

Abstract— State-of-the-art neuron simulators are capable of

simulating at most few tens/hundreds of neurons in real-time

due to the exponential growth in the communication costs with

the number of simulated neurons. In this paper, we present a

novel, reconfigurable, multi-chip system architecture based on

localized communication, which effectively reduces the

communication cost to a linear growth. The system is very

flexible and it allows to tune, at run-time, various parameters,

e.g. the intracellular concentration of chemical compounds, the

interconnection scheme between the neurons. Experimental

results indicate that the proposed system architecture allows

the simulation of up to few thousands biophysically accurate

neurons over multiple chips.

I. INTRODUCTION

The biologically accurate simulation of neuron networks
has two main implications, i.e. it allows us to understand how
the brain processes information without having to perform in
vivo experiments, and it can lead to the design of brain
implants capable of restoring damaged, destroyed, or even
missing parts of the brain. Several realistic mathematical
models have been proposed for various nerve cells and their
complex interconnected networks [1]-[2]. Consequently, this
allowed an increase in the biological accuracy of the
simulated neural networks, e.g. the spiking neural networks,
where information is encoded by both the firing rate and the
transfer of spikes [1], [3]. One of the main characteristics of
the neurons is that, although they are heavily interconnected,
they function individually. Accordingly, to decrease the
overall computation (simulation) time, the behavior of
multiple neurons can be evaluated concurrently. Very large
scale integration (VLSI) designs provide the necessary
parallelism but do not allow for altering the neuron model
after manufacturing and, thus, are too expensive for the
experimental stage. A highly parallel architecture, such as a
field programmable gate array (FPGA), provides sufficient
hardware parallelism and performance for real-time and even
hyperreal-time neuron simulations. Additionally, via (partial)
reconfigurations of the hardware, various neuron models, e.g.
simple models (integrate and fire [4], Izhikevich [5]), or
Hodgkin-Huxley [6], simplified Hodgkin-Hoxley [7],
extended Hodgkin-Hoxley [8], as well as different network
topologies and cell interconnect schemes can be simulated.

This research was supported in part by the European Union and the

Dutch government, as part of the CATRENE program under Heterogeneous

INCEPTION project.
J. Hofmann is with the Embedded Systems Group, Darmstadt University

of Technology, Hochschulstrasse 10, D-64289, Germany.

A. Zjajo and R. van Leuken are with the Circuits and Systems Group,
Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The

Netherlands.

C. Galuzzi is with the BMI Research Group, Maastricht University,
Bouillonstraat 8-10, 6211 LN, Maastricht, The Netherlands.

The simulation of a network spread over multiple FPGA
devices is a demanding task due to the identification of
appropriate partitioning schemes, the limited speed of the
FPGA interconnects, as well as their limited number. In this
paper, we propose an efficient multi-chip dataflow
architecture, which exploits data locality and minimize
network communications over one or multiple FPGA
devices. The system methodology uses double floating-point
arithmetic for the most biologically accurate cell behavior
simulation, and offers easy implementation of various neuron
network topologies, cell communication schemes, as well as
models and kinds of cells. All parts of the system are
generated automatically based on the neuron interconnection
scheme in use. The system is cycle accurate, flexible, and it
allows to tune, at run-time, various parameters, e.g. the
interconnection scheme between the neurons, the intracellular
concentration of different chemical compounds (ions), which
affect how action potentials are initiated and propagate.

II. MULTI-CHIP DATAFLOW ARCHITECTURE DESIGN

Communications between neuron cells are a function of
their distances: cells placed close to each other in the network
(neighbor cells) communicate more than cells placed far
away from each other [1]. Accordingly, there are two aspects,
which need to be considered: the network topology and the
cell communication scheme. Different network topologies
can be implemented; starting from an all-to-all network, we
can progressively reduce the number of connections between
the cells and see the effects on the entire network. Similarly,
different cell communication schemes can be considered,
even with the same network topology. Subsequently, various
trade-offs between number of cells and number of
connections/communications can be examined.

In the proposed network (Fig. 1), the neuron cells are
connected with decreasing probability the further they are
apart. For neuron cells that are placed close to each other in
the network, we introduce a structure called (neighbor)
cluster, as illustrated in Fig. 2. Each cluster consists of either
2 or 4 individual computation units, called physical cells
(PhCs)

1
, arranged around a shared memory for storing all the

communication data needed by the PhCs. The physical cells
considered are based on an extended Hodgkin-Huxley model
[9] for an accurate representation of the inferior-olivary
nucleus cell state [8], [10]. However, the neuron network
structure is not limited to any neuron model, and diverse
neuron models can be easily used as well. Each PhC receives
its input data from the cells it is connected to.

