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Receivers for long-code systems are for computational reasons usually based on simple matched-filter techniques, and hence
suffer from multiaccess interference. Decorrelating RAKE and MMSE receivers do not have this problem but have not been widely
studied due to the apparent complexity of the inversion of a large code matrix. Tong, van der Veen Dewilde, and Sung (IEEE Tr.
Signal Proc., 2003) derived a blind decorrelating RAKE receiver (DRR) and channel estimation algorithm for long-code CDMA
systems, and showed how it can be efficiently implemented. In this paper, we continue on that work. We propose both single-user
and multiuser blind source-channel estimation algorithms by making use of an iterative estimation scheme initialized by the DRR.
Simulation results show significant improvement, even in heavily loaded systems. Moreover, with an implementation based on
time-varying system theory, the proposed algorithm can be implemented efficiently at a cost similar to the RAKE.
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1. INTRODUCTION

Long-code (or aperiodic-code) DS-CDMA systems are cur-
rently being used in the IS-95 mobile communication net-
work standard and have been adopted in several third-
generation standards such as UMTS. Originally, the receivers
proposed for such systems were based on the RAKE struc-
ture, that is, banks of matched filters which correlate the re-
ceived data with the desired user’s code, followed by a com-
bining of the outputs (RAKE fingers). Since multiuser inter-
ference is not completely cancelled, the performance is de-
graded, especially when the network is heavily loaded and
power-control imperfect. It is therefore interesting to look at
multiuser receivers.

Channel estimation and multiuser detection for long-
code wideband CDMA have not seen the same levels of at-
tention as their short-code equivalents, yet have been con-
sidered by a number of authors and are receiving renewed
interest. A first classification of the available literature can
be made according to the assumptions posed on the sce-
nario.

(i) Narrowband versus wideband propagation channels.
Here we consider wideband channels, for which equal-
ization is needed.

(ii) Uplink versus downlink scenarios. We will consider
only the uplink. The downlink case is different because
users are perfectly synchronized, orthogonal, and with
the same propagation channel, and only a single user
needs to be decoded.

(iii) Synchronous and asynchronous transmissions. We
consider the asynchronous case.

(iv) Training-based channel estimation algorithms versus
blind algorithms. We consider the blind case.

The complexity of the problem greatly depends on these
assumptions. For example, in the case of synchronous trans-
missions and delay spreads of at most a few chips, the receiver
can drop the samples that have intersymbol interference (ISI)
[1, 2, 3, 4]. This decouples the problem and allows symbol-
by-symbol processing.

For asynchronous systems, Buzzi and Poor [5, 6] con-
sider nonblind channel estimation using training symbols for
all users; they also consider sequential interference cancel-
lation (SIC) techniques with a complexity quadratic in the
code length/processing gain (the algorithm proposed in this
paper has linear complexity). With known or iteratively esti-
mated symbols, the channel estimation step in [5] and also
[7, 8] is comparable to our scheme. In these papers, a large
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matrix inversion with a complexity cubic in the number of
users and processing gain is avoided by iterative techniques
(gradient descent), leading to a quadratic complexity.

Blind techniques based on second-order moment match-
ing (i.e., stochastic techniques) have appeared in [9, 10, 11,
12, 13, 14, 15]. These rely on the convergence of time aver-
ages, which often requires hundreds of symbols. Other ap-
proaches are based on iterative optimization of a likelihood
function [16, 17], which tends to have a very high complex-
ity. Several other approaches are valid only for the downlink,
for example [1]; see also [18] which contains an extensive
reference list.

The algorithms in this paper continue on the blind mul-
tiuser joint symbol-channel estimation techniques in [19, 20]
and can be called deterministic, since no statistical model
of the sources is assumed. In these papers, Tong et al. con-
sidered an uplink decorrelating RAKE receiver (DRR) algo-
rithm where the base station knows all codes. By constructing
and inverting a code matrix, a blind decorrelating RAKE and
MMSE receiver was derived to estimate the channel and de-
sired user symbols, based on all samples in a frame. After the
decorrelating step, the users are treated independently, which
is computationally advantageous but gives suboptimal per-
formance when compared to an informed multiuser MMSE
receiver. There are two reasons for this. Firstly, due to the
code inversion, the noise becomes correlated among symbols
and users. This reduces the performance of the subsequent
single-user estimation and detection step. A second and more
important reason is that code inversion followed by channel
inversion is suboptimal, and gives more noise enhancement
than the inversion of the product of the code and channel
matrices. In this paper, we take these effects into account.

