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Abstract—The path-loss exponent (PLE) is one of the most
crucial parameters in wireless communications to characterize
the propagation of fading channels. It is currently adopted for
many different kinds of wireless network problems such as power
consumption issues, modeling the communication environment,
and received signal strength (RSS)-based localization. PLE esti-
mation is thus of great use to assist wireless networking. However,
a majority of methods to estimate the PLE requires either some
particular information of the wireless network, which might be
unknown, or some external auxiliary devices, such as anchor
nodes or the global positioning system (GPS). Moreover, this
external information might sometimes be unreliable, spoofed or
difficult to obtain. Therefore, a self-estimator for the PLE, which
is able to work independently, becomes an urgent demand to
robustly and securely get a grip on the PLE for various wireless
network applications.

This paper is the first to introduce two methods which can
solely and locally estimate the PLE. To start, a new linear
regression model for the PLE is presented. Based on this model,
a closed-form total least squares method to estimate the PLE
is firstly proposed, in which, without any other assistance or
external information, each node can estimate the path-loss expo-
nent merely by collecting RSSs. Secondly, in order to suppress
the estimation errors, a closed-form weighted total least squares
method is further developed having a better performance. Due
to their simplicity and independence of any auxiliary system, our
two proposed methods can be easily incorporated into any kind
of wireless communication stack. Simulation results show that
our estimators are reliable even in harsh environments, where
the PLE is high. Many potential applications are also explicitly
illustrated in this paper, such as secure RSS-based localization,
k-th nearest neighbor routing, etc. Those applications detail the
significance of self-estimation of the PLE.

Index Terms—Radio propagation channel, path-loss exponent,
log-normal shadowing, total least squares, security

I. INTRODUCTION

IN wireless communications, the received instantaneous
signal powers at receivers are commonly modeled as the

product of the large-scale path-loss and the small-scale fading.
The large-scale path-loss assumes that the attenuation of the
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average received power is subject to the transmitter-receiver
distance r as rγ , where γ is the path-loss exponent (PLE). Due
to the dynamics of the communication channel, the PLE varies
over different scenarios and different locations. At the same
time, the small-scale fading constitutes a rapid fluctuation
around the average of the received powers and follows a
stochastic process. It is mainly due to the multi-path effect
and changes over very small distances and very small time
intervals. However, it can generally be well-suppressed by
means of some special receiver designs and digital signal pro-
cessing (DSP). Therefore, the PLE becomes a key parameter
to characterize the propagation channel, which significantly
determines power consumption, quality of a transmission link,
efficiency of packet delivery, etc.

It is of importance to accurately estimate the PLE so that
the wireless communication stack can be dynamically adapted
to the PLE changes in order to yield a better performance. For
instance, a path with a relatively low PLE can be chosen to
route messages in order to save power. The PLE is also sig-
nificant for some other applications. For instance, to calculate
the location of a target node in received signal strength (RSS)-
based localization, accurate PLE estimation is required, which
is mostly provided by reference nodes with known positions.
However, in some cases, the reference nodes might be broken
and cannot talk to the target node or the location information
of the reference nodes might be unreliable, or spoofed by an
adversary. Then, accurately estimating the PLE will become a
difficult task.

Current methods to estimate the PLE either require some
information of the wireless network, which is unknown in
most cases, or the assistance from auxiliary systems. Three
algorithms are presented in [1]: firstly, when the network
density is known, the PLE can be estimated by observing
RSSs during several time slots and by calculating the mean
interference; as regards to the other two algorithms, by chang-
ing the receiver’s sensitivity, the PLE can be estimated either
from the corresponding virtual outage probabilities or from
the corresponding neighborhood sizes. All three algorithms
require the knowledge of the network density or the receiver
settings, and even require changing them. Other methods to
estimate the PLE mostly lie in the area of RSS-based local-
ization. As already mentioned, using the RSSs for localization
requires an accurate estimate of the PLE, which is tightly re-
lated with the transmitter-receiver distance. Therefore, special
reference nodes with known positions, namely anchor nodes,
are strategically pre-deployed with the purpose of calibrating
the PLE [2]. Considering that the transmitter-receiver dis-
tances between anchor nodes can be difficult or expensive
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to accurately measure in some environments, the PLE can
also be estimated by using received power measurements and
geometric constraints of anchor nodes to avoid the distance
calculation [3]. In the mean time, many efforts have been put to
jointly estimate the location and the PLE [4]–[6]. Some other
methods start with an initial guess of the PLE to approximate
the location which is then used to update the PLE estimate
[7], [8]. However, all those methods basically rely on the
information from anchor nodes or other auxiliary systems.
Once such systems are attacked, unavailable or generate large
errors, the impact on the whole system will be unimaginable.
Furthermore, the above methods are also not feasible for many
kinds of wireless networks, in which communications and
information exchanges might be highly restricted. Therefore,
a new self-estimator of the PLE is urgently required, which
can solely and locally estimate the PLE without relying on
any external assistance. Such an estimator should not only
be able to serve localization techniques, but can also act as
a general method which can be easily incorporated into any
kind of wireless network and any layer of the communication
stack.

The rest of the paper is structured as follows. In Section II,
we present the system model considered in this paper and
discuss the problem statement. Some new parameters are
introduced in Section III to build a linear regression model
for the PLE. Section IV presents and discusses the derivation
of our two proposed path-loss exponent estimators. Simulation
results are given and analyzed in Section V. Many potential
applications are discussed in Section VI. Section VII finally
summarizes the paper.

II. SYSTEM MODEL

In this section, we introduce some important system model
concepts and additionally describe the problem statement.

A. Node Distribution

Due to the unknown topology of wireless networks, espe-
cially in wireless ad hoc networks, neighbors of a node are
ideally considered randomly deployed within the transmission
range, indicated by W . In other words, a local random
region around the considered node is assumed. Therefore, the
probability of finding k nodes in a subset Ω ⊂W is given by

P [k nodes in Ω] =
n!

k!(n− k)!

