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We consider an asynchronous ad-hoc network with multiple users
transmitting packets at the same time. The signa of interest
is modulated by a known amplitude variation. This alows the
corresponding multichannel receiver to estimate the beamformer
weights that will suppress the interfering sources. We introduce
“known modulus agorithms’ (KMAS) to achieve this, and illus-
trate the throughput improvements that can be expected.

1. INTRODUCTION

A key limiting factor on the throughput of wireless networks is
packet collisions among uncoordinated transmitters. Convention-
ally, medium access control (MAC) protocols are used to sched-
ule transmissions either in a deterministic fashion (e.g., TDMA,
FDMA or CDMA) or by random access protocols such as Aloha
and CSMA. For ad-hoc networks, however, the absence of base
stations and the necessity of distributed medium access control re-
quires some form of random access, and avoiding collisionsis dif-
ficult. Even more challenging is the so-called hidden/exposed ter-
minal problem that severely limits the effectiveness of techniques
based on carrier sensing. Although the use of CTS-RTS exchange
along with busy-tone [1] can eliminate collisions [2], such proto-
cols are vulnerable to interference from other services.

Recent advances in antenna array processing and space-time
coding challenge the fundamental premise of the classical approach
to MAC that prohibits the simultaneous transmission of different
users. Various algorithms have been developed in the past decade
that alow the separation of multiple signals, even without prior
knowledge of the propagation channel [3]. This calls for new ap-
proachesin MAC protocols that exploit the new abilities [4].

Signal separation was first applied to the design of MAC pro-
tocolsin [5] where an N-fold collision is resolved by a specia re-
transmission protocol. Thistechniqueisonly applicablein cellular
networks. In [6], the problem of packet separation isformulated as
oneof signal separationinaMIMO system. Whilethistechniqueis
applicablein ad-hoc networks, it isrestricted to aslot-synchronized
network, which means that the network cannot cover alarge area.

In this paper, we present a new technique that allows packet
separation in asynchronous ad-hoc networks. Asillustrated in fig-
ure 1, the user of interest transmits aconstant modulus signal multi-
plied by an amplitude modulating code known at the receiver. This
unique “color code” alows the antenna array at the receiver to de-
tect and filter out the desired user among the other interfering sig-
nals that may or may not have asimilar structure. The modulation
code can be a random binary sequence determined either by the
transmitter or the receiver, or it can be a common pseudo-random
long code with different offsets for different users. The separating
beamformer is computed using one of the known modulus algo-
rithms (KMAS) developed in this paper. In general, KMA requires
neither slot synchronization nor any coordination among transmit-
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Figurel. Wireless ad-hoc communication scenario. ,/Cx is a

known modulus variation used to recognize user-1.

ters, which makes its application in an uncontrolled environment
such aswireless LAN particularly attractive.

From a source separation point of view, several techniques
could play a role. We consider blind approaches, as channel
estimation using training sequences has disadvantages in asyn-
chronous systems. General blind techniques such as ACMA [7]
are applicable, but not efficient since we are interested in only one
user. Several modulation approaches have been proposed, such as
“transmitter induced cyclostationarity” [8] which hasrecently been
extended to multi-user convolutive channels [9] and OFDM [10].
Our objective hereisto derive asystemthat issimpler than ACMA
etc, does not reduce the capacity, and finds only the desired user.

2. DATA MODEL

Scenario We assumethe situation in figure 1 where several users
occupy a common wireless channel. For simplicity, the channel is
assumed to be narrowband; in the case of OFDM this can easily be
generaized to wider bands. The potential number of usersis un-
limited, but the offered network load isfixed. User 1 isthe desired
user, it is supposed to be received by receiver 1, but there will be
interference from the other users. To suppresstheinterference, the
receiver is equipped with an antenna array of M elements.
Thetransmissionismodeled by alinear datamodel of theform

Xe= ) aqu(q) + ny, @)
g=1

wherex, OC M isthe data vector received by the array of M anten-
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nas at time k, aq is the signature vector of source g and q(f) OcC its

transmitted symbol at timek, and ny OOC M an additive noise vector.
In our traffic model, each sourceis assumed to transmit only once a
data packet, and for the rest to be silent. Hence each s hasfinite
support. A physical user with several data packets counts as sev-
eral independent sources, each with independent a-vectors, hence
the model allows for a slowly changing (fading) channel.
Themodul ation of source 1 isassumed to be constant modulus,

ie |s‘((l)| = 1. The modulation of the other usersis arbitrary.

Sot structure  We will consider two types of transmission scenar-
ios (seefigure 2):

1. dotted, withfixed slot length L. Thesituationinaslotissta-
tionary: the number of active usersis constant inside aslot,
and their spatial signature vectors are constant.

2. unglotted, with fixed or variable packet lengths. Packets can
have arbitrary starting times, hence the number of active
users changesthroughout the slot. The packet length of user
lisdenoted by L.