We propose to use the single-user channel estimates from
the DRR as an initial point for an iterative symbol/channel
estimation algorithm which also considers the noise corre-
lations. This can be done on a per-user basis, or, with bet-
ter performance, jointly in a multiuser fashion. In heavily
loaded systems, this algorithm shows a significant improve-
ment over the current decorrelating RAKE receiver and the
conventional RAKE receiver.

The proposed multiuser algorithm is by itself not a very
surprising result. Similar iterative receivers are known for
short-code (periodic-code) CDMA systems, for example, the
(parallel interference cancellation PIC) receivers, and for
long-code CDMA an iterative blind receiver that appears to
be related to ours was proposed in [8]. Such receivers usually
act on symbol-by-symbol data, whereas the proposed algo-
rithm acts on a slot of data (M symbols). What is new here
is the observation that the blind DRR (or the related blind
RAKE receiver) provides a very good initial point for the iter-
ation, and the observation that an efficient implementation
for the algorithm is possible. A direct implementation has
a complexity that grows with M3, and would soon be pro-
hibitive. However, the matrices to be inverted are sparse and
structured (they are related to a band matrix after permuta-
tions). As in [20], we consider the use of time-varying state
space theory developed by Dewilde and van der Veen [21]
to implement matrix multiplications, QR-factorizations, and

matrix inversions.1 We will demonstrate that the resulting
complexity of the iteration is similar to that of the DRR, that
is, linear in the number of transmitted symbols M and linear
in the code length (coding gain) G. For large M, the com-
plexity is of order GK per estimated symbol per user, where
K is the number of users. The conventional RAKE receiver
has complexity GL per estimated symbol per user, where L is
the channel length in chips. Hence, the proposed algorithm
is not much more complex, and certainly feasible.2

A preliminary version of this paper was presented at
SPAWC ’03 [23]. The present version offers additional sim-
ulations and a detailed complexity count. The outline of the
paper is as follows. Section 2 gives the data model and de-
scribes the blind receiver algorithm from [20]. Section 3 de-
rives the proposed algorithms, in both multiuser and single-
user fashions. Section 4 derives the complexity of the algo-
rithms, and Section 5 shows the performance by simulations.
Finally, Section 6 gives the conclusions.

2. PROBLEM STATEMENT AND
PRELIMINARY RESULTS

2.1. Data model

We consider the same data model as in [20]. The context is
the uplink of a slotted system with K asynchronous users.
In a slot, the ith user transmits a vector si consisting of Mi

symbols sik. Each symbol sik is spread by an aperiodic code
(vector) cik of length Gi. After multipath propagation over a
channel with length Li chips and relative delay Di (asynchro-
nism), pulse-shaped matched filtering and chip-rate sam-
pling, the receiver stacks the received samples in a slot in a
vector y. The contribution of sik to y is a linear combina-
tion of the transmitted signal ciksik, plus delays of it, properly
scaled by the Li channel coefficients collected in a vector hi,
or

yik = Tikhisik, k = 1, . . . ,Mi, (1)

which is illustrated in Figure 1a. Tik is a Toeplitz matrix
whose Li columns consist of shifts of the code vector cik. In-
cluding all K users and the noise, we have

y = THs + w, (2)

T := [T1, . . . , TK
]
, (3)

H := diag
(

IM1 ⊗ h1, . . . , IMK ⊗ hK
)
, (4)

1This theory for time-varying systems should be regarded as a computa-
tional framework applicable to any matrix, potentially even of infinite size,
and should not be confused with the modeling of long-code CDMA sys-
tems as a time-varying system as is sometimes done in the literature. There
are connections, for example, between our matrix inversion techniques and
Kalman filtering.

