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Joint diagonalization problems of Hermitian or non-Hermitian ma-
trices occur as the final parameter estimation step in several blind
source separation problems such as ACMA, JADE, PARAFAC,
and SOBI. Previous approaches have been Jacobi iteration schemes
and alternating projections. Here we show how the joint diagonal-
ization problem can be formulated as a (weighted) subspace fitting
problem so that it can be solved using the efficient Gauss-Newton
optimization algorithm proposed for that problem. Since a good
initial point is usually available, the algorithm converges very fast.

1. INTRODUCTION

Suppose that we are given K complex Hermitian matrices Ŷk of the
form

Ŷk
� A

�
kAH � Ek � k � 1 � · · · � K � (1)

where the
�

k are diagonal and real, and Ek represents additive
noise. The joint diagonalization problem we consider is, given the
Ŷk, to estimate the common factor A. We assume that all Ŷk are
square d × d matrices, and that A is square d × d with full rank d.

An extension of this problem is, for complex non-Hermitian
matrices,

Ŷk
� A

�
kBH � Ek � k � 1 � · · · � K � (2)

where A and B can be different, and the
�

k are diagonal but not
necessarily real.

Joint diagonalization of either type turns up in several recently
proposed blind source separation problems with data models X �
AS � N, where X is the observation matrix, A is the mixing matrix,
the rows of S contain the source signals, and N is additive noise.
Depending on the assumptions on A and/or S, the following types
of algebraic source separation techniques have been proposed:

– Diagonalization of fourth order cumulant matrices, as in JADE
[1] where K � d and A is considered unitary.

– Algebraic Constant Modulus Algorithm (ACMA) [2]. Typi-
cally we have problem (1) with K � d but A not unitary.

– Second order techniques for separating sources based on dif-
ferences in their spectra, such as SOBI [3]. Ŷk are covariance
matrices for several lags.

– Multi-dimensional ESPRIT [4, 5], and related applications
such as joint angle-delay estimation [6], giving rise to prob-
lem (2) with K � 3 or more.

– Multilinear source separation problems, going under the name
of PARAFAC models [7], also resulting in problem (2).

The joint diagonalization problem is a generalization of an
eigenvalue problem. For two matrices, we can form Ŷ2Ŷ−1

1 , as-
suming that Ŷ1 is invertible. Without noise, Y2Y−1

1
� A

�
2
� −1

1 A−1

and A follows from a standard eigenvalue decomposition. In the
presence of noise, Ŷ2Ŷ−1

1 can still be diagonalized. When K � 2
matrices are available, the problem becomes overdetermined and
we cannot find an exact diagonalizing factor.

The joint diagonalization problem is often solved by iterative
Jacobi techniques (one-sided or two-sided; see [8, 9] for compar-
isons), or by iterations such as Alternating Least Squares [7, 10].

Here, we consider A (and B) full rank but not necessarily uni-
tary, and we derive an efficient Gauss-Newton iteration.

Notation Overbar (¯) denotes complex conjugation, T is the ma-
trix transpose, H the matrix complex conjugate transpose, † the ma-
trix pseudo-inverse (Moore-Penrose inverse). I or Ip is the (p × p)
identity matrix; ei is its i-th column. vec � A � is a stacking of the
columns of a matrix A into a vector. ⊗ is the Kronecker product, �
is the Khatri-Rao product, which is a column-wise Kronecker prod-
uct: A � B �	� a1 ⊗ b1 a2 ⊗ b2 · · · 
��

2. ALGORITHM DERIVATION

2.1. Cost function

Consider {Ŷk} of the form (1). If we assume that the entries
of the additive noise matrix Ek are independent and identically
distributed,1 then it makes sense to consider the following Least
Squares problem:

{Â � { ˆ� k}} � argmin
A  { � k}

∑
k

�
Ŷk − A

�
kAH � 2

F
(3)

where the
�

k are real and diagonal. This is the cost function usu-
ally considered for joint diagonalization. Without loss of general-
ity, we can put a norm constraint on the columns of A, say

�
ak

� � 1.
The cost function can be rewritten as

∑k
�

Ŷk − A
�

kAH � 2
F

� ∑k
�
ŷk − � Ā � A � mk

� 2
F� �

Ŷ − � Ā � A � M � 2
F

where ŷk
� vec � Ŷk � , mk

� diag � � k � , Ŷ ��� ŷ1 � · · · � ŷK 
 , M �� m1 � · · · � mK 
 . Thus the joint diagonalization problem is equiv-
alent to

{Â � M̂} � argmin
�

Ŷ − A
˜

M
� 2

F � A
˜

: � Ā � A � (4)

which is recognized as a Subspace Fitting problem where the K
columns of Ŷ are considered to span a subspace, and we seek to
model this subspace by d unit-norm vectors of the form ā ⊗ a. M
is a full rank (real) d × K matrix that relates the two bases.

