
  

 

Abstract— State-of-the-art neuron simulators are capable of 

simulating at most few tens/hundreds of neurons in real-time 

due to the exponential growth in the communication costs with 

the number of simulated neurons. In this paper, we present a 

novel, reconfigurable, multi-chip system architecture based on 

localized communication, which effectively reduces the 

communication cost to a linear growth. The system is very 

flexible and it allows to tune, at run-time, various parameters, 

e.g. the intracellular concentration of chemical compounds, the 

interconnection scheme between the neurons. Experimental 

results indicate that the proposed system architecture allows 

the simulation of up to few thousands biophysically accurate 

neurons over multiple chips. 

I. INTRODUCTION 

The biologically accurate simulation of neuron networks 
has two main implications, i.e. it allows us to understand how 
the brain processes information without having to perform in 
vivo experiments, and it can lead to the design of brain 
implants capable of restoring damaged, destroyed, or even 
missing parts of the brain. Several realistic mathematical 
models have been proposed for various nerve cells and their 
complex interconnected networks [1]-[2]. Consequently, this 
allowed an increase in the biological accuracy of the 
simulated neural networks, e.g. the spiking neural networks, 
where information is encoded by both the firing rate and the 
transfer of spikes [1], [3]. One of the main characteristics of 
the neurons is that, although they are heavily interconnected, 
they function individually. Accordingly, to decrease the 
overall computation (simulation) time, the behavior of 
multiple neurons can be evaluated concurrently. Very large 
scale integration (VLSI) designs provide the necessary 
parallelism but do not allow for altering the neuron model 
after manufacturing and, thus, are too expensive for the 
experimental stage. A highly parallel architecture, such as a 
field programmable gate array (FPGA), provides sufficient 
hardware parallelism and performance for real-time and even 
hyperreal-time neuron simulations. Additionally, via (partial) 
reconfigurations of the hardware, various neuron models, e.g. 
simple models (integrate and fire [4], Izhikevich [5]), or 
Hodgkin-Huxley [6], simplified Hodgkin-Hoxley [7], 
extended Hodgkin-Hoxley [8], as well as different network 
topologies and cell interconnect schemes can be simulated.  
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The simulation of a network spread over multiple FPGA 
devices is a demanding task due to the identification of 
appropriate partitioning schemes, the limited speed of the 
FPGA interconnects, as well as their limited number. In this 
paper, we propose an efficient multi-chip dataflow 
architecture, which exploits data locality and minimize 
network communications over one or multiple FPGA 
devices. The system methodology uses double floating-point 
arithmetic for the most biologically accurate cell behavior 
simulation, and offers easy implementation of various neuron 
network topologies, cell communication schemes, as well as 
models and kinds of cells. All parts of the system are 
generated automatically based on the neuron interconnection 
scheme in use. The system is cycle accurate, flexible, and it 
allows to tune, at run-time, various parameters, e.g. the 
interconnection scheme between the neurons, the intracellular 
concentration of different chemical compounds (ions), which 
affect how action potentials are initiated and propagate.  

II. MULTI-CHIP DATAFLOW ARCHITECTURE DESIGN 

Communications between neuron cells are a function of 
their distances: cells placed close to each other in the network 
(neighbor cells) communicate more than cells placed far 
away from each other [1]. Accordingly, there are two aspects, 
which need to be considered: the network topology and the 
cell communication scheme. Different network topologies 
can be implemented; starting from an all-to-all network, we 
can progressively reduce the number of connections between 
the cells and see the effects on the entire network. Similarly, 
different cell communication schemes can be considered, 
even with the same network topology. Subsequently, various 
trade-offs between number of cells and number of 
connections/communications can be examined. 

In the proposed network (Fig. 1), the neuron cells are 
connected with decreasing probability the further they are 
apart. For neuron cells that are placed close to each other in 
the network, we introduce a structure called (neighbor) 
cluster, as illustrated in Fig. 2. Each cluster consists of either 
2 or 4 individual computation units, called physical cells 
(PhCs)

1
, arranged around a shared memory for storing all the 

communication data needed by the PhCs. The physical cells 
considered are based on an extended Hodgkin-Huxley model 
[9] for an accurate representation of the inferior-olivary 
nucleus cell state [8], [10]. However, the neuron network 
structure is not limited to any neuron model, and diverse 
neuron models can be easily used as well. Each PhC receives 
its input data from the cells it is connected to.  