2To put these numbers in perspective, note that for the WCDMA system
applied in UMTS, a slot has size MG = 2560 chips, the variable spreading
gain is G = 4, . . . , 256 chips, and hence M = 640, . . . , 10 symbols. The chan-
nel length is L = 4 to 8 chips (suburban) up to 80 chips (hilly terrain) [22].
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Figure 1: (a) Effect of a single transmitted symbol on the received data vector y, (b) structure of the code matrix T, channel matrix H, and
symbol vector s.

where the ih user’s code matrix is Ti := [Ti1, . . . , Ti,Mi], the
channel matrix H is block diagonal with I ⊗ hi as the ith
block, vector s is a stacking of all symbol vectors of all users,
as illustrated in Figure 1b, and w is a vector representing the
additive Gaussian noise.

T has size max(MiGi + Di + Li − 1) ×∑K
1 (MiLi), and H

has size
∑K

1 (MiLi) ×
∑K

1 (Mi). For convenience, we will usu-
ally consider the case of users with equal parameters, but the
general case is certainly not ruled out.

In the derivations of the algorithms, we will make the fol-
lowing assumptions.

(A1) The code matrix T is known. This implies that the re-
ceiver knows the codes, the user delay offsets Di, and
the number of paths Li of all users.

(A2) TH is tall and full column rank, which (for users with
equal parameters) implies K < G, that is, the number
of users is less than the processing gain. We will also
require another matrix to be tall (TS in (18)), which
will imply KL < MG. For initialization using the DRR,
we need to require moreover that T is tall and full col-
umn rank, which implies KL < G (for users with equal
parameters).

(A3) The noise w is white Gaussian, with unknown variance
σ2.

The problem we consider is to find, given the code matrix
T and the received data vector y, good estimates of all users’
source symbols s and all channel coefficients h, where

h = [hH
1 , . . . , hH

K

]H
(5)

is the stacking of all users’ channels hi.

2.2. Decorrelating RAKE Receiver (DRR) algorithm

As introduced in [20], the decorrelating RAKE receiver
(DRR) algorithm first applies a decorrelating matched filter,
or T† = (THT)−1TH , to the vector of received data y. This
removes all multiuser interference. The output of the decor-
relating matched filter is given by

u = T†y = Hs + n, (6)

where n = T†w is a colored noise vector. The new noise co-
variance matrix is

Rn := E
(

nnH
) = σ2(THT

)−1
. (7)

Since H is block diagonal, the filter output can be separated
into individual user contributions. Split u into K segments
ui, one for each user, then

ui =
(

I⊗ hi
)

si + ni, i = 1, . . . ,K. (8)

By unstacking the vector ui into a matrix Ui, we obtain the
model

Ui = hisTi + Ni, i = 1, . . . ,K. (9)

The channel estimation proceeds by taking a rank-1 decom-
position of Ui, via a singular value decomposition. The dom-
inant left singular vector is an estimate of hi, and the cor-
responding right singular vector determines the symbols si
up to an unknown scaling. Since the noise Ni is not white,
a prewhitening can improve the decomposition [20]; unfor-
tunately, it is not possible to prewhiten each column of Ui

separately because it would destroy the rank-1 property.
A blind RAKE receiver is obtained in a similar way, but

by setting u = THy in (6).
With an initial channel estimate h(0) obtained in this way,

it was also briefly mentioned in [20] that further refinements
can be obtained in a two-step iterative fashion, that is, an
alternating least squares algorithm similar to the ILSP algo-
rithm [24]. Based on (9),

(1) given h(k−1)
i , solve

s(k)
i = arg min

si

∥∥Ui − h(k−1)
i sTi

∥∥2

= 1∥∥h(k−1)
i

∥∥2 ·
(

h(k−1)H
i Ui

)T
.

(10)

Subsequently round the entries of s(k)
i to the nearest

elements of the alphabet;
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(2) keeping s(k)
i fixed, solve

h(k)
i = arg min

hi

∥∥Ui − h(k−1)
i sTi

∥∥2

= 1∥∥s(k)
i

∥∥2 ·Uis
(k)
i .