We immediately note that in noise-free conditions, if the model
holds then Y has maximal rank d. If K � d, then Y must be rank
deficient and its dimension can be reduced if so desired.

To solve the problem, we can follow entirely similar proce-
dures as for subspace fitting, viz. [11]. First note that the optimiza-
tion problem is separable, since M̂ � A

˜
†Ŷ � (It is automatically real,

see Appendix B.) Thus, we can eliminate M and reduce (4) to

Â � argmin
�

Ŷ − A
˜

A
˜

†Ŷ
� 2

F
� argmin

�
P
˜

⊥
AŶ

� 2
F

(5)

where P
˜

⊥
A : � I − A

˜
A
˜

†.

1More precisely, in view of the Hermitian symmetry of Ek, this is un-
derstood for the real and imaginary parts of the upper triangular part of Ek.



2.2. Minimizing the cost function via Gauss-Newton

Assume that A is parametrized by a uniquely identifiable parametriza-
tion A � A � θθθ � , and consider the cost function

J � θθθ � � 1
2

�
P
˜

⊥
AŶ

� 2
F

� 1
2

�
vec � P

˜
⊥
AŶ � � 2 � 1

2 f � θθθ � Hf � θθθ � (6)

where f � θθθ � � vec � P
˜

⊥
AŶ � . This is a quadratic minimization problem

suitable for the Gauss-Newton optimization scheme [12]. Define
the Jacobian

F � θθθ � ��� df � θθθ �
dθ1

� df � θθθ �
dθ2

� · · · 
��
The gradient of the cost function at θθθ is g � Re � F � θθθ � Hf � θθθ ����� Ac-
cording to the Gauss-Newton scheme, the Hessian of the cost func-
tion is approximated by H ≈ Re � FHF � � and the Gauss-Newton up-
date step is

θθθ � k � 1 � � θθθ � k � − µkH−1g �
µk ∈ � 0 � 1 
 is a step size; with a good initial point we can take
µk

� 1. To apply Gauss-Newton, it remains to � i � select a suitable
parametrization, � ii � give an explicit form of F in terms of the prob-
lem variables, and � iii � compute an initial point.

2.3. Parametrization

Recall that A ��� a1 · · ·ad 
 , where each ai is normalized to unit
norm. We can furthermore constrain the first entry of each ai to
be positive real. Let p be the number of (real-valued) parameters
per a-vector. An important property of the parametrization is that it
is minimal, otherwise the Hessian will become singular, leading to
problems in the optimization. A convenient parametrization with
p � 2 � d − 1 � real parameters is given in Appendix A.

Let θθθ i be the parameter vector for ai,

ΘΘΘ �	� θθθ1 � · · · � θθθd 
 : p × d � θθθ � vec � ΘΘΘ ���
The entries of ΘΘΘ will be denoted by θi j , (i � 1 � · · · � p, j � 1 � · · ·d),
the entries of θθθ by θη. We will collect the derivatives of A and A

˜in vectors and matrices, defined as follows:

di j
� da j

dθi j
� θθθ � d

˜
i j

� da
˜

j
dθi j

� θθθ �
D j

��� d1 j · · ·dp j 
 D
˜

j
��� d

˜
1 j · · ·d

˜
p j 


D ��� D1 · · · Dd 
 D
˜

��� D
˜

1 · · · D
˜

d 
�� (7)

Since a
˜

j
� ā j ⊗ a j , we obtain

d
˜

i j
� ā j ⊗ di j

� d̄i j ⊗ a j
D
˜

j
��� ā j · · · ā j 
�� D j

� D̄ j � � a j · · ·a j 

D
˜

� Āe � D � D̄ � Ae (8)

where Ae : � A ⊗ 1T
p

��� a1 · · · a1 | · · · | ad · · · ad 
 .
2.4. Explicit form of F

Recall that f � vec � P
˜

⊥
AŶ ��� Let η be the index of one of the param-

eters θi j in θθθ , and let A
˜

η : � dA
˜dθη

. The derivative of P
˜

⊥
A is [11]

