
2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 1

On the Distributed Method of Multipliers for
Separable Convex Optimization Problems

Thomas Sherson, Richard Heusdens, and W. Bastiaan Kleijn

Abstract—In this paper we present a novel method for con-
vex optimization in distributed networks called the distributed
method of multipliers (DMM). The proposed method is based on
a combination of a particular dual lifting and classic monotone
operator splitting approaches to produce an algorithm with
guaranteed asymptotic convergence in undirected networks. The
proposed method allows any separable convex problem with
linear constraints to be solved in undirected networks. In contrast
to typical distributed approaches, the structure of the network
does not restrict the types of problems which can be solved.
Furthermore, the solver can be applied to general separable
problems, those with separable convex objectives and constraints,
via the use of an additional primal lifting approach. Finally we
demonstrate the use of DMM in solving a number of classic signal
processing problems including beamforming, channel capacity
maximization and portfolio optimization.

Index Terms—Distributed signal processing, convex optimiza-
tion, monotone operator, optimization over networks.

I. INTRODUCTION

Large scale optimization has become a significant topic
of interest in the fields of computer science and electrical
engineering. Driven by applications from the likes of the
“Internet of Things” paradigm [1], cloud computing [2] and
large scale machine learning [3], there is a growing need for
efficient methods to solve large scale problems.

A family of approaches which has seen significant interest to
address this need are those based on distributed computation.
Designed for use in networked systems, distributed methods
are often characterized by only requiring local computations
at nodes within the network and short range communication.
This removes the need for data aggregation and centralized
computations which can quickly become infeasible to imple-
ment for large scale networks.

In recent years a wide range of techniques have been pro-
posed to perform distributed computation including the likes of
distributed consensus/gossip [4]–[6], belief propagation/mes-
sage passing approaches [7], [8], graph signal processing over
networks [9]–[12] and more. In this work, we draw particular
attention to the additional field of decentralized/distributed
optimization as a method of achieving distributed computation.

Thomas Sherson is with the Department of Microelectronics, Circuits and
Systems group, Delft University of Technology, The Netherlands. Email:
t.sherson@tudelft.nl

Richard Heusdens is with the Department of Microelectronics, Circuits
and Systems group, Delft University of Technology, The Netherlands. Email:
r.heusdens@tudelft.nl

W. Bastiaan Kleijn is with the Department of Microelectronics, Circuits
and Systems group, Delft University of Technology, The Netherlands. and
with the School of Engineering and Computer Science, Victoria University of
Wellington, New Zealand. Email: w.b.kleijn@tudelft.nl

The motivation for this pursuit is the link between many signal
processing applications and equivalent convex optimization
problems [13]. By developing novel tools for distributed
optimization we can facilitate a range of signal processing
applications in a distributed manner.

While a number of distributed optimization algorithms exist
within the literature, many were conceived for use in parallel
computing rather than in-network applications [14]. The result
is that while many algorithms allow for distribution over
the structure of the target optimization problem they may
require communication which does not respect the underlying
network topology. As such, data aggregation approaches may
be required which, as in the case of centralized computation,
can be cumbersome or perhaps infeasible to implement. While
the considered problem classes can be restricted to circumvent
this point, this action in turn heavily limits their applicability
to real world problems.

In this work we propose a novel method for distributed opti-
mization which can be used to solve general separable convex
optimization problems. The family of separable problems are
characterized by having separable objectives functions and
separable constraints. Unlike many existing approaches, for
the proposed algorithm the underlying structure of the network
need not affect the types of problems which can be addressed,
allowing the solver to be readily applied to general undirected
networked problems.

A. Related Work

The field of parallel and distributed optimization has an
extensive history upon which this paper builds. Key figures
within the literature include Rockafellar, whose fundamental
work on network optimization [15] and the relation between
convex optimization and monotone operator theory [16]–[18]
remains central to many results to this day. Notably, Rock-
afellar showed how linearly constrained convex programs with
separable objectives could be solved in parallel via Lagrangian
duality. This fundamental notion was further developed by
the likes of Bertsekas, Tsitsiklis and Eckstein [14], [19]–[23]
where again separability was used as a mechanism to design
a range of distributed algorithms.

More recently, the demand for large scale data processing,
has seen a return to form of these approaches within the liter-
ature [24]–[28]. This period has also seen the development of
new methods of operator splitting [29]–[31] which in turn have
motivated the development of further distributed optimization
algorithms [32]–[34] again leveraging the fundamental links
Rockafellar forged back in the 1970’s. Unfortunately, a key

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 2

limitations of many distributed algorithms is that they do not
distribute in a way which respects the underlying network
structure. This is highlighted in [35] where a distinction is
drawn between the notions of distributability of an algorithm
over the constraints and communication structure of a given
networked optimization problem. The challenge is therefore
to construct distributed algorithms that allow for simultaneous
distribution over both the problem and network structure of a
given application.

Within the literature, a number of approaches have been
proposed to address the need for solving simultaneous dis-
tribution via varying means [35]–[42]. In [38], [39], the
alternating direction method of multipliers (ADMM) was used
as a means of ensuring dual consensus, in turn guaranteeing
primal optimality. Similarly, the methods in [36], [42] exploit
dual decomposition based approaches, in combination with a
consensus step and a proximal minimization step respectively
to achieve the same feat. The work of [35] continues this
trend by utilizing a combination of Lagrangian duality and an
internal consensus algorithm (a gossip variant in this instance)
to perform approximate dual updates. In contrast, the works of
[37], [40], [41] utilize primal-dual based techniques to tackle
the presence of global constraints. Notably, the method in [37]
aims to solve the more general problem of distributed saddle-
point computation, a problem which includes distributed opti-
mization as a special case. For distributed convex optimization,
the proposed method reduces to a primal-dual sub-gradient
algorithm incorporating a Laplacian averaging strategy.

B. Main Contributions

The main contribution of this work is the proposal of a
convex optimization solver termed the distributed method of
multipliers (DMM) that is simultaneously distributable in both
the network and problem structure. The proposed method
is deployable in any undirected network topology so long
as the network forms a single connected component. The
result is an algorithm that respects the connectivity of the
physical network whilst being applicable to a wide range of
optimization problems.

The DMM algorithm is derived from the perspective of
monotone operator theory and as such incorporates classic
operator splitting approaches. This leads to a straightforward
derivation closely related with other traditional algorithms
from within the literature including the alternating direction
method of multipliers (ADMM) [24], forward backward split-
ting (FB) [43] and more. The convergence guarantees of DMM
follow from its relation with Krasnosel’skiı̆-Mann iterations
[44] and hold for all closed, convex and proper functions.

We demonstrate the use of the proposed method in practical
signal processing problems including beamforming, channel
capacity maximization and portfolio optimization. This numer-
ically validates the performance claims of the algorithm while
demonstrating how the approach can be deployed in practice.