(11)

Although this algorithm was proposed in [20], its perfor-
mance was not shown.

2.3. Discussion

To simplify the initial estimation of the channel, the preced-
ing derivation from [20] ignored most of the information on
the noise covariance matrix Rn, namely the noise correlations
among the users, and the symbol-by-symbol temporal cor-
relations. Also the iterative refinement did not take any noise
correlation properties into account. Our aim will be to im-
prove the estimation by taking the complete noise model into
account. As it turns out, the elegant rank-1 channel estima-
tion property is hard to generalize. However, using the DRR
or the blind RAKE to obtain an initial channel estimate, we
can improve the estimates by straightforward multiuser two-
step iterations, discussed in the next section.

3. JOINT SOURCE-CHANNEL ESTIMATION

Our derivations will use the following lemma.

Lemma 1. Let h and s be vectors of length L and M, respec-
tively. Then (IM ⊗ h)s = (s⊗ IL)h.

Proof. Using the multiplicative property of Kronecker prod-
ucts, (A ⊗ B)(C ⊗D) = (AC ⊗ BD), we immediately obtain

(
IM ⊗ h

)
s = (IM ⊗ h

)
(s⊗ 1) = s⊗ h

= (s⊗ IL
)
(1⊗ h) = (s⊗ IL

)
h.

(12)

3.1. Single-user estimation with noise whitening

Consider the single-user model (8). The covariance of the
noise ni is denoted by (Rn)i, and is known: it is a submatrix
of Rn = σ2(THT)−1. We first whiten the noise,

ũi := (Rn
)−1/2
i ui =

(
Rn
)−1/2
i

(
I⊗ hi

)
si + ñi, (13)

where ñi is white noise. Using the lemma, we can now intro-
duce a similar alternating LS algorithm to estimate si and hi

in turns, for each user i separately.

(1) Given h(k−1)
i , solve

s(k)
i = arg min

si

∥∥ũi −
(

Rn
)−1/2
i

(
I⊗ h(k−1)

i

)
si
∥∥2

= ((Rn
)−1/2
i

(
I⊗ h(k−1)

i

))†
ũi.

(14)

Subsequently, round the entries of s(k)
i to the nearest

elements of the alphabet.

H =

Hi = I⊗ hi

(a)

S =

Si = si ⊗ I

(b)

Figure 2: Structure of (a) matrix H and (b) matrix S.

(2) Keeping s(k)
i fixed, solve

h(k)
i = arg min

hi

∥∥ũi −
(

Rn
)−1/2
i

(
s(k)
i ⊗ I

)
hi

∥∥2

= ((Rn
)−1/2
i

(
s(k)
i ⊗ I

))†
ũi.

(15)

In comparison to the original single-user iterative algo-
rithm, the performance is expected to be better, since the
noise correlations of the data vector are taken into account.
On the other hand, correlations among users are still ig-
nored. Also, the noise enhancement due to the preprocessing
with T† is not avoided.

3.2. Iterative multiuser estimation

Compared to the single-user estimation algorithms, it is
known that joint detection algorithms can achieve significant
performance gains, at the expense of increased complexity.
We will derive such an algorithm in this section, then verify
its complexity in the next section.

Consider the original data model in (2). We can formu-
late the channel/data estimation problem as a typical least
squares problem: find h and s to minimize ‖y−THs‖2, where
H = diag(I⊗ h1, . . . , I⊗ hK ). In the presence of white Gaus-
sian noise, this LS cost function is also optimal in a maxi-
mum likelihood sense.

Before we show the iteration, we use the lemma to rewrite
the cost function also as a function of h, that is, ‖y − TSh‖2,
where

S = diag
(

s1 ⊗ IL1 , . . . , sK ⊗ ILK
)
. (16)

The structure of S is shown in Figure 2b.
With a good initial channel estimate, say h(0), we can use

the following iteration to improve the estimate. For iteration
index k = 1, 2, . . . until convergence,

(1) keeping the channel h(k−1) fixed, solve

s(k) = arg min
s

∥∥y − TH(k−1)s
∥∥2

= (TH(k−1))†y

= (H(k−1)HTHTH(k−1))−1
H(k−1)HTHy.