(
µ(Ω)

µ(W )

)k (
1− µ(Ω)

µ(W )

)n−k
,

(1)
where P denotes probability, n is the neighborhood size in W
and µ(·) is the standard Lebesgue measure. If we let Ω be a
d-dimensional ball of radius r originating at the considered
node, µ(Ω) is the volume of Ω and is given by µ(Ω) = cdr

d,
where

cd =
πd/2

Γ(1 + d/2)
, (2)

where Γ(·) is the gamma function. When d = 1, 2 or 3,
cd = 2, π and 4

3π, respectively. For example, wireless ve-
hicular networks can be modeled in a 1-dimensional space,
a flat-earth model requires d = 2, and wireless unmanned

aerial vehicle communications requires d = 3. In this paper,
all formulae are generalized in a d-dimensional manner for the
sake of theoretical consistency.

B. Channel Model

The attenuation of the channel can be modeled as comprised
of the large-scale fading, the shadowing effect and the small-
scale fading. The large-scale fading indicates that the empirical
deterministic reduction in power density of an electromagnetic
wave is exponentially associated with the distance when it
propagates through space. We assume that the transmitted
power Pt is reduced through the propagation channel over
a distance r, such that the received signal strength Pr is given
by

Pr = C1Pt

(r0

r

)γ
, (3)

where r0 � r is the reference distance related to far-field
and C1 is a non-distance-related constant that depends on the
carrier frequency, the antenna gain and the speed of light. Pr
and Pt are both expressed in Watts.

Depending on the environment, the path-loss exponent
(PLE) γ ranges from 2 to 6 [9]. Obstacles, such as trees,
buildings and so forth, cause the actual attenuation of the
received power to follow a log-normal distribution, also called
the shadowing effect. As such, (3) has to be changed into

∆P = 10γlog10(r)− 10log10(C1)− 10γlog10(r0) + χ, (4)

where ∆P = 10log10( PtPr ) in dB indicates the attenuation
of the signal strength and χ follows a zero-mean Gaussian
distribution with standard deviation 2 < σ < 12. To serve
the following derivations, two severe consequences of the
shadowing effect should be mentioned:

1) The theoretical neighborhood size n is different from
the actual neighborhood size n̂ = n + ∆n. As shown
in Fig. 1 for d = 2, the dashed regular circle is the
theoretical transmission range of node A. In fact, packets
can be successfully received under the condition that
Pr > Pthres, where Pthres is the receiver’s sensitivity.
Due to the shadowing effect, the actual transmission
range is irregular, as indicated by the solid line.

2) Another consequence caused by the shadowing effect is
that after ranking all the received powers at node A,
the node with the î-th strongest received power Pr,̂i
corresponds to the i-th nearest neighbor at distance ri,
where î = i+ ∆i.

When signals are being transmitted, scatterers and reflectors
create several reflected paths that reach the receiver, besides
the line-of-sight (LOS). This is called the small-scale fading,
which is non-distance-related. The instantaneous received sig-
nal envelope follows the Nakagami-m distribution [10] and
the distribution of the instantaneous received power p is hence
given by

P(p) =
( m
E(p) )mpm−1e−

mp
E(p)

Γ(m)
, (5)

where m is the fading parameter and a small value of m
indicates more fading. The measured received power Pr can be
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Figure 1: The impact of the shadowing effect on node A:
n̂ is the estimate of the theoretical neighborhood size n by
counting the reachable neighbors, n̂ = n + ∆n. By ranking
the received powers at A, the corresponding ranking numbers î
are the estimate of the ranking numbers i of the ranges, where
î = i+ ∆i.

obtained by taking the average over K consecutive time slots
of instantaneous received powers pk, i.e. Pr = 1

K

∑K
k=1 pk

and thus, V ar(Pr) = [E(pk)]2

Km . When K is large enough, the
impact of the small-scale fading can be greatly eliminated.
Additionally, a well-designed receiver is able to suppress the
multi-path effect to a great degree by using special antenna
designs such as a choke ring antenna, a right-hand-circular
polarized (RHCP) antenna, etc. Therefore, the power attenu-
ation model in this paper is mostly subject to the large-scale
fading and the shadowing, and hence we will rely on (4) in
the rest of this paper.

C. Problem Statement

We are now aiming at developing a new self-estimator of the
PLE. The desired properties of the proposed estimator can be
summarized as: simple, pervasive, local, sole, collective and
secure. Simple indicates that the proposed estimator should
be easy to implement and carry out. Pervasive signals that it
can be incorporated into any kind of network regardless of its
design. Therefore, the only freedom left for us is to utilize
the received signal strength. Some kind of networks might
not have any external auxiliary system or access to external
information and their mutual nodal cooperations might be
severely constrained. And even if there are no such constraints,
adversaries can easily tamper with or forge the exchanged
critical information. This requires that the estimator has to
run solely on a single node by collecting the locally received
signal strengths. By this means, a path-loss exponent can be
securely and locally estimated.

As is shown in (3), the path-loss exponent γ is strictly
subject to the power attenuation and the transmitter-receiver
distance. Therefore, conventional estimators in wireless local-
ization try to obtain the path-loss exponent by introducing
anchor nodes to fix the transmitter-receiver distance and by

observing power attenuations. However, the desired properties
of the proposed estimator determine that it is not possible to
fix or to know exact transmitter-receiver distances of some of
the collected received signal strengths. As such, we can define
the problem as “How can we estimate the path-loss exponent
γ without knowing transmitter-receiver distances, i.e., merely
from the local received signal strengths?”

III. LINEAR REGRESSION MODEL FOR THE PATH-LOSS
EXPONENT

In order to solve the earlier mentioned problem, we intro-
duce some new parameters. After estimating those parameters,
a new linear regression model for the PLE is presented.

A. Ranking Received Signal Strengths
Let us focus on a single node and denote Pr,̂i as the î-th

strongest power received at the considered node where î =
1, 2, . . . , n̂, i.e., Pr,1 ≥ Pr,2 ≥ · · · ≥ Pr,n̂ and ri as the i-th
closest range to the considered node, where i = 1, 2, . . . , n,
i.e., r1 ≤ r2 ≤ · · · ≤ rn. As we mentioned earlier, î =
i + ∆i is considered as an estimate of i, where ∆i is called
the mismatch.

