates [7],

L � 2M � tr � R̂k � σ2 � − p − log det � R̂k � σ2 �'
)( γ

where γ is a detection threshold. (In figure 2, the detection
threshold was selected to obtain a false alarm probability of
0 	 1.) If an interferer is detected, then the spatial projection is
applied as before.

– For reference, we also show the result of applying the eigenfil-
tering algorithm to RFI-free data.

The results indicate that for INRs above −15 dB,1 it is essential
to apply the spatial filter. If the spatial signatures of the interferer
are perfectly known, then the final estimate is almost as good as in
the RFI-free case. If the spatial signatures are estimated from the
data, then it is important first to detect if there is an interferer, other-
wise for weak interferers the final covariance estimate is biased. In
combination with detection, it is seen that the covariance estimate
is very close to the interference-free result.

5. EXPERIMENTAL RESULTS

We applied the spatial filtering technique to a data set contain-
ing time continuous and intermittent interference observed at the
WSRT. The data set is a p � 8-channel recording of a 1.25 MHz-
wide band at 434 MHz containing signals from the astronomical
source 3C48 (white noise signal) contaminated by narrow-band
amateur radio broadcasts. The data was partitioned into 32 fre-
quency bins (each processed separately), the short term averaging
period was 10 ms (M � 781), and the number of time intervals was
N � 1000. Prior to analysis, the data was calibrated to make the es-
timated noise powers in each channel and at each frequency equal
to 1.

Figure 3 shows the largest eigenvalue, on a logarithmic scale,
of the correlation matrix R̂k � f � as a function of time and frequency.
We see that there is continuous interference at 434.3 MHz and
434.4 MHz, as well as at least two intermittent sources at other
frequencies in the band. Comparing the eigenvalues to a manually
determined threshold (figure 4) showed that in most cases, about 1
or 2 eigenvalues were affected and needed to be projected out. Oc-
casionally (the channel at 433.9 MHz) up to about six eigenvalues
were affected. Figure 5 shows how many interferers were detected
for each R̂k � f � .

The results of the spatial filtering algorithm are shown in figure
6. The upper graph shows the mean of all cross-correlations, before
and after applying the spatial filter, and the lower graph shows the
8 auto-correlations. It is seen that at most frequency bins both the
time-continuous and intermittent interference is suppressed signif-
icantly, and the resulting spectrum is flat with a cross-correlation
of about 0.005 indicative of the astronomical source.

The condition number of C determines the amount of noise am-
plification due to the correction in (1). As figure 7 shows, it was
small over almost all frequency bins, in the range of 3 to occasion-
ally 10. This shows that the interference usually has sufficient spa-
tial fluctuations due to multipath fading or the fringe correction.
Only at 434.3 MHz, the condition number was extremely large,
which explains the relatively poor filtering performance at that fre-
quency. For this frequency, the upper graph in figure 6 shows that
only a single telescope received the strong continuous interference,
hence the corresponding ak-vector had zeros almost everywhere
and was nearly stationary. The affected telescope was the one clos-
est to the control building, and the interference is likely to be caused
by the clock of a computer. We conclude that for interferomet-
ric radio telescope arrays, the proposed spatial filtering algorithm

1This level depends on the number of telescopes p, the number of short-
term samples M, and on the selected false alarm rate.
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provides a very interesting and practical technique for interference
mitigation.
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