C. Organization of Paper

The remainder of this paper is organized as follows. In
Section II we introduce basic nomenclature to support the

remainder of the article. In Section III we derive our pro-
posed distributed method for separable problems with affine
constraints from a basic prototype optimization problem. Sec-
tion IV focuses on the computation of the iterates of our
algorithm, demonstrating the efficiency and locality of the
proposed method. Section IV-E highlights a primal lifting
stage, allowing the proposed method to also be used for
general separable problems and provides a means for further
reducing computational complexity. Section V demonstrates
the use of the proposed method for a range of distributed signal
processing tasks including beamforming, channel capacity
maximization and portfolio optimization before making our
concluding remarks in Section VI.

II. NOMENCLATURE

In this work we denote by R the set of real numbers,
by RN the set of real column vectors of length N and by
RM×N the set of M by N real matrices. Let X ,Y ⊆ RN .
A set valued operator T : X → Y is defined by its graph,
gra (T) = {(x,y) ∈ X × Y | y ∈ T (x)}. Similarly, the
notion of an inverse of an operator T−1 is defined via its
graph so that gra

(
T−1

)
= {(y,x) ∈ Y × X | y ∈ T (x)}.

JT,ρ = (I + ρT)
−1 denotes the resolvent of an operator

while RT,ρ = 2JT,ρ − I denotes the reflected resolvent
(Cayley operator). The fixed-point set of T is denoted by
fix (T) = {x ∈ X | T (x) = x}.

III. DERIVING A DISTRIBUTED SOLVER FOR SEPARABLE
CONVEX PROBLEMS WITH AFFINE CONSTRAINTS

In this section we introduce the derivation of the DMM algo-
rithm for separable convex problems with affine constraints. In
particular we demonstrate how DMM can be constructed via
monotone operator splitting while respecting the underlying
structure of a given physical network. This derivation also
directly leads to convergence guarantees by linking the method
with Krasnosel’skiı̆-Mann iterative schemes. This algorithm is
extended to general separable problems in Section IV-E.

A. Problem Statement and the Communication Graph

Consider an undirected network of compute nodes with
which we want to perform distributed convex optimization.
For now we make no assumptions on the structure of the
network other than that it is simple, undirected and connected.
In Section III-E we highlight the structural considerations of
this network and how they can influence the implementation
of our resulting distributed algorithm. The communication
structure of such a network can be represented by an equivalent
communication graph which we denote by G(V,E) where V
is the set of nodes, |V | = N is the number of nodes, | • |
denotes the cardinality of a set and E denotes the set of
undirected edges. These edges represent the communication
channels between nodes.

An example of such a graph is included in Fig. 1 for a
simple eight node network. We denote by N (i) = {j ∈
V | (i, j) ∈ E} the neighborhood of node i, i.e. the set of
nodes with which node i shares a physical connection. For

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 3

1

2

3

4

5

6

7

8

Fig. 1: The communication graph G of a simple eight node
network. Numbered circles denote nodes and their identifiers
while the double ended arrows denote the undirected edges.

instance, the neighborhood of node 4 in Fig. 1 is given by the
set N (4) = {2, 5, 6}.

In this work, we are interested in using networks to solve
convex optimization problems in a distributed manner. For this
section, we have restricted our attention to separable convex
optimization problems with affine constraints. In such prob-
lems, each node is associated with a local objective function
fi ∈ Γ0

(
RMi

)
, ∀i ∈ V , parameterized by xi ∈ RMi , where

Γ0 denotes the set of closed, proper and convex functions. We
define the scalar MV =

∑
i∈V Mi, which denotes the total

number of variables in the network. Specifically, we consider
problems of the form

min
xi

∑
i∈V

fi(xi) s.t Akx− bk I
k

0 ∀k ∈ κ (1)

where for each k, I
k

denotes either element-wise equality or

inequality of the form ≥, κ = {1, 2, · · · ,K}, K denotes the
total number of constraints and x =

[
xT1 , · · · ,xTN

]T
. The

matrices Ak ∈ RMk×MV and vectors bk ∈ RMk impose
linear constraints between the variables at each node where
Mk denotes the dimensionality of the kth constraint set.
Importantly, we assume that (1) is strictly feasible such that
strong duality holds.

Due to the separability of linear constraints, we can rewrite
(1) by defining the sets Vk which denote those nodes i whose
variables xi play an active role in the kth constraint. More
formally, for each k ∈ κ, the set Vk is given by

Vk = {i ∈ V | Ai,k 6= 0}.

Using this notation, (1) can be equivalently written as

min
xi

∑
i∈V

fi(xi) s.t
∑
i∈Vk

(Ai,kxi − bi,k) I
k

0 ∀k ∈ κ. (2)

Here the matrices Ai,k ∈ RMk×Mi are the ith set of columns
of Ak such that Akx =

∑
i∈Vk

Ai,kxi while the vectors bi,k
are chosen such that

∑
i∈Vk

bi,k = bk.

B. Implied Connectivity of the Constraint Graph

The constraints in (2) imply a secondary set of relationships
between the local variables at each node which can be modeled
via a constraint graph denoted by GC(V,EC). Here, the edge
set EC captures the interdependence of node variables in the
constraint functions. In particular, if two nodes i, j are active
in the same constraint k, then (i, j) ∈ EC .

A fundamental challenge in distributed optimization follows
from the differences between the edge sets of GC and G as
was highlighted in [35]. This challenge is best demonstrated
with an example.

Consider again the network in Fig. 1 with which we want
to solve the optimization problem

min
xi

8∑
i=1

fi(xi)

s.t
∑

i=1,2,3

(
AT
i,1xi − bi,1

)
= 0∑

i=2,4,5,6

(
AT
i,2xi − bi,2

)
= 0∑

i=4,6,7,8

(
AT
i,3xi − bi,3

)
= 0,

(3)

where κ = {1, 2, 3}, V1 = {1, 2, 3}, V2 = {2, 4, 5, 6} and
V3 = {4, 6, 7, 8} in this instance. Note that for this example,
we need not consider the dimensionality of the local variables,
only the communication structure implied by the constraint set.
Using the definition of EC , we can form the constraint graph
of (3) which is included in Fig. 2.

1

2

3

4

5

6

7

8

Fig. 2: The constraint graph GC for the same eight node
network as in Fig. 1. The green, blue and red colouration
is used to denote the dependencies between nodes for first,
second and third set of constraints.

Comparing Fig. 1 and 2, we can note that while the two
graphs share the same node set V , the connectivity of the
physical network (G) and that imposed by the constraint func-
tions (GC) may differ depending on the optimization problem
we are trying to solve. In particular, note the discrepancy
between the edges of EC and E. The edge (2, 6), for instance,
is contained within EC but not within E. Contrastingly, the
edge (5, 8) is contained within E but not within EC as no
constraints impose any relationship between the local variables
at nodes 5 and 8 directly. This poses a challenge for many
existing algorithms which aim to distribute over the constraint
set [21], [24], [28] as while an algorithm may be distributable
in GC it may not be in G. Fig. 2 for instance suggests the need
for communication between nodes 2 and 6 which cannot be
achieved in the physical network without relaying messages
via node 4. In the following we demonstrate a method to
address this mismatch in a fully distributed manner via a dual
lifting approach.