From (4), we can then write

∆Pî = 10γlog10(ri)− C2 + χi, (6)

where χi ∼ N (0, σ2), ∆Pî = 10log10(Pt/Pr,̂i) and C2 =
10log10(C1) + 10γlog10(r0) is a constant. We assume that all
neighboring nodes transmit signals with the same power Pt
such that the ordered values of Pr,̂i lead to the ordered values
of ∆Pî, i.e., we can assume that ∆P1 ≤ ∆P2 ≤ · · · ≤ ∆Pn̂.
Admittedly, in a more realistic situation, the transmit power Pt
at each neighboring node might be different. But our proposed
estimators can still remain feasible in such a case and we will
come back to this issue in Section IV-D.

B. Linear Regression Model for the Path-Loss Exponent
From (6), we notice that ∆Pî is a function of Pt and

C2, which are both unknown. But these can be canceled by
subtracting ∆Pĵ from ∆Pî leading to ∆Pî,ĵ = ∆Pî−∆Pĵ =
10log10(Pr,ĵ/Pr,̂i) which can further be written as

∆Pî,ĵ = 10γlog10(ri)− 10γlog10(rj) + χi,j

= 10γlog10

(
ri
rj

)
+ χi,j

(7)

where χi,j ∼ N (0, 2σ2).
Now, we define Li = 10log10(ri) as a logarithmic function

of ri, and hence Li,j = Li − Lj = 10log10( rirj ). Thus (7)
becomes

∆Pî,ĵ = γLi,j + χi,j . (8)

It is already apparent that if Li,j can be estimated, a linear
regression model for the path-loss exponent can be constructed
from (8). Let us denote L̂î,ĵ as the estimate of Li,j and εî,ĵ
as the corresponding estimation error. The linear regression
model is then given by

∆Pî,ĵ = γ(L̂î,ĵ − εî,ĵ) + χi,j . (9)



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2014.2380823, IEEE Transactions on Vehicular Technology

C. Estimation of Li,j
As discussed in the problem statement, it is not possible

to directly obtain the transmitter-receiver distances if the
estimating node solely and locally collects the received signal
strengths. Therefore, the idea of ranking the received signal
strengths is crucial to our method.

By ranking the values of Pr,̂i, we obtain the ranking number
î which will be further used to estimate the ranking numbers
i of the ranges, where we recall that î = i+ ∆i. Additionally,
it is obvious that i indicates the number of nodes within the
ball of radius ri, which can be further exemplified in Fig. 2.
Therefore, the essence of the proposed method is to use the
rank numbers of î as new measurements to estimate the values
of Li,j .

Note that Li,j is a linear combination of Li and Lj . We
focus on estimating Li and the estimate of Lj can be obtained
likewise.

Considering (1) and (2), the probability mass function of
finding i nodes within the d-ball of radius ri, which is
parameterized by Li = 10log10(ri), can be written as

P [i | Li] =
n!

i!(n− i)!

(
cd10

dLi
10

µ(W )

)i(
1− cd10

dLi
10

µ(W )

)n−i
.

(10)
Based on (10), to find the maximum likelihood estimator L̂i,
we need to force the derivative of our likelihood function to
zero by

∂ ln(P [i | Li])
∂Li

= 0. (11)

Therefore, by solving (11), the maximum likelihood estimator
L̂i can be easily obtained as

L̂i =
10

d
log10

(
iµ(W )

ncd

)
. (12)

Likewise, L̂j can be obtained and the estimate of Li,j is hence
given by

L̂i,j =
10

d
log10

(
i

j

)
= Li,j + εi,j , (13)

where εi,j is the estimation error of L̂i,j . Plugging î = i+ ∆i
and ĵ = j + ∆j into (13), we have

L̂î,ĵ =
10

d
log10

(
î

ĵ

)
= Li,j + εî,ĵ (14)

and
εî,ĵ = εi,j + ∆εi,j , (15)

where ∆εi,j = L̂î,ĵ − L̂i,j = 10
d log10( i+∆i

i
j

j+∆j ).
From (13) and (14), we even notice that µ(W ), n and cd

disappear after subtraction. This makes the proposed estima-
tors only subject to the received signal strengths and the rank
numbers in a d-dimensional space.

IV. PATH-LOSS EXPONENT ESTIMATION

To solve the linear regression model, the total least squares
(TLS) method helps us to obtain the estimate of the path-loss

Figure 2: In 2-dimensional space when the shadowing effect
does not impact the ranking, i.e. î = i, the solid circle shows
the transmit range of random node A, where A receives 12 sig-
nal strengths from its neighbors. Its 3th and 6th closest neigh-
bors lie on the dotted circles which have r3 and r6 as radii,
respectively. Therefore, r3 has 3 nodes inside, while r6 has 6
nodes inside. Pr,3 and Pr,6 are respectively the 3th and the
6th strongest received powers. ∆P3,6 = 10log10(Pr,6/Pr,3)

and L̂3,6 = 10
2 log10( 3

6 ) ≈ −1.505. Likewise, other pairs of
∆Pî,ĵ and L̂î,ĵ can be obtained.

.

exponent γ. However, the general solution to the total least
squares method turns out to be time-consuming. Therefore,
a closed-form solution is provided saving computational time
tremendously. Moreover, a closed-form weighted total least
squares method is further proposed to suppress the estimation
errors yielding a better performance.

A. Total Least Squares Solution

As for the example in Fig. 2, node A computes ∆Pî,ĵ and
estimates L̂î,ĵ for all pairs of nodes within its range, i.e., î, ĵ =
1, 2, 3, · · · , n̂. However, from (9), we notice that the received
signal strengths are corrupted by the shadowing and the values
of L̂î,ĵ are measured with errors. Therefore, the total least
squares method is utilized to obtain our estimate, γ̂tls [11].