(17)

Subsequently, round the entries of s(k)
i to the nearest

elements of the alphabet;



A Low-Complexity Blind Multiuser Receiver for Long-Code CDMA 117

(2) keeping the source symbols s(k) fixed, solve

h(k) = arg min
h

∥∥y − TS(k)h
∥∥2

= (TS(k))†y

= (S(k)HTHTS(k))−1
S(k)HTHy.

(18)

After the iterations, step 1 is repeated once more to get the
final estimate of the source symbols. Assuming the decisions
are correct, the algorithm will approach the multiuser Linear
MMSE solution with the channel estimated from completely
known symbols.

Although written differently, the second estimation step
is similar to other batch training-based techniques proposed
for long-code CDMA (cf. [5, 8]).

As an alternating projection algorithm, it is known that
it will converge monotonically to a local optimum. Gener-
ally, the algorithm only completely converges after a number
of iterations. However, with an initial estimate of the chan-
nel provided by the DRR or the blind RAKE discussed in
Section 2.2, the algorithm rapidly converges with only one it-
eration. Because in this formulation the noise is not colored,
the final estimates can be much better than those of the ini-
tial single-user algorithms that have to work with incomplete
noise models.

Apart from this, a second reason why this algorithm is
expected to have better performance is that it uses inverses
(TH)† and (TS)† of taller matrices, whereas the previous
algorithm implicitly worked with H†T† for computing the
symbol estimates. While H†T† is a valid left inverse of TH,
it is not the minimum-norm left inverse, hence it can give
unnecessary noise enhancement.

Another advantage is that the algorithm’s performance
can still be stable even when T is not tall, that is, in heavily
loaded cases. In that case, the algorithm needs to be initial-
ized by the blind RAKE channel estimation algorithm (i.e.,
use TH rather than T† in (6)).

3.3. Multiple receive antennas
In the near future, many base stations will be equipped with
multiple antennas. We indicate how the two-step iteration
have to be modified to take this into account. The multi-
antenna version for DRR was shown in [20].

Consider a case where d receive antennas are used. No
structure is imposed on this antenna array. Let y j , H j , and
w j be the received vector, the channel matrix, and the noise
vector for the jth antenna, respectively. Applying the identity
TH js = TSh j , we have the two versions of the data model




y1

y2
...

yd



=




TH1

TH2
...

THd




s +




w1

w2
...

wd




= (Id ⊗ (TS)
)




h1

h2
...

hd




+




w1

w2
...

wd




,

(19)

where h j is the stacking of all channel vectors for the jth an-
tenna.

In the first step of the iterative algorithm, where
source symbols are estimated from known channel
vectors using (19), we need to apply the inverse of
[(TH1)T(TH2)T · · · (THd)T]T to the data vector. Since
this matrix is d times taller than before, its conditioning
is expected to be much better so that the estimation of s
is significantly improved. In the second step, estimating
the channels from known source symbols using (19), the
matrix to be inverted, Id ⊗ (TS), has the same conditioning
as the matrix (TS) in the single-antenna case. Actually, each
channel is estimated independently from the source symbols,
which means that no gain is obtained in this step. However,
since the symbols are estimated at higher accuracy, the
overall performance improvement over the single antenna
case is significant, even after only one iteration.

4. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the two-step
iterative algorithm is discussed. In summary, one iteration of
the algorithm consists of the following steps:

(1) given the channel coefficients h, estimate the source
symbols s by solving y = THs + w,

(2) with known source symbols s, estimate the channel co-
efficients h by solving y = TSh + w.

For simplicity of expressions, all users are assumed to have
equal parameters. We compute the complexity of three im-
plementations: a direct one, one that exploits the sparse
structure of T (many zero entries), and one that uses this
sparse structure and the fact that the nonzero entries occur
in bands.

4.1. Direct computation

T has size GM × MKL, whereas H : MKL × MK and S :
MKL×KL. Therefore, computation of T′ := T·H (size GM×
MK) costs order GM ·MKL ·MK = GM3K2L operations,
and similarly computation of T′′ := TS (size GM×KL) costs
order GM2K2L2.