C. Exploiting Separability Via Lagrange Duality

Inspired by classic results from Rockafellar [15], we can
exploit the separability of (2) to overcome the coupling of our

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 4

primal variables through the constraint functions and thus the
discrepancies between GC and G. Specifically, we can use
Lagrangian duality1 to rephrase (2) in an alternative form. For
this purpose, at each node we define the set

κi = {k ∈ κ|i ∈ Vk} ,

to denote those k such that i is active in said constraints. Fur-
thermore, the set of indices k ∈ κ associated with inequality
constraints in (2) is denoted by

κ≥ =

{
k ∈ κ | I

k
is of the form ≥

}
.

The general form of the dual of (2) is therefore given by

min
νk

∑
i∈V

(
f∗i

(∑
k∈κi

AT
i,kνk

)
−
∑
k∈κi

bTi,kνk

)
s.t. νk ≥ 0 ∀k ∈ κ≥,

(4)

where f∗i (y) = supx
(
yTx− f(x)

)
denotes the Fenchel

conjugate of fi and νk ∈ RMk denotes the dual variable
associated with the kth constraints. In the case of the graph
considered in (2), a visualization of this point is provided in
Fig. 3. Here, the dual problem is parameterized by three dual
variables (ν1, ν2, ν3) each associated with a constraint.

1

2

3

4

5

6

7

8

ν1 ν2 ν3

Fig. 3: Graph of the dual problem for the same eight node
network as in Fig. 2. The green, blue and red colors denote
the dependencies on the dual variables ν1, ν2 and ν3.

At this point many classic algorithms begin to directly solve
(4) by distributing over the set of constraints. However, as each
dual variable ν can parameterize the local objective functions
of multiple nodes, their updating can be challenging from a
distributer perspective. To demonstrate this challenge, consider
a problem with a single constraint k = 1 in which every node
plays an active role, i.e., V1 = V . The resulting graphical
model of the dual problem would exhibit a centralized topol-
ogy in this instance. Such a topology implies the need for
data aggregation to compute the dual variable which ultimately
undermines the distributed intention of this work. For this
reason, in the following we demonstrate a lifting approach
which allows us to overcome dual variable coupling while
naturally respecting the underlying topology of the network.

D. A Communication Graph Preserving Dual Lifting

Motivated by the dual lifting adopted in [45], we propose
to address the coupling of the objectives functions by lifting

1This is sometimes referred to as Fenchel-Rockafellar duality.

the dimensionality of the dual problem in a specific fashion.
In particular, our goal is to rephrase (4) into a set of node and
edge based terms. The proposed lifting results in the extended
dual of Eq. (1)

min
λi|j,k

∑
i∈V

f∗i
∑
k∈κi

∑
j∈Nk(i)

AT
i,kλ(i,j),k

|Nk(i)|

−
∑
k∈κi

∑
j∈Nk(i)

bTi,k
|Nk(i)|

λ(i,j),k

 (5a)

s.t. λ(i,j),k = λ(j,i),k ∀k ∈ κ, i ∈ Vk, j ∈ Nk(i) (5b)
λ(i,j),k = λ(i,l),k ∀k ∈ κ, i ∈ Vk, j, l ∈ Nk(i) (5c)
λ(i,j),k ≥ 0 ∀k ∈ κ≥, i ∈ Vk, j ∈ Nk(i). (5d)

Here, Nk(i) denotes the constrained neighborhood of each
node i ∈ Vk where

Nk(i) = {j ∈ Vk | j ∈ N (i)},

i.e. the subset of N (i) active in the kth set of constraints.
To perform this dual lifting, ∀k ∈ κ new copies of each

dual variable νk have been introduced for each directed edge
in the network. That is, ∀k ∈ κ, i ∈ Vk, j ∈ Nk(i), the
variables λ(i,j),k, λ(j,i),k ∈ RMk are introduced. Making the
substitution νk =

∑
j∈Nk(i) λ(i,j),k/|Nk(i)| for each node i

and constraint k results in the lifted objective of (5).
Equivalence with (4) is insured via the additional constraints

introduced between dual variables corresponding to the same
k. These can be divided into two sets: edge based constraints
λ(i,j),k = λ(j,i),k ∀k ∈ κ, (i, j) ∈ E and node based
constraints λ(i,j),k = λ(i,l),k ∀k ∈ κ, i ∈ Vk, j, l ∈ Nk(i).

Performing the lifting in this way partitions the extended
dual into four distinct sections: a fully node separable objective
function (5a), a set of edge based consensus constraints (5b),
an additional set of node based consensus constraints (5c)
and finally a set of element-wise non-negativity constraints
(5d). Such a problem structure is attractive in the context of
alternating optimization methods as it partitions the problem
into node and edge based terms.

For the example problem in (2), a visualization of the
resulting lifted problem, indicating the relationship between
the local copies of the dual variables, is included in Fig. 4.

Remark 1. Typically lifting approaches such as the one
adopted here result in an increase in computational complexity
and memory load. However, in the case of the proposed
method we will see this in not the case. Specifically, we
mean that the computational cost of any local optimization
problems at each node do not scale with the number of
variables introduced. This is highlighted in Remark 3 and
by the primal x updates in Lemma IV.1 and Algorithm 1 in
Sections IV-A and IV-C respectively. This is also demonstrated
for the specific simulation examples in Section V. Furthermore,
when considering the affect on memory load, the total number
of extended dual variables introduced at any node i is only
dependent on the size of its constrained neighborhoods Nk(i).
In this manner, while the memory load of the network is

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 5

increased, the local increase at any one node is bounded based
on the physical connectivity of the network.

E. Network Topology Requirements
At this stage it is important to highlight how the topology of

G affects the feasibility of the lifting in Eq. (5). In particular,
the equivalence of Eq. (4) and (5) relies on the constraints
enforcing consensus between dual variables ∀k. To this end,
we demonstrate how this is guaranteed for a restricted set of
network topologies which can then be generalized to the case
of connected networks.

To begin, for the proposed lifting, a sufficient condition for
the equivalence of Eq. (4) and (5) is given in Lemma III.1.

Lemma III.1. If ∀k ∈ κ, the nodes i ∈ Vk form a connected
subgraph of G then (4) and (5) are equivalent problems.

Proof. If ∀k ∈ κ, the set of nodes i ∈ Vk form a connected
subgraph of G then the constraints (5b) and (5c) ensure that
∃ νk such that at consensus, ∀i ∈ Vk, j ∈ Nk(i), λ(i,j),k =
νk. Hence the problems are equivalent.