We assume that the considered node has n̂ neighbors and all
RSSs from its neighbors are ranked. Thus, we have a sample
set of ∆Pî,ĵ values whose size is N =

(
n̂
2

)
in total. We

vectorize the collected samples of ∆Pî,ĵ and the corresponding
values of L̂î,ĵ , which are respectively represented by the N×1

vectors ∆P and L̂. Then, (9) can be rewritten as

∆P = γ(L̂−E) + X, (16)

where E and X are respectively the N×1 vectors obtained by
stacking the estimation errors εî,ĵ on L̂î,ĵ and the shadowing
parameters χi,j . The basic idea of the total least squares
method is to find an optimally corrected system of equations
∆Ptls = γL̂tls with ∆Ptls := ∆P−Xtls, L̂tls := L̂−Etls,
where Xtls and Etls are respectively optimal perturbation
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vectors. Therefore, the path-loss exponent estimate γ̂tls for
γ is the solution to the optimization problem

{γ̂tls,Xtls,Etls} := arg min
γ,X,E

‖[X E]‖2F (17)

subject to (16), where ‖·‖F is the Frobenius norm.
By changing (16) into[

(L̂−E) (∆P−X)
] [ γ
−1

]
= 0, (18)

we see that this is a typical low-rank approximation problem
where the rank of the augmented matrix [L̂ ∆P] should be
optimally reduced to 1.

Therefore, we compute the singular value decomposition
(SVD) of [L̂ ∆P] resulting in

[L̂ ∆P] = UΣVT

where V can be explicitly expressed as

V =

[
V11 V12

V21 V22

]
.

Based on the Eckart-Young theorem [12], the estimated path-
loss exponent is then given by

γ̂tls = − 1

V22
V21. (19)

B. Closed-Form Total Least Squares Estimation

The SVD-based method discussed in the previous section
provides a general solution to the total least squares problem.
However, considering the complexity brought by the SVD
when processing a tremendous number of samples, a simplified
method is required.

Noting the linearity of (16) and the fact that the total least
squares method minimizes the orthogonal residuals, we can
reformulate the TLS cost function as

Jtls =
||∆P− γL̂||2

1 + γ2
. (20)

By solving

∂Jtls
∂γ

=
γ2L̂T∆P + γ(L̂T L̂−∆PT∆P)− L̂T∆P

(1 + γ2)2
= 0,

(21)
we obtain two solutions, which are respectively given by

γ̂1 = η +
√

1 + η2 > 0 (22)

and
γ̂2 = η −

√
1 + η2 < 0, (23)

where η = ∆PT∆P−L̂T L̂

2L̂T∆P
.

Actually, optimizing (20) can also be viewed as finding a
linear curve with slope γ through the origin, in which the
values of Pî,ĵ and the values of L̂î,ĵ are respectively on the
y-axis and x-axis. Please also refer to [13] for some other total
least squares solutions to different modified linear regression
models. Therefore, it is evident that two perpendicular curves
are obtained, i.e., γ̂1γ̂2 = −1. One of the solutions minimizes

Figure 3: The computational time of the traditional solution
and the closed-form solution.

Jtls while the other maximizes it. Considering that γ̂tls > 0,
the total least squares path-loss exponent (TLS-PLE) estimate
is obviously given by γ̂tls = γ̂1

As far as the computational complexity is concerned, the
SVD procedure on [L̂ ∆P] requires a complexity of O(8N2)
to obtain U, Σ and V [14]. If only V is required to esti-
mate the PLE, the SVD-based method still has a complexity
of O(16N). However, our closed-form solution has only a
complexity of O(3N).

Compared with the SVD-based solution, we also measure
the average computational time when the transmission range
is 200 m. The methods are implemented in Matlab 2012b on
a Lenovo IdeaPad Y570 Laptop (Processor 2.0GHz Intel Core
i7, Memory 8 GB). As shown in Fig. 3, the computational
time of the closed-form solution is greatly reduced especially
when the sample size is increased.

C. Closed-Form Weighted Total Least Squares Estimation

From the aforementioned analyses, we can conclude that
there are three kinds of errors impacting the path-loss exponent
estimate:

1) The estimation error εi,j on L̂i,j is subject to the spatial
dynamics of the node deployment. Therefore, when in-
creasing the actual density, such errors will be decreased.

2) The shadowing effect introduces a Gaussian error χi,j
which will decrease when the sample size is increased.

3) The last kind of error is the ∆εi,j which represents the
mismatch between the ranking numbers of the received
powers and the ranges. This kind of error is subject not
only to the shadowing but also to the spatial dynamics
of the nodes. When the actual density is increased and
the nodes get closer to each other, the differences of the
received powers become relatively small which leads to
a large impact of the shadowing on the ranking.

We propose a weighted total least squares method targeting
the suppression of the ∆εi,j . Plugging î = i + ∆i and ĵ =
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Figure 4: The total least squares weights as a function of î for
n̂ = 100 and ĵ = 50.

j + ∆j into ∆εi,j , we have

∆εi,j =
10

d
log10

(
î

î−∆i

)
− 10

d
log10

(
ĵ

ĵ −∆j

)
. (24)

By using some bounds of the natural logarithm

1− î−∆i

î
≤ ln

(
î

î−∆i

)
≤ î

î−∆i
− 1, (25)

where equality is obtained when ∆i = 0, bounds for ∆εi,j
can be computed as

10ln(10)

d

(
2− î−∆i

î
− ĵ

ĵ −∆j

)
≤ ∆εi,j ≤

10ln(10)

d

×

(
î

î−∆i
+
ĵ −∆j

ĵ
− 2

)
.

(26)

Considering that 1 ≤ î−∆i ≤ n̂ and 1 ≤ ĵ −∆j ≤ n̂, we
can further bound ∆εi,j as

10ln(10)

d

(
2− î− n̂

ĵ

)
≤ ∆εi,j ≤

10ln(10)

d

(
n̂

î
+ ĵ − 2

)
.

(27)
From (27), we can finally find an upper bound of ∆ε2

i,j as

∆ε2
i,j ≤

100ln(10)2

d2
max{

(
n̂

î
+ ĵ − 2

)2

,

(
n̂

ĵ
+ î− 2

)2

}.
(28)

The idea is now to assign a large weight to a sample with a
small upper bound of the mismatch ∆ε2

i,j . Therefore, based
on (28), the weights can be constructed by

ωi,j =
1

max{( n̂
î

+ ĵ − 2)2, ( n̂
ĵ

+ î− 2)2}
. (29)

We plot the weights when ĵ = 50 and n̂ = 100 in Fig. 4.
By stacking the values of ωi,j on the diagonal of a diagonal

matrix in the same way we stack the values of ∆Pî,ĵ and the

values of L̂î,ĵ , we construct the N ×N weight matrix W and
then the weighted TLS cost function can be constructed by

Jwtls =
(∆P− γL̂)TW(∆P− γL̂)

1 + γ2
. (30)

As before, the closed-form weighted total least squares path-
loss exponent (WTLS-PLE) estimate is then easily given by

γ̂wtls = η′ +
√

1 + η′2, (31)

where η′ = ∆PTW∆P−L̂TWL̂

2L̂TW∆P
.