P
˜

η : � dP
˜

⊥
A

dθη
� −P

˜
⊥
AA

˜
ηA

˜
† − � P

˜
⊥
AA

˜
ηA

˜
† � H �

Thus, the derivative of f to θη is

f �η : � df
dθη

� vec � dP
˜

⊥
A

dθη
Ŷ � � −vec ��� P

˜
⊥
AA

˜
ηA

˜
† � � P

˜
⊥
AA

˜
ηA

˜
† � H � Ŷ � �

At this point, we propose to ignore the second term in this expres-
sion, since the factor P

˜
⊥
AŶ occuring in that term corresponds to the

residual and is typically very small in the neighborhood of the op-
timum (moreover, it cancels in forming FHf). Thus, in first order
approximation

f �η ≈ −vec � P
˜

⊥
AA

˜
ηA

˜
†Ŷ � � − � � A

˜
†Ŷ � T ⊗ P

˜
⊥
A 
 vec � A

˜
η ��� (9)

The Jacobian is thus given by

F ��� f �1 � · · · � f �pd 
 � − � � A
˜

†Ŷ � T ⊗ P
˜

⊥
A 
 D

˜
e (10)

where

D
˜

e : ��� vec � A
˜

η � 
 η ! 1  ···  pd
��� dvec � A

˜
�

dθ11
� dvec � A

˜
�

dθ21
� · · · 
��

Recall that we have defined

D
˜

�	� da
˜

1

dθ11
� da

˜
1

dθ21
� · · · � da

˜
2

dθ12
� · · · 
��

D
˜

e merely augments each column of D
˜

with many zero entries
since each parameter affects only one column of A

˜
. Thus

D
˜

e
��� e1 · · ·e1 | e2 · · ·e2 | · · · | ed · · ·ed 
�� D

˜
� � Id ⊗ 1T

p �"� D
˜

and after substitution of this in (10)

F � − � � A
˜

†Ŷ ⊗ 1p � T � P
˜

⊥
AD

˜

��

At this point, we note that due to the Hermitian symmetry of the
problem (see Appendix B), FHf and FHF are automatically real, so
that we have H−1g � � FHF � −1FHf � F†f. Given an estimate θθθ � k � ,
one iteration of the Gauss-Newton scheme thus becomes as fol-
lows.

A : � A � θθθ � k � � � d × d 

D : � D � θθθ � k � � � d × dp 


Ae : � A ⊗ 1T
p

� d × dp 

D
˜

: � Āe � D � D̄ � Ae
� d2 × dp 


A
˜

: � Ā � A � d2 × d 

P
˜

⊥
A : � I − A

˜
A
˜

† � d2 × d2 

θθθ � k � 1 � : � θθθ � k � � µk

� � A
˜

†Ŷ ⊗ 1p � T � P
˜

⊥
AD

˜

 †vec � P

˜
⊥
AŶ �

The complexity of an iteration is #$� d2K � pd � 2 � , with p � 2 � d −1 � .
2.5. Initial point and preprocessing

A suitable initial estimate for A is usually obtained from an eigen-
value decomposition of Ŷ2Ŷ−1

1 , since in the noise free case

Y2Y−1
1

� A � � 2
� −1

1 � A−1 �
The initial point θθθ � 0 � is derived from A as described in Appendix A.
With this initialization, the iteration converges very fast, typically
within two steps. The initialization assumes that � i � the inverse of
Ŷ1 exists, � ii � the eigenvalues

�
2
� −1

1 are not repeated, and � iii �
they are real. The latter requirement sometimes gives problems:
with strong noise, it may happen that the eigenvalues of Ŷ2Ŷ−1

1
become complex. One can prove that if either Ŷ1 or Ŷ2 is posi-
tive definite, then the eigenvalues of Ŷ2Ŷ−1

1 are real. Thus, we can
search among the Ŷk for a matrix that is positive definite and use
this matrix in the initialization. We may also try to find a linear
combination of the Ŷk such that the result is positive definite.

To generalize the model, suppose that A has size d ×r. If r % d,
then r is the rank of the Yk, and these matrices are rank deficient.