In both cases, we assume that we are synchronized to the user
of interest: the start time and length of his packet is known. We
collect N samples in a data matrix X =[xy, -, Xn] : MxN. In
casel, wetakeN = L and x4 containsthefirst sample of the packet.
In case 2, wetake aslightly larger analysiswindow, N = L samples,
and center the packet of user 1 so that the first sample of his packet
isin X(N—L)/Z'

Let d be the maxima number of active users in the analysis
window, and assume for notational simplicity that these are users
1tod. Defining A = [ag,-, ag) : Mxd, S= [s9]: dxN and
N=[ng,---, nn] : MxN, we obtain

X=AS+N. 2
A, S and N are unknown. The objective is to reconstruct the
nonzero part of sV using linear beamforming, i.e., to find a beam-
former w such that § = w"xy approximatessf(l), k=1,---,N.
Known modulusvariation Therearesevera agorithmsfor source
separation that are applicable at this point (e.g., CMAS), but they
all have the problem that they cannot distinguish one user from an-

other. To distinguish the desired source, we giveit a“color code”,
in the form of aknown pseudo-random modulus variation. Instead

of transmitting s, wetransmit z, = s¢,/Cy, Wherec, = 1teisareal
and positive scaling that induces a small modulus variation, with-
out changing the average transmission power. For notational con-
venience, we assume that ¢, = 0 outside the support of the packet.
The datamodel (2) isreplaced by X = AZ +N.

Recall that we assume that |s | = 1, so that [z |2 = cx. Similar
to the CMA, the objective of the beamformer will be to recover z
based on its modulus, i.e., such that

WP =l = o,  k=1,---,N.

With noise, we try to minimize the difference and can obviously
recover the source only approximatively.

3. KNOWN MODULUSALGORITHMS
3.1. lterative solutions

Theusual CMA can easily be adapted for the present case, but apart
from the usual stability and initialization issues, the resulting al-
gorithm would not be very useful for the current purpose since we
prefer to have ablock solution. Thisis provided by an aternating
projection algorithm: iterate until convergence

y =w'X
%= ]%lfa k=1,--,N
w = (2xXT)"

Note that a candidate solution Z is alternatingly projected onto the
row span of X (viathe projection XX), and entry-wise scaled to
fit the modulus condition. This algorithm is stable and converges
usually nicely, but also needs an initial point.

3.2. AKMA for casel
Wewill now set out to derive an algebraic closed-form solution, in

the style of ACMA [7]. This can be used to obtain aninitial point.
Wetry to minimize

N
Wy = argmin'y (W62 = argmin||PW O w)~cl?,
w K=1 w

wherec=cy, -+, cn]T, P = (X oX)" and o denotes a.column-wise
Kronecker product: XoX = [xg0Xg, -+, Xy Oxn]. Wefollow the
strategy of ACMA and split this optimization into two steps (hence
suboptimal),

§ = argmin||Py—c||?

Wy = argmin||§g-w O w|2.
If P would have full column rank, the first problem has a unique
solution in terms of the pseudo-inverse P

y=Plc.
With this solution and setting Y = unvec(§), where “unvec” de-

notes an unstacking of a vector into a square matrix, we can solve
the second problem as
Wy = argmin||§-w O w||? = argmin||Y —ww"||?,

the solution of which isgiven in terms of the dominant eigenvector
of Y, scaled by the square root of the corresponding eigenvalue.

We thus see that, if P isfull rank, the algorithm becomes par-
ticularly simple, and in the noise-free case will produce the exact
separating beamformer to recover the desired packet. If P is not
of full column rank, then there will exist additional solutionsyg to
Pyo = 0 which will add to the desired solution y = w; 0wy, pro-
ducing aresult that cannot be factored. We thus need to study the
rank properties of P. We do this for the noise-free case.

First note that X = AZ. To recover Z using linear beamform-
ing, we need A to betall: d <M. Inthiscase, X hasrank d. P has



sizeNxM2. SinceP" = (AJA)(Z 0Z), therank of Pis seen not to
exceed d2. A necessary condition for P to have rank d? isd? < N.

P can be made full rank by a prefiltering step. Compute the
SVD of X, i.e, X = UZV, whereU : M xd orthogonal, X : d xd
positive diagonal, V : d xN orthogonal, then we can replace X by

X:=(VN)ZUX = (VN)V
which hasd rowsand isof full rank. Notethat dueto the prewhiten-
ing, X satisfies a model X = AZ, where A isdxd and asymp-
totically unitary (for large N). From now on, we assume that the
prewhitening has been performed and that d = M (we omit the un-
derscore from the notation).

Even after the prefiltering, there are cases where P issingular,
namely when sources are constant modulus (or equal-modulus).
Indeed, if (2 = whX and z(®) = wjX are constant-modulus, then
P(Wz a W2) =1, P(Wg a W3) =1,and

P(Wz Owsp —VV3 a W3) =0.
To avoid this nullspace solution, all sources (except perhaps one)
should have amplitude modulations.

We can show that if the sources are statistically independent
constant modulus sources, all modulated by binary random power
modulations 1+ €, then % P"P converges to its expected value

Cx = E{ (X Ox) (X Ox)"} = (AOA)C(ADA)",

Cz:=E{(z0z)(z 0 z)"}

= 1+ vec(l)vec()"=(lol)(Io )" +&2(l o) (1 o1)".