 
1 The computation units are called physical cells (PhC) to recall that they 

are physically implemented in hardware, and that the outputs of their 

computations mimic the actual inferior-olivary nucleus (ION)-cell behavior. 
See [10] for additional information. 
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Fig. 1: The system overview. The computing elements (the PhCs) are 
grouped inside a cluster to make communication between neighboring cells 
fast. These clusters are connected in a tree topology network on chip. The 
router fan-out in this case is two and can be changed according to the 
requirements of the implementation. The same holds true for the number of 
PhCs in any cluster.  

 

Fig. 2: A cluster as used in the proposed system. The cluster allows for 
instant communication between any cells that are located inside the cluster. 
Each of the PhC time shares the calculation of multiple cells. The data of the 
cells that might be needed by other clusters is forwarded into a network-on-
chip. 

Each time a physical cell in a cluster completes a 
calculation step, its output is written into the dual-port shared 
memory: to interface the cluster with the network, and for the 
time-sharing within the cluster. Every PhC gains read and 
write access to the memory using a round-robin scheme. The 
cluster is controlled by three controllers. The first controller 
handles all the book keeping, including monitoring the start 
signals that are received from the network, and issues a done 
packet to the round controller after all data for the next 
iteration is present in the memory. The second controller 
observes which packets arrive from the network, stores them 
into the memory, and informs the book keeping controller 
that all needed packets have arrived. The last controller sends 
all packets upstream into the network and controls the round-
robin memory access. Additionally, it stalls the calculation if 
the upstream router is not able to receive more packets.  

In the proposed communication scheme, the majority of 
the communications is performed within the clusters, i.e. the 
data from other clusters is not required by most PhCs. If 
communication with other clusters is required, e.g. with cells 
located at the cluster boundaries, the output of these cells is 
forwarded upwards into the interconnection network. To 
incorporate the cell communication scheme into the network, 
we implemented a cycle-free, tree-based network topology. 
In this network each router has 2 to n children and each child 
can be either a cluster or another router. The leaves of the 
tree-based network consist of only clusters. 

 

Fig. 3: Diagram of a router as used by the proposed system. The routers 
are arranged in a tree topology. Each router has n children and except for the 
root router one upstream router. The router reads input packets from the input 
first-in, first-out buffer (FIFO). Based on routing tables it determines where 
the packets have to be forwarded. If a receiving FIFO is full, the packet is 
placed in the delayed buffer to be forwarded when the receiving router is free 
again.  

The number of children a router can have is homogeneous 
throughout the system. The clusters are unaware of the 
connections inside the network and forward the output of 
every cell calculated within a cluster to the (upstream) router 
they are connected to. The data produced by each cell in the 
network is combined with the cell identification number in a 
packet, which is injected into the network. Each router (Fig. 
3) decides, based on a static routing table (which reflects the 
way the cells communicate), in which direction i.e. to which 
cells, the packet has to be forwarded to: to all outputs and/or 
only to a subset, depending on the cell connections inside the 
system. Since no packet is allowed to be dropped, packets 
that cannot be forwarded right away, i.e. the receiving buffer 
is full, are stored for delayed delivery. The width of this 
delayed buffer is bp+[log2(no)] bit, where bp is the amount of 
bits for a packet, and no is the amount of outputs of the router. 
The depth of the delayed buffer is determined empirically; a 
depth of 240 is suitable even for high usage scenarios with 
all-to-all connections. To avoid cases that the router 
continuously tries to deliver delayed packets to full routers, 
new packets always have precedence over the delayed ones. 
The routing tables are generated during system initialization 
from the adjacency matrix that describes the cell connections. 
The root router of the tree is connected to the round 
controller, which controls the iterations of the system. Since 
packet forwarding is not aware of the complete network 
connectivity, the components are efficient and with limited 
overhead.  