While sufficient to guarantee equivalence, Lemma III.1
seems restrictive. For instance, if a network forms a sin-
gle connected component, data aggregation could be used
to enforce dual consensus without satisfying this condition.
As a demonstration, consider the communication graph and
constraint graph given in Fig. 5a and 5b respectively. Clearly,
the network has the physical connectivity to enforce any set
of constraints between nodes but, due to the lack of activity
of node 2 in the constraints, the set of active nodes forms a
physically disjoint subgraph.

To generalize the class of applicable networks we can
introduce a modification to the dual lifting in (5) to ensure
its equivalence to (4). The basic notion is that ∀k ∈ κ we
can introduce additional nodes to the set Vk such that the
resulting subnetworks form connected subgraphs. This action
can always be performed due to our initial assumption that G
forms a single connected component.

In the case of the networked problem in Fig. 5, the initial
constraint set Vk = {1, 3, 4} can be augmented to include
node two such that Vk = {1, 2, 3, 4} which in turn ensures that
the constraint subgraph forms a single connected component.
This introduces local copies of νk at node 2 denoted by
λ(2,j),k ∀j ∈ Nk(2). These additional variables in no way
influence the objective cost of node 2 and exist only to enforce
consensus between the lifted dual variables ∀i ∈ Vk. The
additional matrix A2,k = 0 and vector b2,k = 0 are also
introduced to complete the modification. For the remainder of
the document, should a network require this modification to
solve a particular problem we assume that this is performed.

F. Simplifying the Problem Notation
To assist with the remainder of this derivation, we intro-

duce a compact notation to allow us to simplify Eq. (5). In
particular, we show that (5) can be rewritten as

min
λ

f∗(CTλ)− dTλ

s.t. (I−P)λ = 0, Lλ = 0, Sλ ≥ 0,
(6)

where the three constraints correspond to (5b), (5c) and
(5d) respectively. The additional matrices associated with this
equivalent representation are defined below.

1) Forming a Single Dual Vector: We firstly define a vector
notation for the extended dual variables. For each k ∈ κ,
denote by λk the stacked vector of all λ(i,j),k. The ordering
of this stacking is based on the directed edge index and is
given by (1, 2) < (1, 3) < · · · < (1, N) < (2, 1) < (2, 3) <
· · · < (N,N − 1). In this way, λk is given by

λk =
[
λ(1,2),k, · · · ,λ(1,N),k,λ(2,1),k, · · · ,λ(N,N−1),k

]T
.

By stacking the set of all λk, we can then form a single
dual vector λ as used in (6) such that

λ =
[
λT1 , · · · ,λTK

]T
.

2) Compact Objective Notation: Given the compact nota-
tion of the dual variables, we now move to simplifying the
objective function. Firstly, we define the global function

f : RMV 7→ R,x 7→
∑
i∈V

fi(xi)

where RMV = RM1 × . . . × RMN . Similarly, the Fenchel
conjugate of this function is denoted by f∗.

The next step is to define a matrix and vector to rewrite our
objective using λ and f∗. This stage is broken into multiple
steps. Firstly, ∀k ∈ κ, i ∈ Vk we define Ci,k and di,k as

Ci,k = 1|Nk(i)| ⊗
AT
i,k

|Nk(i)|
∀i ∈ Vk,

di,k = 1|Nk(i)| ⊗
bi,k
|Nk(i)|

∀i ∈ Vk,

where ⊗ denotes the Kronecker product of two matrices
and the notation 1|Nk(i)| is used to indicate a |Nk(i)|-length
column vector of ones. For each k ∈ κ we therefore define
the matrices Ck and dk as

Ck =

C1,k . . . 0
...

. . .
...

0 . . . CN,k

 , dk =
[
dT1,k, · · · ,dTN,k

]T
. (7)

We can then form the final matrix C and vector d by
stacking over the set of constraints so that

C =
[
CT

1 , · · · ,CT
K

]T
,

d =
[
dT1 , · · · ,dTK

]T
.

Combining these two definitions the objective function of
(5) can be compactly written as

f∗(CTλ)− dTλ.

3) Compact Constraint Notation: As with the objective, we
can define a set of additional matrices to rewrite the constraints
using our dual vector notation. To capture the edge based
constraints (5b), we define for each k ∈ κ the symmetric
permutation matrix Pk which interchanges the edge variables

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 6

4

λ(4,2),2

λ(4,6),2

λ(4,6),3

λ(4,5),2

λ(2,4),2

λ(6,4),2

λ(6,4),3

λ(5,4),2

2 6

5

λ(2,1),1λ(1,2),1

λ(2,3),1λ(3,2),13

1

λ(2,5),2

λ(5,2),2

λ(6,7),3 λ(6,7),3

λ(6,8),3 λ(8,6),3

7

8

Fig. 4: A graph modeling the connectivity of extended dual problem for the same eight node network as in Fig. 2. The green,
blue and red colors denote the dependencies on the three sets of constraints in (3).

21 3

4

(a) Communication Graph

21 3

4

(b) Constraint Graph

Fig. 5: An example of a simple four node network. The
target problem of interest imposes no constraints on the primal
variables at node 2 but does affect the other three nodes.

λ(i,j),k,λ(j,i),k ∀i, j ∈ Vk. By concatenating over all k ∈ κ,
we can define the permutation matrix

P =

P1 . . . 0
...

. . .
...

0 . . . PK

 .
Combining with the definition of λ allows us to rewrite (5b)
as (I−P)λ = 0 to enforce edge based consensus.

For the second set of constraints (5c), we define the matrices

Lk =

L1,k . . . 0
...

. . .
...

0 . . . LN,k

⊗ IMk
∀k ∈ κ,

where the additional submatrices are given by

Li,k = Di,k −Ei,k ∀i ∈ Vk
Di,k = (|Nk(i)| − 1) I|Nk(i)| ∀i ∈ Vk
Ei,k = 1|Nk(i)|1

T
|Nk(i)| − I|Nk(i)| ∀i ∈ Vk.

Similar to 1M , here the matrix IM is used to denote an M×M
identity matrix. It can be shown that ∀k ∈ κ, i ∈ Vk

Li,k1|Nk(i)| = (Di,k −Ei,k) 1|Nk(i)|

= |Nk(i)|1|Nk(i)| − |Nk(i)|1|Nk(i)|

= 0|Nk(i)|,

where in the third line we have used the mixed-product
property of Kronecker products. In this way, the kernel space
of Li,k corresponds to the consensus vector and can therefore
be used to impose the consensus constraints in (5c). Concate-
nating over the constraints, we can form the matrix

L =

L1 . . . 0
...

. . .
...

0 . . . LK

 ,

such that (5c) can be rewritten as Lλ = 0. Furthermore, from
the structure in (7), Li,kCi,k = 0, Li,kdi,k = 0, ∀k ∈ κ, i ∈
Vk such that LC = 0, Ld = 0.