The computation of ŝ := (T′)†y can be implemented in
two ways.

(1) Via (T′HT′)−1·T′Hy. The computation of T′H ·T′ costs
order-GM(MK)2 operations, inversion of this matrix
costs (MK)3 operations, computation of T′Hy costs
GM ·MK operations, application of (T′HT′)−1 to this
vector costs another (MK)2. The total cost is of order
GM3K2 + (MK)3.

(2) Via QR-factorization of T′ = QR, subsequently v =
QHy and ŝ = R−1v implemented via backsubstitu-
tion. Computation of the QR-factorization costs order
GM(MK)2, computation of v costs order GM ·MK ,
backsubstitution costs order (MK)2. The total cost is
of order GM3K2.
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Similarly, the complexity of ĥ = (T′′)†y is,

(1) via (T′′HT′′)−1 · T′′Hy, order GM(KL)2 + (KL)3,
(2) via QR-factorization of T′′ = QR, order GM(KL)2.

4.2. Computation using sparse structure of T, H, and S

In the direct computation, we did not recognize the fact that
many entries of T, H, and S are zero. Each row of T has only
KL nonzero entries, whereas H and S are block diagonal and
a permutation of a block-diagonal matrix, respectively. Ex-
ploiting this, the computation of T′ := T · H costs order-
GMKL operations, and also the computation of T′′ := TS
costs order GMKL. In the latter case, we can also recognize
the fact that these are integer operations (the entries of T and
S are typically ±1 or some other finite alphabet).

In the computation of ŝ := (T′)†y using the sparse struc-
ture of T′, we cannot use the technique via QR-factorization
because it destroys the structure. Each row of T′ has only
K nonzero entries, each column has G nonzero entries.
Via (T′HT′)−1 · T′Hy, the computation of T′H · T′ costs
order-G(MK)2 operations, inversion of this matrix still costs
(MK)3 operations, computation of T′Hy costs GMK oper-
ations, and the application of (T′HT′)−1 to this vector costs
(MK)2. The total cost is of order G(MK)2 + (MK)3.

Unfortunately, this direct computation cannot use back-
substitution, hence the complete matrix (T′H · T′)−1 is
formed even if it is applied only to a single vector. There are
iterative techniques (e.g., conjugate gradient, cf. the chan-
nel estimation techniques reported in [5, 7]) that compute
an approximation to the result; they have complexity of or-
der (MK)2. The total complexity would then be G(MK)2 +
(MK)2, or of order G(MK)2.

In the computation of ĥ = (T′′)†y, no advantage is
obtained because T′′ is a full matrix. We can recognize,
however, that T′′ has integer entries, hence computation of
(T′′HT′′)−1 costs order α(KL)2, where α is the complexity of
adding GM integer numbers. If approximate iterative tech-
niques are used for applying the inverse, then the total com-
plexity becomes order (KL)2. This is similar to the complex-
ity of the channel estimation step in [5, 7].3

4.3. Computation via time-varying state
space representations

A matrix-vector multiplication y = Tu can be regarded as
a time-varying system T, which has input signal u and pro-
duces y as the output. Such a system can be realized using
time-varying state space equations,

xn+1 = Anxn + Bnun,

yn = Cnxn + Dnun,
(20)

where xn is a state-vector that carries information from one
stage to the next. This representation shows in some more

3Note that, in the cited papers, it was assumed that no synchronization
is available and hence the channel length was taken equal to the code length.
Therefore, they reported a complexity of (KG)2.

detail how the entries of y = Tu are computed one-by-one.
A complete theory based on this can be found in [21]. In
[20], this theory was applied to the efficient inversion of the
code matrix T in the current application. Essentially, efficient
computations are possible because T has many zero entries
and they occur in bands, a result of the FIR channel assump-
tion. Therefore, the channel inversion can have a lower com-
plexity: the QR-factorization, application of QH , and appli-
cation of R−1 via backsubstitution can all be done using the
state space realization.4 It is also shown that the realization of
T has GM stages, and in the nth stage, [Cn, Dn] are directly
specified in terms of the nonzero entries of the nth row of T,
whereas [An, Bn] are shift matrices (similar to identity matri-
ces).