The eigenvalues of C; are

eig(CZ):{d+827 11"'117 827"'782}' (3)

N——
d2—d d-1

These are aso the eigenvalues of Cy since A isasymptotically uni-
tary after prewhitening. Thus, the smallest eigenvalue of C; is
raised by the modulation to €2. If € isnot too small, P will be left
invertible, so that y = PTc will lead to the correct solution.
3.3. AKMA for case2
In case 2 there are additional situations where P becomes singu-
lar, namely when two sources are non-overlapping intime. Indeed,
suppose 22 = wiX, 23 = wiX are such that 224% = 0, Tk
Then wixx, w5 = 0, Ok, hence

P(WZ O Wg) = 0, P(VV:; O Wg) =0.
Thus, the solution to Py = c givesriseto

y =W 0wy +A3(W2 Owg) +Agp (W3 O wy)
for unknown scalars A,3,A3p, and y cannot be factored into wy [
w;. We see two solutions for this problem. Firstly, we can write
Y = unvec(y) as
v
Ws

)\23 Wg
where M is a permutation of W. Similarly, if we take a basis
{y2,y3} of the null space, it can be written as
Yo =WAM", Y3=WAzM"

where Ay, A3 are diagonal matrices (with their first entry equal
to 0). The problem boils down to a joint diagonalization of un-
symmetric matrices, or ajoint Schur decomposition, which can be
solved using Jacobi iterations[7].

Alternatively, wetry to avoid the joint diagonalization step. If
we have N sufficiently largeand do prewhitening, then A isapprox-
imately unitary, and the w; are orthogonal to each other. Hence, the

1
Y = [W1W2W3] |: )\32 :W/\]_MH

1. SVD: X =:UxV
Estimate rank and truncate to UgXsVg
Prefiltering: X := v/L-ZgtUSX = v/L - Vg

2. P=(XoX)"
y = P'c, with pseudo-inverse threshold 1ev/L
3. Y = unvec(y)

w = dominant eigenvector of Y
4. w=+/L-UsZglw
z2=w"X
5. optional: aternating projection iterations

Figure 3. Summary of AKMA
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Figure4. Throughput of the Aloha network with nodes using
KMA. Throughput increases with M.

desired solutionwy (1w isorthogonal tothenull space of P. Inthis
case, we can simply set

y=Plc=w; Ow;.

With noise, P will not be exactly singular, and wewill haveto set a
threshold on the pseudo-inverse. Asis clear from equation (3), the
threshold on the singular values of P should be smaller than y/N.
Figure 3 lists the algorithm as used in the simulations.

4. THROUGHPUT ANALYSIS

To gain some insight into the behavior of the network throughput,
we use a simple analysis making the assumption that the packet ar-
rival times are Poisson distributed and that Alohaisused asthe ran-
dom access protocol. The approach followsthat of Abramson[11].

We shall assume that an unknown number (possibly infinite)
of users may transmit packets asynchronously, and, without |oss of
generdlity, all packetshavethe samesizelL = 1. The packet arrival
process that includes both the new arrivals and retransmissions is
assumed to be Poisson with offered load A. Given M antenna ele-
ments, a packet P will be successfully received if and only if there
are no more than M users transmitting within a duration of 2L that
beginsL samplesbefore P and ends at the end of P. We assumethat
al nodes use the same KMA.. It then follows that the throughput,
i.e., the average number of successfully received packets per unit
time, isgiven by

22
& i

It is evident that T increases with M as shown in figure 4. In the
limit, T = A, indicating a complete collision resolution.
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Figure5. Case 1 beamformer performance: SINR of user 1 after beamforming.

SINR after beamforming BER after beamforming BER after beamforming
50 T T T T 10° 10°
Asynchronous sources; uniformly random offsets Asynchronous sources, uniformly random offsets Asynchronous sources, uniformly random offsets
N=70 =! =
of  M=4 A M=4 S M=4
P -1 -1 N
d=4 - 10 d=4 10 S d=4
mod=0.25 57 mod=0.25 ~ mod=0.25
packet=50 - packetlen=50 N packetlen=50
30 7 N
& 7 107 107 N
= 2 o« [ N
x 20 - w w A
z P @ o N
2 P B ~ N
o F 107 10° N
100 7 N\
P N
2
., N
- 107 107 \
or - — AKMA i —— AKMA \ —— AKMA \
— — AKMA+alt.proj. — — AKMAH+alt.proj. I — — AKMA+alt.proj. \
MMSE (known S) MMSE (known S) - MMSE (known S) \
-10 L L n n 10’5 n n n L L L L 10’5 I I I L L L
-10 0 10 20 30 40 -2 0 2 4 6 8 10 12 14 -2 0 2 4 6 8 10 12 14
SNR [dB] SNR [dB] SNR [dB]

Figure6. Case 2 beamformer performance: SINR and BER of user 1 after beamforming. Asynchronous sources with equal-length packets.
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