D. Discussions and Future Works

In this section, we discuss some remaining theoretical
problems and some possible issues related to real-life envi-
ronments. Meanwhile, we cast light on our future works.

1) Cramér-Rao Lower Bound: The Cramér-Rao lower
bound (CRLB) is very difficult to obtain for this problem.
This is due to the fact that the estimation accuracy of the
PLE is subject to the spatial dynamics, the shadowing and the
rank number estimate. They are all mutually related, especially
for the ranking number estimate which does not follow any
known probability density function (PDF). That is also why
we selected a bound on the error to construct the weights in
order to suppress the mismatch of the ranking numbers.

In our future work, we are looking for one-step estimation
methods which can directly utilize the RSSs without the
ranking procedure. To achieve that, a PDF of the RSS in an
ad-hoc environment is required, which considers the spatial
dynamics and the shadowing. Based on such a PDF, a better
estimator, such as the maximum likelihood (ML) estimator,
and the CRLB can be introduced.

2) Different Transmit Powers: Previously, we assume the
same transmit power Pt for all the neighboring nodes, which
might not be so realistic. But assume now that the transmit
powers are different. We then have to particularly estimate
the transmit power Pt,̂i from the î-th node to calculate the
path-loss ∆Pî := 10log10(Pt,̂i/Pr,̂i) and further compute
the ∆Pî,ĵ := ∆Pî − ∆Pĵ . Otherwise, if we still compute
∆Pî,ĵ := 10log10(Pr,ĵ/Pr,̂i), our estimators will become
worse yet still feasible. To see that, we firstly need to as-
sume an unknown average transmit power P̄t and hence use
10log10(Pt,̂i) = 10log10(P̄t) + ∆Pt,̂i, where ∆Pt,̂i is the
deviation in dB of the transmit power from the î-th node.
Then (9) has to be changed into

∆Pî,ĵ = γ(L̂î,ĵ − εî,ĵ) + χi,j + ∆Pt,̂i,ĵ , (32)

where P̄t can still be cancelled and ∆Pt,̂i,ĵ := ∆Pt,̂i−∆Pt,ĵ .
Obviously, although X in (16) has to become the vector of
χi,j+∆Pt,̂i,ĵ values, our proposed estimators can still estimate
the PLE since the general form of (16) remains the same.

So if we assume that ∆Pt,̂i,ĵ is Gaussian distributed,
χi,j + ∆Pt,̂i,ĵ is still a zero-mean Gaussian variable, which
means that the different transmit powers can equivalently be
considered as a more severe shadowing impact. Therefore, for
convenience, we still assume the same transmit power in this
paper.
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Figure 5: The demonstration of the directional PLE estimation
in R2: A is the considered node collecting the RSSs from
within the angle φ. Wφ is the actual transmission range
bounded by φ and the shaded area Ωφ is the corresponding
sector with radius r.

.

3) Directional PLE Estimation: Another practical problem
is that the PLE sometimes varies over different directions
while we previously assume that the PLE is omni-directionally
the same. To cope with this problem, we discuss and can
extend our proposed estimators with a directional PLE esti-
mation.

As shown in Fig. 5, we assume that only the RSSs from the
nodes within the angular window φ are subject to the same
PLE. Hereby in (1), W has to become the actual transmission
range bounded by the angle φ, say Wφ, while Ω becomes the
corresponding sector Ωφ with radius r. The volume of Ωφ
then becomes µ(Ωφ) := cd,φr

d, where for d = 1, 2, 3 we have
c1,φ := 1, c2,φ := φ/2 and c3,φ := 2π

3 (1 − cosφ). Since the
nodes are still randomly deployed within Wφ, compared with
(10), we can hence similarly write

P [i | Li] =
n!

i!(n− i)!

(
cd,φ10

dLi
10

µ(Wφ)

)i(
1− cd,φ10

dLi
10

µ(Wφ)

)n−i
.

(33)
Even though the estimate of Li has to be changed into

L̂i =
10

d
log10

(
iµ(Wφ)

ncd,φ

)
, (34)

the estimate of Li,j however remains the same, i.e., L̂i,j :=
L̂i− L̂j , since µ(Wφ), n and cd,φ will be canceled. Therefore,
the rest of the theoretical derivation remain the same and our
estimators are still feasible.

To achieve a directional PLE estimate, we only have to
constrain the RSS sample set within a certain angular window
φ and our proposed estimators can estimate the PLE for the
given direction. Of course to achieve the same accuracy, the
directional PLE estimator has to collect more samples than
the omni-directional PLE estimator. Again in this paper, for
convenience, we still assume the same PLE for all directions.

V. SIMULATIONS

In this section, we simulate our two proposed path-loss
exponent estimators in a 2-dimensional space and we leave

Figure 6: Demonstration of the C-PLE estimator: node A
changes its receiver’s sensitivity from Pthres1 to Pthres2. The
solid circle and the dashed circle are respectively the transmis-
sion ranges related to Pthres1 and Pthres2. The corresponding
neighborhood sizes are n̂1 = 12 and n̂2 = 6 in this figure.
The estimated path-loss exponent can be obtained from (35).

.

Table I: Values of the parameters used in the simulations.

Parameter Value
Dimension d = 2

Carrier frequency 2401 MHz

Receiver sensitivity For TLS-PLE and WTLS-PLE, Pthres
is adjusted to have a theoretical

transmission range of 200 m.

For C-PLE, Pthres1 = Pthres and

Pthres2 = 2Pthres.

Number of trials 100

real-life experiments as future work. Two simulations are con-
ducted to study their performance, with different shadowing
impacts and with different actual densities.