The input and output module interface the system with 
the outside world. Each of the inputs receives a unique 
identification number starting from nc+2, where nc is the 
number of cells in the system, and at each system iteration 
these packets are injected into the system. In return, the 
outputs receive packets from specific cells. Additional 
interface is the control bus, i.e. I

2
C or SPI, for run-time 

control of the system. Each component can be addressed in a 
uniform fashion through a control bus, i.e. any router in the 
system, any cluster, any physical cell, any shared cell level. 
All routing tables can be modified at run-time, in order to add 
or remove connections between the cells. In a multiple FPGA 
scenario, two modes are available to support the control bus: 
either each FPGA is individually controlled, or one FPGA 
functions as a main node and redirects the network traffic to 
the appropriate FPGA. 
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The speed between the different FPGAs largely depends 
on the techniques used for transmissions and can vary from 
faster than a transmission between routers inside the FPGA 
for very sophisticated (and expensive) interconnects, to many 
times slower for simple or low power interconnect [11]. As 
the communication frequency decreases closer to the root of 
the network tree, multiple FPGAs can be connected at the 
highest level without significant impact on performance. 
However, while applying the tree topology on multi-FPGA 
systems and adding another tree layer promises easy 
extendibility, the restricted connection possibilities of each 
FPGA and need for an extra FPGA for routing between the 
FPGAs containing the cluster, severely limit their use. 
Accordingly, as most communications happen between 
neighboring FPGAs, the FPGAs are connected in a ring 
based topology (Fig. 4). Furthermore, the ring topology 
generation and administration of the routing tables is less 
complex. For synchronization between the clusters, one of 
the FPGAs contains a controller that handles all the 
synchronization packets. In large systems this, however, 
results in a large impact on the time needed to complete the 
iteration. Hence, to prevent this, we use one of the FPGAs as 
a master. All FPGAs in the system are connected to the 
master via two wires; the signal does not have to cross 
multiple stages, the run time is constant for any number of 
cells, and signal can finish iteration immediately. The master 
FPGA, in turn, issues the new round signal when adequate. 

III. EXPERIMENTAL RESULTS 

The system is automatically generated using a human-
readable configuration file, which contains all the relevant 
parameters of the system and can be easily modified allowing 
exploration of different fan-out values, different cell 
communication schemes, etc. All simulations are performed 
with cycle-accurate SystemC, including all calculation and 
communication latencies, both on- or off-chip. Three 
different connection schemes are used to simulate the system 
behavior; all-to-all connections, normal distributed distance 
based connections, and neighbor based connections.  

Fig. 5a) shows the required buffer sizes for the worst-
case, the all-to-all connection scheme. The two factors 
counteract each other: low fan-out results in fast routers but 
more routers are required in the system; however, slower 
routers with large fan-out result in less routers in the system, 
however, each router requires a bigger delayed buffer. A fan-
out of 2 results in the lowest size for the delayed buffer. Fig. 
5b) highlights the different fan-out in respect to cluster sizes. 
While small clusters with small routers provide the overall 
best performance, bigger clusters catch up with big fan-out. 
The extreme cases with high or low fan-out perform better 
than the cases in the middle. The cluster size choice is 
illustrated in Fig. 5c). Due to the fact that all the PhCs of a 
cluster time-share a memory, large clusters are expected to be 
slower than smaller clusters. However, clusters with more 
PhCs perform worse, especially at a higher number of cells. 
The difference for 2048 cells between 2 PhC clusters and 18 
PhC clusters is 30%. Comparison between different cluster 
sizes for different amounts of cells is illustrated in Fig. 6a). 
At 512 cells the difference between the optimal approach and 
the 2 PhC system is 9.8% and 5.9% for normal and neighbor 
connection schemes, respectively. 

 

Fig. 4: The single FPGA implementations are connected using a ring 
topology network. The FPGA are synchronized via a central controller with 
two wires. One of the wires indicates when the corresponding FPGA 
complete the operation and the other wire is used by the controller to indicate 
a new iteration.  

The absolute difference in execution time for 32 to 512 
cells is 354 cycles, and 191 cycles in the worst case (2 PhC 
system). Correspondingly, this result shows that the proposed 
system is feasible for one chip systems. To evaluate the 
scalability of the proposed system to multi-chip systems, the 
multi-FPGA system is compared to the single chip variant, as 
well as the optimal approach. The comparisons are done 
using both the dedicated wire, as well as the packet based 
synchronization methods. In contrast to the packet based 
approach, in a dedicated controller method that is connected 
with each chip, no packet has to cross multiple chip 
boundaries. The dedicated controller system is 3.84 times 
faster than the packet based approach at 8 chips with very 
slow communication (Fig. 6b and Fig. 6c including 
calculation time). For faster connection speeds on the other 
hand the difference in communication time is in the order of 
1 %.  