To improve the initialization, it is better to first reduce the dimen-
sions to the square (r×r) case. This can be done via a singular value
decomposition of � Ŷ1 · · · ŶK 
 :� Ŷ1 · · · ŶK 
 � U & VH (11)

The rank r can be detected from the singular values. Let Û be the r
dominant left singular vectors, then we can replace the Ŷk by com-
pressed r × r matrices Ŷ �k � ÛHŶkÛ, and solve the joint diagonal-
ization problem Ŷ �k � T

�
kTH, initialized by the solution of

Ŷ �2 � Ŷ �1 � −1 � T � � 2
� −1

1 � T−1 � (12)

After finding T, we can set A � ÛT. In fact, we have a choice to ei-
ther solve the joint diagonalization problem for the Ŷ �k (this is most
efficient but does not exactly solve (3)), or to find the initialial T
from (12) and solve the original problem initialized by A � ÛT.

If from the singular values in (11) it turns out that r � d, then
we are in a situation with “less sensors than sources”. For this sit-
uation, there appears to be no closed form solution available yet.
Although unelegant, we can try a random initialization, and follow
the iteration with a reduced step size (e.g. µk

� 0 � 5). Convergence
now takes longer, in the order of 15 iterations.

If K � d, then Y is necessarily rank deficient (rank d). This
is not a problem for the algorithm, but it is possible to reduce the
dimension to d, by replacing Ŷ by its dominant d left singular vec-
tors. Thus, we can reduce cases with K � d and d � r to a generic
case of K � d � r.

2.6. Remarks

A requirement for the iteration is that F is a tall matrix of full col-
umn rank. If A : d × r, then F has size Kd2 × pr, where for the cur-
rent parametrization p � 2 � d −1 � , so that Kd2 ≥ 2r � d −1 ��� If r � d,
then we need K ≥ 2. Increasing K or d increases the tallness of F
and improves its conditioning and thus the robustness of the opti-
mization. For sufficiently large K, it is seen that r � d is permitted.
However, only r ≤ d gives convenient initialization.

3. EXTENSIONS

3.1. Parametrized array

In some applications where joint diagonalization problems occur,
the columns of A are not arbitrary vectors but functions of a sin-
gle (or a few) parameters. For example, in array signal processing,
we might have a � a � θ � , where θ corresponds to the direction of
the source. It is clear that we can directly exploit this more parsi-
monious parametrization. The algorithm remains the same, but we
have a smaller parameter vector (p � d rather than p � 2 � d − 1 � ),
and only the functions A � θθθ � and D � θθθ � need to change. An example
is the combination of ACMA or JADE to take a directional model
into account.

3.2. Unsymmetric joint diagonalization

An extension of the joint diagonalization problem in (1) is the data
model

Ŷk
� A

�
kBH � Ek � k � 1 � · · · � K �

In this problem, the left and right factors A and B are not necessar-
ily equal to each other (perhaps even with different dimensions),
and

�
k are diagonal but not necessarily real.

If our objective is again to minimize the model error, we may
derive as before

∑
i

�
Ŷi − A

�
iB

H � 2
F

� ∑
i

�
ŷi − � B̄ � A � mi

� 2
F

� �
Ŷ − � B̄ � A � M � 2

F

where M is an arbitrary complex matrix. Thus, we end up with a
very similar subspace fitting problem, except that now we have two
parameter sets: θθθ ��� θθθT

A � θθθT

B 
 T, where A � A � θθθA � and B � B � θθθB � .
Since without loss of generality we can still take the columns of A
and B to be unit norm and with positive real first entry, we can use
the same parametrization as before. Thus, we can use a very similar
Gauss-Newton iteration, now with

A
˜

: � B̄ � A
D
˜

A : � B̄e � D � θθθA � � D
˜

B : � D̄ � θθθB �"� Ae �
F � − '(� A

˜
†Ŷ ⊗ 1p � T � P

˜
⊥
AD

˜
A � � A

˜
†Ŷ ⊗ 1p � T � P

˜
⊥
AD

˜
B )

f � vec � P
˜

⊥
AŶ �

θθθ � k � 1 � � θθθ � k � − µk
� Re � FHF �*
 −1Re � FHf ���

F has size Kd2 × 2pr, with p � 2 � d − 1 � . To have H invertible, we
need � Re � F � T Im � F � T 
 T to be tall, or 2Kd2 ≥ 4 � d − 1 � r. This leads
to the same conditions as we had for the symmetric case before.