We also compare them with the path-loss exponent estimator
based on the cardinality of the transmitting set (C-PLE),
proposed in [1]. The C-PLE requires changing the receiver’s
sensitivity from Pthres1 to Pthres2 and evaluating the corre-
sponding cardinalities n1, n2 of the transmitting set, namely
the different theoretical neighborhood sizes. Thus, considering
the shadowing, C-PLE is given in a 2-dimensional space by

γ̂c = 2ln

(
Pthres2
Pthres1

)
/ln

(
n̂1

n̂2

)
, (35)

where n̂1 and n̂2 are the corresponding actual neighborhood
sizes. Fig. 6 gives an example of the C-PLE estimator. In our
simulations, we set Pthres2 = 2Pthres1.

To avoid any border effect, our simulations take place in
a very large area, where nodes are randomly deployed. The
estimated PLE is only considered for a single node somewhere
in the center of the network, rather than for every node in the
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Figure 7: The performance of different PLE estimators with
an increasing standard deviation of the shadowing.

Figure 8: The length of the arrow indicates the received signal
strength reduction ∆P and the dashed rectangles show the
shadowing effect χ. Considering the shadowing means that the
arrows can end up anywhere within the rectangles. The width
of the rectangle indicates the severity of the shadowing. Under
the same transmitter-receiver distance, the arrow with a smaller
path-loss exponent is shorter and thus easier to be impacted
by the shadowing effect. Therefore, under a high PLE, the
matching between the ranking numbers of the received powers
and the ranges is not so easily disrupted in the TLS-PLE and
the WTLS-PLE. Likewise, the shadowing also becomes more
tolerable when estimating the theoretical neighborhood size in
the C-PLE.

wireless network. The Monte Carlo method is used to generate
the results by repeatedly deploying nodes. The general settings
are shown in Table I.

The normalized root mean square error (RMSE) is adopted
to present the accuracy of the estimator. In this paper, the

normalized RMSE is defined by

√
1

Ntrials

∑Ntrials
i=1

[
γ̂(i)−γ
γ

]2
,

where Ntrials is the number of simulation trials, γ̂(i) is the
estimate of the PLE in the i-th trial, and γ is the actual PLE.

A. The Impact of the Shadowing

This simulation is conducted when the actual density is
set as 0.005 node/m2. Three estimators are studied with

Figure 9: The performance of three considered estimators with
an increasing actual density.

an increasing standard deviation of the shadowing and an
increasing actual path-loss exponent. Observing Fig. 7, we can
conclude the following:

1) Our two proposed methods outperform the C-PLE esti-
mator. This can be easily understood from the fact that
our methods consider received powers from all neighbors
rather than only using two neighborhood sizes. Besides,
the total least squares procedure helps to minimize the
three kinds of errors mentioned earlier.

2) When the shadowing effect becomes more severe, the ac-
curacy of the three estimators decreases. For the C-PLE,
the accuracy mainly depends on the absolute deviation of
the actual neighborhood size |∆n| = |n̂−n|. The shadow-
ing increases such an absolute deviation thus leading to a
worse accuracy. For our methods, the shadowing impacts
the accuracy by increasing |χi,j | and by disrupting the
matches between the rank numbers of the received powers
and the ranges, i.e, by increasing |∆εi,j |.

3) Surprisingly, the performance of the estimators becomes
better in a hasher environment, i.e, when the actual
path-loss exponent is high. This is due to the fact that
a high PLE causes relatively large differences between
the received powers which makes the shadowing effect
more tolerable. It is better explained in Fig. 8. To be
specific for our methods, when the PLE is small, the
accuracy is subject to the three kinds of errors χi,j , εi,j
and ∆εi,j . However, when the actual PLE is increased,
the matches of the rank numbers are more accurate, i.e,
|∆εi,j | decreases.

4) The WTLS-PLE has a better performance than the TLS-
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Figure 10: Attacker C reports its fake location at fake C. Both
reference nodes like reference A and reference B and the target
node target D can self-estimate the PLE. Based on the self-
estimated PLE and the location information, the shaded area
can be constructed as the trust region for detecting an attacker,
outside which attacker C will be detected.

PLE, especially under a small PLE. Meanwhile, the
improvement of the WTLS-PLE is not so obvious com-
pared with the TLS-PLE when the PLE is high. This
is understandable from the fact that the WTLS-PLE is
especially targeted at suppressing ∆εi,j , the improvement
is hence insignificant when ∆εi,j is decreased which has
already been pointed out in the previous conclusion.

B. The Impact of the Actual Density

Since the estimation error εi,j of L̂i,j is related to the actual
density, we are interested in how the actual density impacts
the accuracy in this section. The transmission range is fixed
at 200 m and a 12 dB standard deviation of the shadowing
is considered. From Fig. 9, we can see that, compared with
the impact of the shadowing, the impact of the actual density
is relatively small. Additionally, when more samples are
collected, the WTLS-PLE has a larger improvement on the
accuracy by suppressing ∆εi,j .

VI. APPLICATIONS

The path-loss exponent plays a very significant role in many
kinds of wireless networks. Due to the difficulties to locally
and solely estimate the path-loss exponent though, only a few
techniques are able to utilize path-loss exponent measurements
in their designs. However, the proposed path-loss exponent
estimation approaches tackle such issues. In this section, we
detail some applications and discuss the significance of our
path-loss exponent self-estimation schemes.

A. Secure RSS-Based Localization

Due to our PLE self-estimation schemes, either the reference
node or the target node can solely and independently estimate
the PLE. Therefore, an adversary cannot launch an attack on

the PLE estimation by spoofing. For instance, as shown in
Fig. 10, even if there is a cheating reference node maliciously
reporting its fake location, e.g., attacker C registering itself
at fake C, the PLE can still be estimated accurately. Besides
making the RSS-based localization more robust to the spoofing
attack, this also enables every node to detect and locate the
cheating reference node.

1) Strategy for Detecting Cheating Reference Nodes: To
explicitly illustrate the strategy, we firstly explain each one’s
role and the detection algorithm will be described afterward:

• Each reference node knows its own location and is
skeptical to any reported location from the other reference
nodes.

– It periodically broadcasts its own location and self-
estimates the PLE simultaneously.

– It keeps listening to the messages broadcasted by the
other reference nodes, reading the RSSs and their
corresponding reported locations.