1 The computation units are called physical cells (PhC) to recall that they

are physically implemented in hardware, and that the outputs of their

computations mimic the actual inferior-olivary nucleus (ION)-cell behavior.
See [10] for additional information.

Multi-Chip Dataflow Architecture for Massive Scale

Biophysically Accurate Neuron Simulation

Jaco Hofmann, Amir Zjajo, Carlo Galuzzi, and Rene van Leuken

978-1-4577-0220-4/16/$31.00 ©2016 IEEE 5829

Fig. 1: The system overview. The computing elements (the PhCs) are
grouped inside a cluster to make communication between neighboring cells
fast. These clusters are connected in a tree topology network on chip. The
router fan-out in this case is two and can be changed according to the
requirements of the implementation. The same holds true for the number of
PhCs in any cluster.

Fig. 2: A cluster as used in the proposed system. The cluster allows for
instant communication between any cells that are located inside the cluster.
Each of the PhC time shares the calculation of multiple cells. The data of the
cells that might be needed by other clusters is forwarded into a network-on-
chip.

Each time a physical cell in a cluster completes a
calculation step, its output is written into the dual-port shared
memory: to interface the cluster with the network, and for the
time-sharing within the cluster. Every PhC gains read and
write access to the memory using a round-robin scheme. The
cluster is controlled by three controllers. The first controller
handles all the book keeping, including monitoring the start
signals that are received from the network, and issues a done
packet to the round controller after all data for the next
iteration is present in the memory. The second controller
observes which packets arrive from the network, stores them
into the memory, and informs the book keeping controller
that all needed packets have arrived. The last controller sends
all packets upstream into the network and controls the round-
robin memory access. Additionally, it stalls the calculation if
the upstream router is not able to receive more packets.

In the proposed communication scheme, the majority of
the communications is performed within the clusters, i.e. the
data from other clusters is not required by most PhCs. If
communication with other clusters is required, e.g. with cells
located at the cluster boundaries, the output of these cells is
forwarded upwards into the interconnection network. To
incorporate the cell communication scheme into the network,
we implemented a cycle-free, tree-based network topology.
In this network each router has 2 to n children and each child
can be either a cluster or another router. The leaves of the
tree-based network consist of only clusters.

Fig. 3: Diagram of a router as used by the proposed system. The routers
are arranged in a tree topology. Each router has n children and except for the
root router one upstream router. The router reads input packets from the input
first-in, first-out buffer (FIFO). Based on routing tables it determines where
the packets have to be forwarded. If a receiving FIFO is full, the packet is
placed in the delayed buffer to be forwarded when the receiving router is free
again.

The number of children a router can have is homogeneous
throughout the system. The clusters are unaware of the
connections inside the network and forward the output of
every cell calculated within a cluster to the (upstream) router
they are connected to. The data produced by each cell in the
network is combined with the cell identification number in a
packet, which is injected into the network. Each router (Fig.
3) decides, based on a static routing table (which reflects the
way the cells communicate), in which direction i.e. to which
cells, the packet has to be forwarded to: to all outputs and/or
only to a subset, depending on the cell connections inside the
system. Since no packet is allowed to be dropped, packets
that cannot be forwarded right away, i.e. the receiving buffer
is full, are stored for delayed delivery. The width of this
delayed buffer is bp+[log2(no)] bit, where bp is the amount of
bits for a packet, and no is the amount of outputs of the router.
The depth of the delayed buffer is determined empirically; a
depth of 240 is suitable even for high usage scenarios with
all-to-all connections. To avoid cases that the router
continuously tries to deliver delayed packets to full routers,
new packets always have precedence over the delayed ones.
The routing tables are generated during system initialization
from the adjacency matrix that describes the cell connections.
The root router of the tree is connected to the round
controller, which controls the iterations of the system. Since
packet forwarding is not aware of the complete network
connectivity, the components are efficient and with limited
overhead.

The input and output module interface the system with
the outside world. Each of the inputs receives a unique
identification number starting from nc+2, where nc is the
number of cells in the system, and at each system iteration
these packets are injected into the system. In return, the
outputs receive packets from specific cells. Additional
interface is the control bus, i.e. I

2
C or SPI, for run-time

control of the system. Each component can be addressed in a
uniform fashion through a control bus, i.e. any router in the
system, any cluster, any physical cell, any shared cell level.
All routing tables can be modified at run-time, in order to add
or remove connections between the cells. In a multiple FPGA
scenario, two modes are available to support the control bus:
either each FPGA is individually controlled, or one FPGA
functions as a main node and redirects the network traffic to
the appropriate FPGA.