For the final set of constraints (5d), ∀k ∈ κ we define the
selection matrices Sk ∈ RMk×Mk given by

Sk = skIMk

∑
i∈Vk

|Nk(i)|, sk =

{
1 if k ∈ κ≥
0 otherwise,

which preserves those dual variables associated with the
inequality constraints. Concatenating over the constraints, we
can form the final selection matrix given by

S =

S1 . . . 0
...

. . .
...

0 . . . SK

 ,
such that (5d) can be rewritten as Sλ ≥ 0.

Using this compact notation, we are now ready to define
our proposed distributed optimization algorithm.

G. From the Extended Dual Problem to a Monotonic Inclusion

Given the lifted dual problem (6), we now move to defining
a distributed algorithm to compute an optimizer of (1). In
particular, we want to construct an iterative algorithm

y(t+1) = UE ◦UV

(
y(t)

)
, (8)

which converges to a minimizer of (1) where t indicates
the iteration number, y ∈ Rp are the variables of interest
and the operators UE : Rp 7→ Rp are UV : Rp 7→ Rp
are parallelizable over the nodes and edges respectively. The
additional notation ◦ is used to denote operator composition so
that ∀ (x, z) ∈ gra (S1 ◦ S2), ∃y | (x,y) ∈ gra (S1) , (y, z) ∈
gra (S2). We would like such operators to be at least nonex-
pansive so that classic iterative methods can be employed. The
nonexpansiveness of an operator is defined as follows.

Definition III.1. Nonexpansive Operators: An operator T :
X → Y is nonexpansive if

‖u− v‖ ≤ ‖x− y‖ (x,u) , (y,v) ∈ gra (T) ,

where 〈x,y〉 denotes the inner product between x ∈ X and
y ∈ Y and ‖x‖ denotes the associated induced norm.

We can construct an iterative solver for (1) via operator
splitting. In this case, we make use of the relationship be-
tween the subdifferentials of convex functions and monotone

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 7

operators. In particular, an operator is monotone if it satisfies
the following definition:

Definition III.2. Monotone Operators: An operator T : X →
Y is monotone iff

〈u− v,x− y〉 ≥ 0 ∀ (x,u) , (y,v) ∈ gra (T) ,

Furthermore, T is maximal monotone iff

@ a monotone T̃ : X → Y | gra(T) ⊂ gra(T̃).

To form our iterative approach, consider the equivalent
unconstrained form of (6),

min
λ

f∗(CTλ)− dTλ + ιC1 (λ) + ιC2 (λ) + ιC3 (λ) , (9)

where ιC denotes an indicator function of the set C such that

ιC (λ) =

{
0 if λ ∈ C
+∞ otherwise

.

Here the convex sets C1, C2 and C3 are given by

C1 = ker (I−P) , C2 = ker (L) , C3 = {λ | Sλ ≥ 0} ,

where ker (C) denotes the kernel of C.
As the sets C1, C2 and C3 are closed subspaces such that

ιC1 (λ) , ιC2 (λ) , ιC3 (λ) ∈ Γ0, as f ∈ Γ0 and all functions
contain a common feasible point, a minimizer of (9) can be
found by finding a zero-point of its subdifferential.

0 ∈C∂f∗
(
CTλ

)
−d + ∂ιC1 (λ)+∂ιC2 (λ)+∂ιC3 (λ) . (10)

Here ∂f∗ is used to denote the subdifferential of f∗.
A zero-point of (10) can be found via a range of approaches

including Forward Backward (FB) splitting, Douglas-Rachford
(DR) Splitting, Chambolle-Pock (CP) and more (see [46]
for an overview of such splitting methods). In the proposed
distributed context, the choice of such a splitting method
must be made to take advantage of the node and edge based
structure we have introduced into the subdifferentials of (10).

In this work, we adopt a classic two operator splitting
scheme to rephrase (10) as a more familiar fixed point in-
clusion. To do so, we define the two operators

T1 (λ) = C∂f∗
(
CTλ

)
− d + ∂ιC2 (λ) , (11a)

T2 (λ) = ∂ιC1 (λ) + ∂ιC3 (λ) , (11b)

where, by design, T1 is node separable and T2 is edge
separable. These operators are both maximal monotone by
combining the results of [18] and [47].

H. Selecting an Operator Splitting Approach

To find a minimizer of (9), we can use averaged PR splitting,
which includes DR splitting as a special case, to recast (10)
as a fixed point problem of a nonexpansive operator. Our
motivation for choosing this approach is that, unlike methods
such as FB splitting, we need not impose additional functional
restrictions beyond that f ∈ Γ0. Additionally, averaged PR
splitting allows us to take advantage of the node and edge
separability of T1 and T2 respectively. Other methods, like

CP, cannot take advantage of this point. In particular, CP,
which aims to solve monotonic inclusions of the form

0 ∈ C∂f
(
CTλ

)
+ ∂g (λ) ,

would require that either T1 or T2 could be expressed as a
composition of a subdifferential and a linear operator. While
we could define an alternative operator T̂1 = C∂f∗

(
CTλ

)
−

d such that this method could be used, the second operator
would be given by T̂2 (λ) = ∂ιC1 (λ) + ∂ιC3 (λ) + ∂ιC2 (λ)
which is neither edge nor node separable, eliminating our
ability to form a distributed solver. In this way, PR splitting
was a natural choice for our particular application.

I. Forming the Distributed Method Of Multipliers
Given two maximal monotone operators A and B and a

positive scalar ρ > 0, PR splitting can be used to find a zero of
A+B by rephrasing it as a more familiar fixed point condition
[46, Sec. 7.3] of the form

RB,ρ ◦RA,ρ (z) ∈ z, λ = JA,ρ (z) , (12)

where JA,ρ and RA,ρ denote the resolvent and reflected
resolvent of A respectively. The newly introduced z variables
will be referred to as auxiliary variables from here on out. We
can therefore equivalently solve (10) by solving

RT2,ρ ◦RT1,ρ (z) ∈ z, λ = JT1,ρ (z) . (13)

As we will show in the coming section, the node and edge
separable structure of T1 and T2, is inherited by the operators
JT1,ρ and JT2,ρ respectively so that RT1,ρ and RT2,ρ form
the operators UV and UE outlined in Eq. (8).

To form our distributed algorithm, we define the nonex-
pansive distributed method of multipliers (DMM) operator as
TD,ρ = RT2,ρ ◦ RT1,ρ. The nonexpansiveness here stems
from the maximal monotonicity of T1 and T2 and thus the
nonexpansiveness of RT1,ρ and RT2,ρ.

Remark 2. In the specific case that all the constraints are
edge based (only two nodes are active in each constraint and
they correspond to a physical edge of G) the DMM operator
corresponds to the PDMM operator given in [45].