– It detects the attackers according to the self-estimated
PLE, the RSSs, the reported locations and its own
location. The detection algorithm will be discussed
later. As soon as an attacker is detected, it will
announce the detection as well as the corresponding
RSS from the attacker by broadcasting.

– In case some cheating reference nodes spoof the
attacker announcement, an announced attacker needs
to be further confirmed as a true attacker. To be
confirmed as a true attacker, the announced attacker
has to be announced more than T times, where
T depends on the total number of reference nodes
and the detection sensitivity. When the announced
attacker is confirmed as a true attacker, the corre-
sponding announced RSSs from the attacker at at
least d + 1 different reference nodes can further be
used to locate the attacker.

• Each target node only listens and is invisible to the other
nodes.

– It keeps listening to all information broadcasted by
the reference nodes. In the meantime, the PLE is
self-estimated.

– It discovers the true attackers from the message
broadcasted by the reference nodes and discards the
RSSs from the true attackers.

– Then, it can accurately and safely locate itself with
the rest of the RSSs.

2) Algorithm for Detecting Cheating Reference Nodes: To
complete the strategy, the algorithm for detecting the cheating
reference nodes is essential. For an explicit demonstration,
an example is shown in Fig. 10. Let us denote the locations
of reference A, reference B, attacker C, fake C and target D
respectively as sA, sB , sC , sC′ and sD. To detect attacker C,
we need to test two hypotheses, which are respectively defined
as

H0 : sC and sC′ are the same location. (36)

and
H1 : sC and sC′ are different locations. (37)
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The detection algorithm can be carried out with the following
procedure:

(a) Firstly, a reference RSS from the suspected reference node
needs to be calculated based on the self-estimated PLE,
the reported location and the own location of the detecting
node. For example, recalling the definition of RSS, the
reference RSS at reference B from attacker C can be
calculated in dB as

P ′r,C′B = C3 − 10γ̂Blog10(||sC′ − sB ||), (38)

where

C3 = 10log10(Pt) + 10log10(C1) + 10γ̂Blog10(r0)

and γ̂B is the self-estimated PLE at sB .
(b) Secondly, the actual RSSs from the suspected reference

node are recorded over time to construct our observation
set by subtracting the reference RSS. For example, refer-
ence B records the observation at time i, which is given
by

∆P ir,CB = P ir,CB − P ′r,C′B , (39)

where P ir,CB is the actual RSS in dB at time i from
attacker C and ∆P ir,CB ∼ N (µB , σ

2). If attacker C and
fake C have the same range, then µB = 0, otherwise
µB 6= 0.
Since only the range can be tested, we need two different
hypotheses for range testing, which are given by

H′0 : µB = 0. (40)

and
H′1 : µB 6= 0. (41)

Considering the fact that attacker C and fake C might
also have the same range to a reference node, e.g., to
reference A in Fig. 10, we hence have the relations H0 ⊂
H′0 and H′1 ⊂ H1. This means if H′1 is tested, attacker C
is certainly detected while if H′0 is tested, we might fail
to detect the attacker. But, we now focus on testing H′1
and the detection failure in H′0 will be discussed later.

(c) Finally, by using the Neyman-Pearson lemma [15], H′1
can be tested from the average observation over I time
slots. For example, the observation at reference B is given
by ρ = (

∑I
i=1 ∆P ir,CB)/I . If we wish to test at 95%

accuracy, the critical region for the observation is given
by

C = {(P 1
r,CB , P

2
r,CB , · · · , P Ir,CB) :

ρ ≤ −1.96σ/
√
I, ρ ≥ 1.96σ/

√
I}

(42)

Equivalently, we can also use the critical region

C = {(P 1
r,CB , P

2
r,CB , · · · , P Ir,CB) : ρ2 ≥ 3.84σ2/I},

(43)

which considers the Chi-squared distribution with ρ2 as
observation.

3) Discussions:

(a) The shadowing deviation σ is required for the Neyman-
Pearson test, which can be obtained by empirical training.

(b) The detection failure in H′0 can easily be noticed when
reference nodes work in a cooperative fashion according
to the detection strategy. Since every reference node
detects and announces the attackers, such a detection
failure can be somehow corrected by listening to the
announced information flooding in the network. Therefore,
the detection algorithm can be improved, by introducing a
new cooperative algorithm. For example, according to the
observations from multiple nodes, an attacker can still be
detected even if such a detection failure in H′0 occurs.

(c) Considering the shadowing, the complement of the critical
region corresponds to a trust region of the detecting node
in space, in which the detected node will be trusted. As
shown in Fig. 10, two shaded areas respectively indicate
the trust regions of reference A and reference B. Attacker
C resides outside the trust region of reference B but inside
that of reference A. Therefore, attacker C will be detected
by reference B but not by reference A. The size of the
trust region depends on the severity of the shadowing.

(d) The cheating node can also jeopardize this system by
maliciously announcing a credible reference node as an
attacker. In most cases, the credible reference nodes out-
number the attackers. Hence, the attackers can still be
smartly distinguished. However, if the attackers have the
majority, a more robust strategy might be required.

B. Energy-Efficient Routing

Since the path loss over a channel exponentially increases
with the distance, multi-hop communications becomes a better
option than single-hop to prolong the network lifetime. Rout-
ing is hence aimed at finding an efficient path to the destination
in order to minimize the power consumption. It is well-known
that a routing path is better to be chosen through an area
where the PLE is small. But alternatively, in this section, we
consider the k-th nearest neighbor routing protocol to illustrate
the significance of the PLE.

From (1), if considering the local random region W around
the considered node A as a d-dimensional ball of radius R,
i.e. µ(W ) = cdR

d, the distribution of the distance rk to the
k-th nearest neighbor is given by [16]

P(rk|k) =
d

rkB(n− k + 1, k)

(
rdk
Rd

)k (
1− rdk

Rd

)n−k
,

(44)
where B(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt = Γ(x)Γ(y)

Γ(x+y) is the beta
function. To avoid the singularity issue of (3), the received
power at the k-th nearest neighbor can also be given by

Pr,k = Pr,0

(
r0

rk

)γA
(45)

where Pr,0 is the received power at the reference distance
r0 < rk,∀k and γA is the PLE at the location of node A.
Let us denote the path-loss to the k-th nearest neighbor as
Lk :=

Pr,0
Pr,k

=
r
γA
k

r
γA
0

. We commonly assume r0 = 1 m and thus
Lk := rγAk . From (44), we can obtain the expectation of Lk
for a single hop to the k-th nearest neighbor, which can be
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Figure 11: The efficiency of single-hop communications: a
small value indicates a smaller power cost by increasing k,
i.e., a high power efficiency.

given by

E(Lk) =
RγAB(k + γA/d, n− k + 1)

B(n− k + 1, k)

=
RγAΓ(n+ 1)

Γ(n+ γA/d+ 1)

Γ(k + γA/d)

Γ(k)
.