Without repeating the derivations of [20], we mention
the resulting complexities. Computation of a state space re-
alization of T′ = T·H costs order-GMKL operations, and the
result is a realization with GM stages, each with K nonzero
entries. Computation of the QR-factorization of T′ costs
GMK2 operations, and applying QH or R−1 to a vector via
backsubstitution costs GMK operations. In total, the com-
plexity is of order-GMKL + GMK2 operations. This is a fac-
tor M less than in the preceding section, even if here the exact
solution is computed.

In the computation of ĥ = (T′′)†y, no specific advantage
of using state-space realizations is obtained because T′′ is not
sparse. In this case, the complexity of the preceding section
will be assumed.

4.4. Summary

The preceding complexities are summarized in Table 1. For
K > L, the dominant term in the complexity is of order
GMK2, contributed by the symbol estimation step. Per es-
timated symbol per user, the complexity is GK . This can be
compared to the complexity of a RAKE receiver (comput-
ing u = THy), which is GMKL, or GL per estimated symbol
per user. This suggests that the two-step algorithm does not
cost much more, hence is feasible to implement in practice. If
K < L, the dominant complexity is GMKL, of the same order
as for the RAKE.

To put this in further perspective, we mention the com-
plexity of a few other proposed algorithms. The Bayesian
approach in [17] has a complexity of GL2 per symbol per
user per iteration (about 50–100 iterations are needed). The
Kalman filter receiver structure in [25] requires GKL2 per
symbol per user, a known channel is assumed. The reported
complexity of the approach in [13] is G2L2 per user, for the
channel estimation step only.

5. SIMULATION RESULTS

Simulations are used to compare the proposed algorithms
to the blind RAKE receiver and the DRR. We simulate a

4This inversion technique is closely related to Kalman filtering, for exam-
ple, both are connected to a Riccati equation. A difference is that the Kalman
filter is placed in a stochastic context.
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Table 1: Computational complexity of the two-step iterative algorithm.

Implementation Direct Sparse State space

Symbol estimation

T′ = TH GM3K2L GMKL GMKL

ŝ = (T′)†y GM3K2 G(MK)2 (approx.) GMK2

Channel estimation

T′′ = TS GM2K2L2 GMKL (integer) [GMKL (integer)]

ĥ = (T′′)†y GM(KL)2 (KL)2 (integer, approx.) [(KL)2 (integer, approx.)]

Total per iteration GM3K2L G(MK)2 GMKL + GMK2

long-code CDMA uplink with K = 8 equal-power users
transmitting BPSK symbols in frames of length M = 10 sym-
bols, spread by randomly generated codes with gain G = 32.
All channels have lengths L = 3 and have a random de-
lay to model asynchronism, and all channel coefficients are
equal-powered, complex normal random numbers. A hun-
dred Monte Carlo runs are used to derive the performance
statistics.

Only a single iteration of the two-step algorithm is used.
The well-known phase ambiguity problem in blind estima-
tion is easily solved by using a single training pilot symbol or
by differential encoding.

5.1. Channel estimation mean square
error comparison

The channel mean square errors (MSEs) of the various algo-
rithms are compared for varying signal-to-noise ratio (SNR),
that is, the energy per bit divided by the noise power (Eb/N0).
The reference curve is the linear MMSE receiver with known
source symbols.

Figure 3a shows the results. It is seen that the proposed it-
erative algorithms (multiuser estimation, either initialized by
DRR or RAKE) have significant gains over the DRR and es-
pecially over the conventional RAKE receiver. When the SNR
is sufficiently high (SNR > 9 dB), their performance is almost
the same as the ideal linear MMSE receiver (computed from
known symbols) with gain of about 7 dB over the DRR.

When the noise is strong, the proposed algorithm initial-
ized by RAKE seems to be a better candidate than the one
with DRR as the initial estimate. This is attributed to the
noise enhancement of T†, since T is not very tall. Conse-
quently, as the SNR increases, the gap between the two curves
reduces quickly to zero.