Given the nonexpansiveness of TD,ρ, we can employ a
Krasnosel’skiı̆-Mann iterative scheme to form our proposed
averaged PR splitting method [44, Chapter 3]. Such a scheme
is given by

z(t+1) = (1− α(t))z(t) + α(t)TD,ρ

(
z(t)
)
. (14)

where ∀t ∈ N, α(t) ∈ (0, 1) and the sequence of α(t) is non-
convergent i.e.

∑+∞
t=0 α

(t) = +∞. As previously mentioned,
when α(t) = 1

2 ∀t ∈ N, we recover the DR variant of the
DMM algorithm.

IV. COMPUTATION OF THE DMM UPDATES AND ITS
DISTRIBUTED IMPLEMENTATION

Given the basic iterative scheme for DMM, presented in
(14), in this section we demonstrate how the structure of (2)
can be used to simplify the computation of the iterates. This is
comprised of two simplifications, one for each of the reflected
resolvents, and is summarized in the following two Lemmas.

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 8

A. Computing the Reflected Resolvent RT1,ρ

We begin with the first reflected resolvent operator RT1,ρ

and its method of computation.

Lemma IV.1.

RT1,ρ

(
z(t)
)

= w(t+1) = 2λ(t+1) − z(t)

= 2γ(t+1) − 2ρ
(
Cx(t+1) − d

)
− z(t),

where,

λ(t+1) = JT1,ρ

(
z(t)
)

by (13) ,γ(t+1) = Π
ker(L)

(
z(t)
)
,

x(t+1) = arg min
x

(
f (x) +

ρ

2
‖Cx− d‖2 −

〈
CTγ(t+1),x

〉)
.

The proof for this Lemma can be found in Appendix A.

Remark 3. The primal x update, which involves a convex
optimization problem, has local variables of the same dimen-
sionality as the original problem in (1). If an alternative lifting
were utilized, the increase in the number of local variables at
each node may unnecessarily result in a more complex local
optimization problem per iteration.

B. Computing the Reflected Resolvent RT2,ρ

In the case of T2, it can be shown that the reflected resolvent
RT2,ρ also exhibits a naturally distributable solution.

Lemma IV.2.

Rρ,T2

(
w(t+1)

)
= v(t+1) = 2y(t+1) −w(t+1)

= Pw(t+1) −min{S (I + P) w(t+1),0},

where

y(t+1) =
1

2
(I + P) w(t+1) −min{S1

2
(I + P) w(t+1),0}.

and min{•, •} is used to denote elementwise minimization.

The proof for this Lemma can be found in Appendix B.
Rρ,T2

reduces to a local exchanging of information between
neighboring nodes (indicated by the use of the permutation op-
eration) followed by a localized post processing at each node
comprised of linear operations and element-wise comparisons.

C. Implementation in a Distributed Network

By combining Lemmas IV.1 and IV.2, the DMM algorithm
can be expressed as

γ(t+1) = Π
ker(L)

z(t) (15a)

x(t+1) = arg min
x

(
f (x)−

〈
CTγ(t+1),x

〉
+
ρ

2
‖Cx− d‖2

)
(15b)

w(t+1) = 2γ(t+1) − 2ρ
(
Cx(t+1) − d

)
− z(t) (15c)

v(t+1) = Pw(t+1) −min{S (I + P) w(t+1),0} (15d)

z(t+1) =
(

1− α(t)
)

z(t) + α(t)v(t+1) (15e)

The computation of each iteration reduces to a local averaging
step at each node (15a), a single optimization over the primal
variables (15b), the sharing of data between neighboring nodes
(15d) and a set of additional matrix vector multiplications and
element-wise comparisons. Furthermore, all of these opera-
tions are inherently distributable within the original network
with (15a), (15b) and (15c) corresponding to RT1,ρ and (15d)
to RT2,ρ. The final equation (15e) represents the averaging
operation performed in (14). The distributed nature of the
method is highlighted in Algorithm 1.

Algorithm 1 Distributed Method of Multipliers

1: Initialize: z(0) ∈ RME

2: for t=0,..., do
3: for all i ∈ V do . Primal and Dual Updates
4: γ

(t+1)
i,k = 1

|Nk(i)|
∑

j∈Nk(i)

z
(t)
(i,j),k

5: x
(t+1)
i =argmin

xi

(
fi(xi)+

∑
k∈κ

(
−
〈
AT
i,kγ

(t+1)
i,k ,xi

〉
+ ρ

2|Nk(i)|‖Ai,kxi−bi,k‖2
))

6: w
(t+1)
(i,j),k=2γ

(t+1)
i,k −z

(t)
(i,j),k−2ρ

(
Ai,kxi

|Nk(i)|−
bi,k

|Nk(i)|

)
7: for all k ∈ κ, i ∈ Vk, j ∈ Nk(i) do . Tx. Variables
8: Nodej ← Nodei(w

(t+1)
(i,j),k)

9: for all k ∈ κ, i ∈ Vk, j ∈ Nk(i) do . Aux. Updates

10: v
(t+1)
(i,j),k = w

(t+1)
(j,i),k − sk min

{
w

(t+1)

(i,j),k
+w

(t+1)

(j,i),k

2 ,0
}

11: z
(t+1)
(i,j),k = (1− α(t))z

(t)
(i,j),k + α(t)v

(t+1)
(i,j),k.

Here, we have made use of the fact that
γ(t+1),w(t+1), y(t+1), z(t) all share the same
structure as λ(t+1), i.e. z(t) =

[
zT1 , · · · , zTK

]T
where

zk = [zT(1,2),k, · · · , z
T
(1,N),k, z

T
(2,1),k, · · · , z

T
(N,N−1),k]T and

so on for the other terms. Furthermore we have exploited
the fact that γ(t+1),λ(t+1) ∈ ker (L) such that γ

(t+1)
(i,j),k =

γ
(t+1)
i,k , λ

(t+1)
(i,j),k = λ

(t+1)
i,k ∀k ∈ κ, i ∈ Vk, j ∈ Nk(i).

D. Convergence Guarantees

Having formed a solver for linearly separable convex opti-
mization problems, we now turn our attention to guaranteeing
its convergence to an optimal solution. Thankfully, due to the
use of a classic operator splitting approach in its derivation,
this convergence follows directly from known results. Specif-
ically, we form the following proposition.

Proposition IV.3. For a given vector z(0), ρ > 0 and the set(
α(t)

)
t∈N where

∑+∞
t=0 α

(t) = +∞, the iterates generated by

z(t+1) = (1− α(t))z(t) + α(t)TD,ρ

(
z(t)
)

converge to a fixed point of the operator TD,ρ.

The proof of this proposition follows directly from the
convergence of the Krasnosel’skiı̆-Mann method (see [48,
Theorem 5.15] or [44, Theorem 3.2]) and thus guarantees that
the proposed DMM algorithm converges to a fixed point. In

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 9

the case that α = α(t) ∀t the auxiliary fixed point residual
‖z(t+1)−z(t)‖2 converges to zero at a rate of O

(
1
t

)
. For finite

dimensional problems, it follows that the auxiliary variables
converge to a specific fixed point at the same rate.