5830

The speed between the different FPGAs largely depends
on the techniques used for transmissions and can vary from
faster than a transmission between routers inside the FPGA
for very sophisticated (and expensive) interconnects, to many
times slower for simple or low power interconnect [11]. As
the communication frequency decreases closer to the root of
the network tree, multiple FPGAs can be connected at the
highest level without significant impact on performance.
However, while applying the tree topology on multi-FPGA
systems and adding another tree layer promises easy
extendibility, the restricted connection possibilities of each
FPGA and need for an extra FPGA for routing between the
FPGAs containing the cluster, severely limit their use.
Accordingly, as most communications happen between
neighboring FPGAs, the FPGAs are connected in a ring
based topology (Fig. 4). Furthermore, the ring topology
generation and administration of the routing tables is less
complex. For synchronization between the clusters, one of
the FPGAs contains a controller that handles all the
synchronization packets. In large systems this, however,
results in a large impact on the time needed to complete the
iteration. Hence, to prevent this, we use one of the FPGAs as
a master. All FPGAs in the system are connected to the
master via two wires; the signal does not have to cross
multiple stages, the run time is constant for any number of
cells, and signal can finish iteration immediately. The master
FPGA, in turn, issues the new round signal when adequate.

III. EXPERIMENTAL RESULTS

The system is automatically generated using a human-
readable configuration file, which contains all the relevant
parameters of the system and can be easily modified allowing
exploration of different fan-out values, different cell
communication schemes, etc. All simulations are performed
with cycle-accurate SystemC, including all calculation and
communication latencies, both on- or off-chip. Three
different connection schemes are used to simulate the system
behavior; all-to-all connections, normal distributed distance
based connections, and neighbor based connections.

Fig. 5a) shows the required buffer sizes for the worst-
case, the all-to-all connection scheme. The two factors
counteract each other: low fan-out results in fast routers but
more routers are required in the system; however, slower
routers with large fan-out result in less routers in the system,
however, each router requires a bigger delayed buffer. A fan-
out of 2 results in the lowest size for the delayed buffer. Fig.
5b) highlights the different fan-out in respect to cluster sizes.
While small clusters with small routers provide the overall
best performance, bigger clusters catch up with big fan-out.
The extreme cases with high or low fan-out perform better
than the cases in the middle. The cluster size choice is
illustrated in Fig. 5c). Due to the fact that all the PhCs of a
cluster time-share a memory, large clusters are expected to be
slower than smaller clusters. However, clusters with more
PhCs perform worse, especially at a higher number of cells.
The difference for 2048 cells between 2 PhC clusters and 18
PhC clusters is 30%. Comparison between different cluster
sizes for different amounts of cells is illustrated in Fig. 6a).
At 512 cells the difference between the optimal approach and
the 2 PhC system is 9.8% and 5.9% for normal and neighbor
connection schemes, respectively.

Fig. 4: The single FPGA implementations are connected using a ring
topology network. The FPGA are synchronized via a central controller with
two wires. One of the wires indicates when the corresponding FPGA
complete the operation and the other wire is used by the controller to indicate
a new iteration.

The absolute difference in execution time for 32 to 512
cells is 354 cycles, and 191 cycles in the worst case (2 PhC
system). Correspondingly, this result shows that the proposed
system is feasible for one chip systems. To evaluate the
scalability of the proposed system to multi-chip systems, the
multi-FPGA system is compared to the single chip variant, as
well as the optimal approach. The comparisons are done
using both the dedicated wire, as well as the packet based
synchronization methods. In contrast to the packet based
approach, in a dedicated controller method that is connected
with each chip, no packet has to cross multiple chip
boundaries. The dedicated controller system is 3.84 times
faster than the packet based approach at 8 chips with very
slow communication (Fig. 6b and Fig. 6c including
calculation time). For faster connection speeds on the other
hand the difference in communication time is in the order of
1 %.

In Table I, the estimated hardware utilization numbers for
the main components of the system are shown in terms of
flip-flops (FF) and look-up tables (LUT); smaller
components, like the synchronization circuits, are omitted for
clarity. The minimum simulation interval to achieve a
realistic representation of the neuron-cell behavior is
determined as in [8]. Consequently, since each PhC can be
reused multiple times within the brain real-time boundary

2
,

and to take advantage of the high level of parallelism and
performance of the FPGA, the PhCs are time-multiplexed.
All results reported are for real-time simulations with double
floating point precision for the most biologically accurate
representation of a neuron cell behavior.

Component FF FF % LUT LUT %

Available 692800 100 346400 100 %

PhCs 20488 2.96 % 30235 8.73 %

Router 132 0.01905 % 187 0.05398 %

TABLE I:
Hardware utilization of the most important components of the system on a
Xilinx Virtex 7 XC7VX550 FPGA board. The PhCs numbers are from [8]
and are used to estimate the cluster sizes of the proposed system. Routers
sizes are generated by synthesizing a SystemC model of a router using
Vivado HLS 2013.4.

2 The maximum number of cell states that can be computed within the

model (in the case of the evaluated, high-detail inferior-olive model, the
simulation time step is 50 μs) [10].