In Table I, the estimated hardware utilization numbers for 
the main components of the system are shown in terms of 
flip-flops (FF) and look-up tables (LUT); smaller 
components, like the synchronization circuits, are omitted for 
clarity. The minimum simulation interval to achieve a 
realistic representation of the neuron-cell behavior is 
determined as in [8]. Consequently, since each PhC can be 
reused multiple times within the brain real-time boundary

2
, 

and to take advantage of the high level of parallelism and 
performance of the FPGA, the PhCs are time-multiplexed. 
All results reported are for real-time simulations with double 
floating point precision for the most biologically accurate 
representation of a neuron cell behavior.  

Component FF FF % LUT LUT % 

Available 692800 100 346400 100 % 

PhCs 20488 2.96 % 30235 8.73 % 

Router 132 0.01905 % 187 0.05398 % 

TABLE I:  
Hardware utilization of the most important components of the system on a 
Xilinx Virtex 7 XC7VX550 FPGA board. The PhCs numbers are from [8] 
and are used to estimate the cluster sizes of the proposed system. Routers 
sizes are generated by synthesizing a SystemC model of a router using 
Vivado HLS 2013.4. 

 
2 The maximum number of cell states that can be computed within the 

model (in the case of the evaluated, high-detail inferior-olive model, the 
simulation time step is 50 μs) [10]. 
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Fig. 5: a) Comparison of the system’s iteration performance for router input FIFO depths of 4, 8, 16, and 32 elements, b) Comparison of iteration 
performance for 512 cells and different cluster sizes; except for large clusters with eight cells small routers perform better than large routers; the overall best 
performing configuration consists of small clusters and small routers at two PhC per cluster and a fan-out of two, c) comparison of systems with different 
cluster sizes; the routers are kept constant at fan-out of two; clusters with two, four and eight PhCs achieve the best iteration times while larger clusters are 
generally slower especially at 512 cells. 

 

Fig. 6: a) Comparison between different cluster sizes for different amounts of cells; the neighbor connection scheme is used and each cell calculation 

takes 534 cycles [8]; the systems use a router fan-out of two; the baseline design (implemented with a shared bus) is from [8]; all presented configurations 
scale linearly with the number of cells; the baseline on the other hand scales exponentially, b) Comparison between different system configurations utilizing 

between one and eight chips to simulate a cell amounts between 32 and 512; calculation times are excluded; the neighbor connection scheme is used; 

multichip systems utilize the dedicated wire based synchronization method, c) Similar to b) except that calculation times are included as 534 cycles per 
iteration. 

IV. CONCLUSION 

Current neuron simulators, which are precise enough to 
simulate neurons in a biophysically-meaningful way, are 
limited in amount of neurons to be placed on the chip, the 
interconnect between the neurons, run-time configurability 
and the re-synthesis of the system. In this paper, we propose 
a system that is able to bridge the gap between biophysical 
accuracy and large numbers of cells (19200 cells for neighbor 
connection mode and over 3000 cells in normal connection 
mode in comparison to 161 neurons in [4] and 400 in [7]). 
While perfect localization of communication is not possible 
due to physical constraints, the cells can be grouped around a 
shared memory in clusters to allow for instantaneous 
communication. Clusters that are close communicate using 
only one hop in the network; clusters that are further away 
communicate less frequently and, consequently, the penalty 
for taking multiple hops is less severe. Added advantage is 
that the system can be extended over multiple chips without 
significant performance penalty. This combination of clusters 
and a tree topology network-on-chip allows for almost linear 
scaling of the system. To provide run-time configurability, a 
tree-based communication bus is used, which enables the 
user to configure the connectivity between cells and change 
the parameters of the calculations. As a result, re-
synthesizing the whole system just to experiment with a 
different connectivity between cells is not required. The user 
has to enter the amount of neurons in the system as well as 
the desired connectivity scheme. From this information, all 
required routing tables and topologies are automatically 
generated, even for multi-chip systems. 
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