E. Distributed Optimization of General Separable Problems

While the prototype problem given in (1) may seem initially
restrictive, in general any problem which exhibits both a
separable objective and separable constraints can be solved
by combining DMM with a primal lifting stage. Separability
of the local functions fi at each node can also be exploited to
reduce the computational complexity of the primal updates.

Consider a general separable optimization problem given by

min
xi

∑
i∈V

(fi(xi) + gi(Ai,gxi − bi,g))

s.t
∑
i∈V

hi(xi) ≤ 0, Akx− bk I
k

0 ∀k ∈ κ
(16)

Here, the functions gi, hi ∈ Γ0

(
RMi

)
∀i ∈ V .

The aim is to convert (16) to the form of (1), a point which
can be achieved by introducing the additional primal variables
wi, zi at each node and the slack variables yi such that (16)
can be equivalently expressed as

min
wi,xi,yi,zi

∑
i∈V

(fi(xi) + gi(zi))

s.t
∑
i∈V

yi = 0, Akx− bk I
k

0 ∀k ∈ κ

Ai,gxi − bi,g = zi ∀i ∈ V
hi(wi) ≤ yi, xi = wi ∀i ∈ V.

(17)

The additional constraints enforce the equivalence of (16)
and (17). Note that the only remaining constraints involving
multiple nodes are affine with the convex constraints only
acting locally at each node. By using indicator functions, we
can shift these non-affine inequality constraints to the objective
so that (17) can be rephrased as

min
wi,xi,yi,zi

∑
i∈V

(
fi(xi) + gi(zi) + ιhi(wi)≤yi

(wi,yi)
)

s.t
∑
i∈V

yi = 0 Akx− bk I
k

0 ∀k ∈ κ

xi −wi = 0, Ai,gxi − zi − bi,g = 0 ∀i ∈ V.

This is exactly in the form of (1) and thus can be directly
solved via the DMM algorithm. In essence here, we have
introduced a set of virtual nodes into the network with each
handling a subset of the newly introduced primal variables.
By separating the roles of fi, gi and δhi(wi)≤yi

across these
virtual nodes we can potentially reduce the complexity of the
primal updates of the DMM algorithm. Furthermore as these
virtual nodes only need to communicate with a single physical
node, this approach also introduces no additional overhead in
terms of communication cost making it an attractive choice
for practical distributed implementations.

V. APPLICATION TO DISTRIBUTED SIGNAL PROCESSING
TASKS

The role of the following section is to demonstrate how the
proposed DMM algorithm can be used to solve a range of
practical distributed optimization problems. For this purpose
we have chosen three signal processing examples including
beamforming, channel capacity maximization and the opti-
mization of a communal Markowitz portfolio.

A. Random Network Modeling
For all of the following examples, the networks we con-

sider are generated via classic stochastic graph models. We
consider three specific models: undirected Erdős-Rényi (ER)
graphs [49], Watts-Strogatz (WS) small world graphs [50] and
geometric random (GR) graphs [51]. Each different models,
whilst being straightforward to implement, is constructed via
different means and exhibit different network characteristics.
In particular, WS and GR networks have been shown to be
good candidates for modeling real world networks [50] [52].
Detailed explanations of the three topologies considered can
be found in [49]–[51].

Each network was ensured to be sparsely connected and to
form a single connected component as per our assumptions.
This was achieved by configuring the associated parameters
of each of the three network models. For the ER graphs, the
probability of connection, which controls the set of constructed
edges, was set to ln(N)

N . This is referred to as the critical
probability and generates networks with a low number of
edges and a high probability the network being connected. For
the WS graphs, the configuration process required two steps.
Firstly, the initial K-hop lattice networks were configured so
that K = dln(N)e. This choice generates networks with a
similar number of edges to that of an equally sized ER graph.
Secondly the probability of reconnection was configured to 5%
to create only a limited number of random connections. Finally
for the GR graphs, a three dimensional unit cube was used to
bound the locations of the randomly placed nodes while the
transmission distance of the nodes was set to r = 3

√
ln(N)/N

to again ensure a sparsely connected network with a high
probability of connectivity.

B. A Reference Centralized Averaged PR-Splitting Method
In addition to demonstrating the performance of the DMM

algorithm in different network topologies, the following simu-
lations also draw a comparison to a centralized averaged PR-
splitting based approach. The motivation for this comparison
is to offer insight into the degradation in performance expe-
rienced through the use of the proposed lifting. As with the
DMM algorithm, the centralized implementation stems from
the prototype problem in (1) which we can equivalently write
in the unconstrained form

min
x

f(x) +
∑
k∈κ

ιAkx−bkI
k
0 (x) . (18)

As with the extended dual problem, we can solve (18) by
equivalently finding a solution of the monotonic inclusion

0 ∈ ∂f(x) +
∑
k∈κ

∂ιAkx−bkI
k
0 (x) .

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 10

By setting T1 = ∂f and T2 =
∑
k∈κ ∂ιAkx−bkI

k
0, we can

therefore apply averaged PR-splitting as in Section III-I to
produce the iterative centralized approach given in Algorithm
2. As with the distributed averaged PR splitting method, the
convergence of this approach follows from its relationship with
Krasnosel’skiı̆-Mann type iterations. In the following, refer-
ences to a centralized implementation refer to this approach.

Algorithm 2 Centralized Averaged PR-Splitting

1: Initialize: z(0) ∈ RMV

2: for t=0,..., do
3: x(t+1) = argmin

x

(
f (x) + ρ

2‖x− z(t)‖2
)

4: y(t+1) = argmin
y

(∑
k∈κ

ιAky−bkI
k
0 (y) +

ρ
2‖y − 2x(t+1) + z(t)‖2

)
5: z(t+1) =(1−α(t))z(t)+α(t)

(
2y(t+1)−2x(t+1)+z(t)

)
.

C. Distributed Beamforming

For our first application, consider the use of an N node
wireless sensor network (WSN) where each node is equipped
with a single receiver used to measure an acoustic signal.
Given a set of noisy measurements taken by the network, the
aim is to recover an unknown target signal of interest. The
noise is assumed to be spatially uncorrelated Gaussian noise
at each node with variance σ2

i ∀ i ∈ V .
Such signals are typically processed in the time-frequency

domain such that any delay can be expressed as a phase
shift and thus as a complex scaling. For each frequency bin
our objective is to therefore to design a linear filter which
preserves the signal in a target subspace Λ while reducing the
power of received noise. Such a filter is a minimum variance
distortionless response (MVDR) beamfomer for the specific
case of uncorrelated noise [53] and can be computed as a
solution to the following optimization problem:

min
w

∑
i∈V

1

2
xHi σ

2
i xi s.t.