5831

Fig. 5: a) Comparison of the system’s iteration performance for router input FIFO depths of 4, 8, 16, and 32 elements, b) Comparison of iteration
performance for 512 cells and different cluster sizes; except for large clusters with eight cells small routers perform better than large routers; the overall best
performing configuration consists of small clusters and small routers at two PhC per cluster and a fan-out of two, c) comparison of systems with different
cluster sizes; the routers are kept constant at fan-out of two; clusters with two, four and eight PhCs achieve the best iteration times while larger clusters are
generally slower especially at 512 cells.

Fig. 6: a) Comparison between different cluster sizes for different amounts of cells; the neighbor connection scheme is used and each cell calculation

takes 534 cycles [8]; the systems use a router fan-out of two; the baseline design (implemented with a shared bus) is from [8]; all presented configurations
scale linearly with the number of cells; the baseline on the other hand scales exponentially, b) Comparison between different system configurations utilizing

between one and eight chips to simulate a cell amounts between 32 and 512; calculation times are excluded; the neighbor connection scheme is used;

multichip systems utilize the dedicated wire based synchronization method, c) Similar to b) except that calculation times are included as 534 cycles per
iteration.

IV. CONCLUSION

Current neuron simulators, which are precise enough to
simulate neurons in a biophysically-meaningful way, are
limited in amount of neurons to be placed on the chip, the
interconnect between the neurons, run-time configurability
and the re-synthesis of the system. In this paper, we propose
a system that is able to bridge the gap between biophysical
accuracy and large numbers of cells (19200 cells for neighbor
connection mode and over 3000 cells in normal connection
mode in comparison to 161 neurons in [4] and 400 in [7]).
While perfect localization of communication is not possible
due to physical constraints, the cells can be grouped around a
shared memory in clusters to allow for instantaneous
communication. Clusters that are close communicate using
only one hop in the network; clusters that are further away
communicate less frequently and, consequently, the penalty
for taking multiple hops is less severe. Added advantage is
that the system can be extended over multiple chips without
significant performance penalty. This combination of clusters
and a tree topology network-on-chip allows for almost linear
scaling of the system. To provide run-time configurability, a
tree-based communication bus is used, which enables the
user to configure the connectivity between cells and change
the parameters of the calculations. As a result, re-
synthesizing the whole system just to experiment with a
different connectivity between cells is not required. The user
has to enter the amount of neurons in the system as well as
the desired connectivity scheme. From this information, all
required routing tables and topologies are automatically
generated, even for multi-chip systems.

REFERENCES

[1] W. Gerstner, W.M. Kistler, Spiking neuron models: single neurons,

populations, plasticity, Cambridge University Press, 2002.

[2] E.M. Izhikevich, “Which model to use for cortical spiking
neurons?”, IEEE Transactions on Neural Networks, vol. 15, no. 5,

pp. 1063-1070, 2004.

[3] W. Maass, “Noisy spiking neurons with temporal coding have more
computational power than sigmoidal neurons”, Neural Information

Processing Systems, pp. 211-217, 1996.

[4] H. Shayani, P.J. Bentley, A.M. Tyrrell. “Hardware implementation
of a bio-plausible neuron model for evolution and growth of spiking

neural networks on FPGA”, NASA/ESA Conference on Adaptive
Hardware and Systems, pp. 236-243, 2008.

[5] K. Cheung, S.R. Schultz, W. Luk, “A large-scale spiking neural

network accelerator for FPGA systems”, International Conference
on Artificial Neural Networks and Machine Learning, pp. 113-120,

2012.

[6] Y. Zhang, et al. “Biophysically accurate floating point
neuroprocessors for reconfigurable logic”, IEEE Transactions on

Computers, vol. 62, no. 3, pp. 599-608, 2013.

[7] M. Beuler, et al., “Real-time simulations of synchronization in a
conductance-based neuronal network with a digital FPGA

hardware-core”, International Conference on Artificial Neural

Networks and Machine Learning, pp. 97-104, 2012.
[8] M. van Eijk, et al., “ESL design of customizable real-time neuron

networks”, IEEE International Biomedical Circuits and Systems

Conference, pp. 671-674, 2014.
[9] A.L. Hodgkin, A.F.Huxley, “A quantitative description of

membrane current and its application to conduction and excitation

in nerve”, Journal of Physiology, vol. 117, no. 4, pp. 500-544, 1952.
[10] J.R. de Gruijl, et al., “Climbing fiber burst size and olivary

subthreshold oscillations in a network setting”, PLoS Computation

Biology, vol. 8, no. 12, pp. 1-10, 2012.
[11] Xilinx, http://www.xilinx.com/

a) b) c)

a) b) c)

5832

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryList_V1
 qi2base