(46)

From (46), we especially focus on ∂E(Lk)
∂k to study the

efficiency of increasing k, which is given by

∂E(Lk)

∂k
=

RγAΓ(n+ 1)

Γ(n+ γA
d + 1)

Γ(k + γA
d )(ψ(k + γA

d )− ψ(k))

Γ(k)
,

(47)

where ψ(x) = Γ′(x)
Γ(x) is the ploygamma function. We de-

note α = γA/d and plot the k-related part of (47), i.e.
f(k) = Γ(k+α)(ψ(k+α)−ψ(k))

Γ(k) in Fig. 11. When α < 1, ∂E(Lk)
∂k

decreases with k, which means that it takes less extra power
every time k is increased. As a conclusion, a single long-
hop communication link is more energy-efficient as long as
γA < d, which is also briefly pointed out in [16].

To be more realistic, we also conduct a numerical simulation
for the k-th nearest neighbor routing, in which the shadowing
effect is also considered. We introduce the average path-loss
for a single link, denoted by Lk = Lk/k. A 2-dimensional
space is considered with a density of 0.001 nodes/m2. As
is shown in Fig. 12, as long as the PLE is smaller than 2,
the average path-loss decreases with k and a single long-hop
link becomes energy efficient. Additionally, in the presence of
log-normal shadowing, Lk becomes larger than when there is
no shadowing. Such an increase also becomes larger with a
large PLE.

Many other interesting results have been obtained. However,
due to the limited space, no more tautology will be presented.
It is already evident that the efficiency of the k-th nearest
neighbor routing protocol highly relies on the actual PLE.
Therefore, the principles for designing such a routing protocol
should involve the PLE estimation. In a nutshell, an accurate
estimate of γA is hence necessary for designing an efficient

Figure 12: The numerical results of the k-th nearest neighbor
routing in a 2-dimensional space.

routing protocol.

C. Other Applications
To further illustrate some applications of the proposed

PLE estimators, we need to explicitly explain how the PLE
affects the network operation. The PLE has a multidimensional
effect on the performance of the whole system for wireless
networking:

1) It determines the quality of the signals at the receivers and
thus impacts the physical (PHY) layer. This is because the
PLE controls not only the received signal strength but also
the interference the nodes create for the other receivers.
Since the signal-to-interference-plus-noise ratio (SINR)
is decisive for the channel capacity and the performance
of decoding, the PLE is essential for designing the PHY
layer.

2) It determines the transmission range and thus impacts
the network (NET) layer and the media access control
(MAC) layer. The transmission range, together with the
neighborhood size, which is also determined by the PLE,
affects the performance of routing and the connectivity
in the NET layer. When the number of nodes within the
transmission range of a node increases, the contention
in the MAC layer consequently becomes more severe
and thus congestion of the network will occur. As a
consequence, the ability of delivering the packet will be
affected.

3) It determines the energy consumption for transmission
links and thus impacts the lifetime of networking. In
order to guarantee the efficiency of wireless network-
ing, the transmit power should be smartly controlled to
compensate for the energy loss on the transmission links.
Considering the battery is strictly limited in e.g. wireless
sensor networks, the PLE is rather significant to those
protocols aiming at prolonging the network lifetime.

Based on the above mentioned reasons, some other applica-
tions can be listed:

1) Relay nodes are recently drawing much attention [17]
and the mobile ones are even more flexible and more
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convenient [18]. Since the path-loss exponent is one of
the key criteria for energy-efficient routing, relay nodes
should be deployed or move to the place where the path-
loss exponent is relatively small. The relay nodes can also
benefit from the low PLE location to save the battery.
Therefore, relay nodes have to be able to estimate the
PLE.

2) Energy harvesting relies on ambient sources such as
solar, wind and kinetic activities, aiming at prolonging
the network lifetime. Particularly, among those sources,
radio-frequency (RF) signals, can also be used to charge
the battery of wireless sensors [19]. Its application is also
extended to cognitive radio in [20]. The PLE directly
determines the efficiency of harvesting and the size of
the harvesting zone. The time slot for harvesting could
be adaptive according to the PLE changes. Therefore, the
PLE estimation is very significant when the surrounding
communication environment is changing or the harvesting
node is mobile.

3) Power control requires distributedly choosing an appro-
priate transmit power for each packet at each node.
This is because of the fact that the transmit power
affects the wireless networking in the same way as the
PLE does [21]. Since the PLE is different at different
locations, an efficient power control scheme also needs to
distributedly and locally consider the PLE. Therefore, our
proposed estimators can be integrated into power control
to yield a better performance.

VII. CONCLUSIONS

Two self-estimators for the path-loss exponent are proposed
in this paper, in which each node can solely and locally
estimate the path-loss exponent merely by collecting the re-
ceived signal strengths. They rely neither on external auxiliary
systems nor on any information of the wireless network.
Their simplicity makes them feasible for any kind of wireless
network.

In order to better describe our estimators, a new linear
regression model for the path-loss exponent has been in-
troduced. Our closed-form total least squares method can
solve this linear regression model. Compared with the SVD-
based solution, our estimator tremendously saves computa-
tional time. Moreover, a weighted total least squares method
is also designed to better suppress the estimation errors.

Simulations present the accuracy of our estimators and
demonstrate that the shadowing effect dominantly influences
the estimation error. By analyzing the performance of the
estimators, it is interesting to observe that the estimators work
better in harsh communication environments, where the path-
loss exponent is high.

We have also discussed the significance of our PLE self-
estimators by illustrating some potential applications and have
brought the dawn to some relevant future researches.
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