3.3. Weighted subspace fitting

Weighted subspace fitting estimates are usually obtained by insert-
ing in (6) (but not in the original (3)) a positive definite weighting
matrix + . In its most general form, the cost function becomes

J � θθθ � � �
P
˜

⊥
AŶ

� 2, � vec � P
˜

⊥
AŶ � H + vec � P

˜
⊥
AŶ ��� (13)+ can be used to minimize the estimator variance. From the theory

of WSF (viz. [11,13]) we know that the optimal weight is + opt � C†

where
C � E{vec � P

˜
⊥
AŶ � Hvec � P

˜
⊥
AŶ � } �

Thus, the optimal weight depends on the covariance of Ŷ, and in
turn on the origin of the problem.

4. SIMULATIONS

Figure 1 � a � shows a test with K � 4 Hermitian matrices of size
d � 4, a randomly generated complex A (i.i.d. entries with stan-
dard deviation 1),

�
k (std 1), and Ek (std 0.05). We compare the

subspace fitting technique using Gauss-Newton iterations with step
size µk

� 1 to ACDC [10], which is an alternating least squares
type technique that optimizes A and

�
k in turn, and two-sided Ja-

cobi iterations as in [2]. The latter is a QZ iteration that tries to
solve QŶkZ � Rk for unitary Q and Z and upper triangular Rk,
and subsequenly derives A from the result. The subspace fitting
and ACDC algorithms are initialized from an eigenvalue decom-
position of Ŷ2Ŷ−1

1 , the Jacobi iterations from a QZ decomposition.
From the graph it is seen that the subspace fitting converges in two
steps, ACDC converges to almost the same point in about 40 steps,
whereas the Jacobi iterations quickly converge but to a different
point.

Figure 1(b) shows a similar test with non-Hermitian matrices.
Here we compare the subspace fitting technique (µk

� 1) to two-
sided Jacobi iterations and to PARAFAC [7], which is an alternat-
ing least squares technique for the non-Hermitian case. The results
are similar to the symmetric case.

The smaller number of iterations for the subspace fitting tech-
nique is to some extent offset by its larger complexity: #-� d7 � com-
pared to #-� d4 � for the other iterative techniques. As is well known,
the Gauss-Newton iteration with maximal step size µk

� 1 gives
fastest convergence but is only robust if the initialization point is
sufficiently close. For ill-conditioned A, the eigenvalue decompo-
sition of two matrices is not always accurate enough, and a more
conservative step size has to be used for the first few steps.
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Figure 1. Convergence of joint diagonalization. � a � Hermitian, � b � non-Hermitian.

A. PARAMETRIZATION OF A UNIT-NORM VECTOR a

A minimal parametrization of a complex unit-norm vector a with
d entries and positive real first entry is provided by a sequence of
Givens rotations:

a �/. R1 � α1 � R2 � α2 � · · ·Rd−1 � αd−1 � e1

where .	� diag � 1 � e jφ1 � · · · � e jφd−1 
 � 0 ≤ φi % 2π �
Ri � α � ��012 c −s

Ii−1
s c

Id−1−i

3 45 �
c � cos � α � � s � sin � α � � − π

2 ≤ α % π
2

The parameter vector for a � θθθ � is θθθ �	� α1 � · · · � αd−1 � φ1 � · · · � φd−1 
 T.
We will also need the derivative of a � θθθ � to each of the p � 2 � d −1 �
parameters:

dk
� da

dθk
� θθθ � �7689 8:

da
dαi

� i � k � 1 ≤ k ≤ d − 1 �
da
dφi

� i � k − d � 1 � d ≤ k ≤ 2 � d − 1 �
where

da
dαi

��. R1 � α1 � · · ·Ri−1 � αi−1 � R �i � αi � Ri � 1 � αi � 1 � · · ·Rd−1 � αd−1 � e1

da
dφi

� jei � 1eH

i � 1a � R �i � α � � 012 −s −c
0i−1

c −s
0d−1−i

3 45
B. REAL PROCESSING

Since ā ⊗ a � vec � aaH � , the entries of this vector have a certain
Hermitian symmetry property. It follows that there exists a data-
independent unitary matrix Q such that Q � ā ⊗ a � is real, for any a.
A consequence of this is that for the Hermitian joint diagonaliza-
tion problem (1), all kinds of derived matrices are real or can be
mapped to real. In particular, the expressions for M̂, the gradient
FH and Hessian FHF are real by itself.
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