In addition, the iterative single-user estimation version
of the proposed algorithm also has a good performance with
gain of about 2 dB over the DRR. However, separate simula-
tions showed that the noise whitening did not give any im-
provement in MSE over the unwhitened iterative DRR (its
curve is not shown for clarity).

Figure 3b shows how the algorithms’ performance
changes with respect to the number of users (K) while the
SNR is kept fixed at a moderate level, 10 dB. When K is small,
the proposed curves are nearly identical to the MMSE re-
ceiver. Since DRR requires T to be tall, the maximal number
of users for DRR is given by K0 = �G/L�. When approach-

ing this limit (K ≈ 7 to 8 so that T is barely tall), the per-
formance of DRR starts to deteriorate: the conditioning of
T becomes poor and T† will significantly amplify the noise.
The two-step algorithm initialized by DRR still has a good
performance. However, when K ≥ K0 = 10, its performance
degrades drastically while the algorithm initialized by RAKE
still maintains a good performance. Its curve gradually de-
taches from the MMSE curve as K increases.

It can be interpreted from the preceding results that our
proposed multiuser algorithm converges rapidly, and even a
single iteration can have significant improvement in channel
estimation, which is comparable to the linear MMSE receiver.
Moreover, the proposed algorithm is rather independent of
the initial estimate when the system is not heavily loaded.
When the number of users K becomes critical, initialization
by the blind RAKE is the preferred choice because it does not
suffer from sudden noise enhancement.

5.2. Bit error rate (BER) comparison

We next study the BER performance of the various algo-
rithms. The reference curve indicates the performance of
the linear MMSE receiver based on true channel coefficients.
Figure 4a corresponds to Figure 3a and shows that the mul-
tiuser version of the proposed multiuser algorithm has sig-
nificant improvement over the DRR. The gain is approxi-
mately 4 dB at BER= 10−2, and slightly increases when the
BER decreases. The single-user noise-whitened iterative ver-
sion, despite its rather good performance in channel estima-
tion, is only slightly better than its corresponding DRR (the
gain is about 1 dB). Without noise whitening, however, the
BER results of the original iterative algorithm in Section 2.2
were slightly worse than the noniterative DRR (curves not
shown for clarity), therefore, the whitening step is advis-
able.

The proposed multiuser algorithm seems to have the
same BER when the SNR is high enough, independent of its
initialization by the DRR or by the blind RAKE. However,
when the noise is strong, the iterations initialized by RAKE
have a slightly better performance because they do not suffer
from noise enhancement in case T is not tall.

Finally, Figure 4b shows the performance of the multiple
antenna versions of each of the proposed algorithms. Com-
pared with the corresponding MMSE receiver, the perfor-
mance gap is wider than in the single-antenna case. This is
in accordance with our discussion in Section 3.3.
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Figure 3: Channel estimation error (MSE), for G = 32 chips, M = 10 symbols, and L = 3 chips versus (a) SNR (for k = 8 users), and (b)
number of users (k) (for Eb/N0 = 10 dB).
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Figure 4: BER versus SNR, for k = 8 users, G = 32 chips, M = 10 symbols, and L = 3 chips. (a) Single antenna; (b) two antennas.
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6. CONCLUSION

We have derived a multiuser joint source-channel estima-
tion for long-code CDMA, which is the combination of the
blind (decorrelating) RAKE receiver with an iterative sym-
bol/channel estimation algorithm. The algorithm shows a
significant improvement over the decorrelating RAKE re-
ceiver and the conventional RAKE receiver. The gain is espe-
cially impressive in heavily loaded systems, even if the noise
is strong.

Using time-varying state space realizations, we showed
that the proposed algorithm can be efficiently implemented,
especially if the number of symbols in a slot is relatively large.
Per estimated symbol per user, the complexity is of order GK ,
whereas the complexity of a RAKE receiver is GL, where G is
the code length, K the number of users, and L the channel
length in chips (assuming K > L and the number of symbols
in a slot sufficiently large). Thus, the proposed scheme has a
complexity that is similar to that of the RAKE receiver.
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