∑
i∈V

(
Λixi −

1

N

)
= 0,

Here, x denotes the vector of filter weights. Assuming that the
elements of the vector Λi and σi are known locally at each
node i, this problem is exactly in the form of (1).

Directly applying DMM, we can define the distributed
MVDR beamformer given in Algorithm 3. Note that as there
are no inequality constraints, the auxiliary updates have been
simplified to remove the dependences on S.

To demonstrate the performance of the proposed method,
three 1000 node networks were generated as per the different
methods outlined in Section V-A. The noise variances σi and
target subspace Λi which were used for all three networks
were generated randomly. The step size of DMM was empir-
ically chosen for each network to optimize convergence rate.
Additionally, ∀t ∈ N, α(t(t)) = 1

2 was selected, resulting in
a DR splitting variant of the DMM algorithm. The primal
convergence of the algorithm is given in Fig. 6 in addition to

Algorithm 3 Distributed Beamforming for Uncorrelated Noise

1: Initialize: z(0) ∈ RME

2: for t=0,..., do
3: for all i ∈ V do . Primal and Dual Updates
4: γ

(t+1)
i = 1

|N (i)|
∑

j∈N (i)

z
(t)
(i,j)

5: x
(t+1)
i =

(
σ2
i +

ρΛH
i Λi

|N (i)|

)−1 (
ΛHi γ

(t+1)
i +

ρΛH
i

N |N (i)|

)
6: w

(t+1)
(i,j) = 2γ

(t+1)
i −z(t)

(i,j)−2ρ

(
x
(t+1)
i

|N (i)| −
1

N |N (i)|

)
7: for all i ∈ V, j ∈ N (i) do . Transmit Variables
8: Nodej ← Nodei(w

(t+1)
(i,j))

9: for all i ∈ V, j ∈ N (i) do . Auxiliary Variables
10: z

(t+1)
(i,j) = (1− α(t))z

(t)
(i,j) + α(t)w

(t+1)
(j,i) .

the convergence of the objective function and relative objective
error ‖f(x) − f(x∗)‖2. In addition to the three types of
networks considered, we also include results for the reference
centralized approach where again the step size parameter ρ was
empirically optimized. The final precision of both algorithms
is due to the physical hardware utilized.

For the given number of nodes, the ability of the algorithm
to achieve machine precision in less than N iterations is a
satisfying result. Furthermore, due to the quadratic nature
of the local optimization problems at each node, the primal
updates are analytic and inexpensive to compute. The con-
vergence rate is also far better than the asymptotic bound of
Krasnosel’skiı̆-Mann type schemes [48, Theorem 5.15] which
most likely stems from the strong convexity and smoothness
of each local objective function. Of additional interest is the
fact that the proposed DMM offers comparable performance
to that of the centralized PR-splitting method. This is most
clearly demonstrated in the primal variables with the primal
error only converging twice as fast in the centralized case.
In this way, the additional dual lifting has not come at a
considerable reduction in convergence rate while allowing for
a fully distributable implementation.

We can also compare the proposed DMM algorithm and the
equivalent centralized averaged PR splitting method in terms
of computational complexity and memory load. In the case
of computational complexity, the most expensive operation
for both methods is the primal update of x(t+1). Due to the
separable and quadratic nature of f (x) in this case, this has a
complexity of O (N) for the centralized approach. For the
proposed DMM algorithm, each node must solve a scalar
quadratic problem with a complexity of O (1). With regards
to memory load, the centralized algorithm must store a total
of 3N variables in memory. In contrast, for DMM each node
must store a maximum of 2 + 3N (i) variables resulting in a
total memory load of 2N + 6|E| across the entire network.
These costs are summarized in Table I.

From these results we can make a number of comments.
Firstly, in terms of computational complexity, the proposed
DMM algorithm does not result in an increase in complexity, a
point previously alluded to in Section III-C. This is despite the
fact that the lifted problem has a larger number of variables.

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 11

100 200 300 400 500

10
-15

10
-10

10
-5

10
0

50 100 150 200 250

0.1

0.2

0.3

0.4

0.5

0.6

ER

WS

GR

Centralized

Opt

50 100 150 200 250

10-20

10-10

100

Fig. 6: An example of uncorrelated MVDR beamforming for
a 1000 node network via the DMM algorithm. We compare
the primal mean squared error, the variance of the resulting
beamformed signal and the relative objective error for the three
networks in question and the centralized approach.

Type Alg. 2 DMM (network) DMM (per node)
Complexity O (N) O (N) O (1)

Memory Load 3N 2N+6|E| 2 + 3N (i)

TABLE I: Computational complexity and memory load for the
uncorrelated MVDR problem.

Secondly, in terms of memory load, while there is an increase
in the total memory requirement, this is distributed over the
set of nodes themselves with the total memory required by any
one node being parameterized by the size of its neighborhood.
For sparsely connected networks, such a scaling is a tolerable
price to pay for a fully distributed implementation.

D. Gaussian Channel Capacity Maximization

As a second example, consider a WSN of N independent
antennas trying to communicate a signal back to a target
location over a set of N additive white Gaussian channels
(AWGNs). Given a local bandwidth Bi for each channel,
the objective of this problem is to optimally configure the
transmission power of the antennas (x) to maximize channel
capacity under a total power constraint. From the Shannon-

Hartley theorem [54], the capacity of each channel (Ci) is
given by

Ci = Bilog2

(
1 +

xi
σi

)
=
Bi(ln (σi + xi)− ln (σi))

ln(2)
,

where σ2
i is the noise variance of the ith channel.

The channel capacity maximization problem under a maxi-
mum power constraint can be rephrased as a convex optimiza-
tion problem of the form

min
x
−
∑
i∈V

Biln (xi+σi) s.t
∑
i∈V

xi = 1, x ≥ 0,

where the non-negativity constraints stem from the fact that
power is non-negative. If assuming each node i has an addi-
tional local maximum transmission power constraint xi ≤ βi,
the final optimization problem is given by

min
x
−
∑
i∈V

Biln (xi+σi) s.t
∑
i∈V

xi = 1, β ≥ x≥0, (19)

where the vector β is the stacked vector of all βi.
By using indicator functions to move the local constraints

to the objective, (19) can be converted into the form of (1).
The resulting problem is given by

min
x

∑
i∈V

(
−Biln (xi + σi) + ι≥0 (xi) + ι≤βi

(xi)

)
s.t

∑
i∈V

(
xi −

1

N

)
= 0,

after which we can directly apply the proposed DMM algo-
rithm. This is summarized in Algorithm 4.

Algorithm 4 Distributed Channel Capacity Maximization

1: Initialize: z(0) ∈ RME

2: for t=0,..., do
3: for all i ∈ V do . Primal and Dual Updates
4: γ

(t+1)
i = 1

|N (i)|
∑

j∈N (i)

z
(t)
(i,j)

5: x
(t+1)
i = arg min

0≤xi≤βi

(
−Bi ln (xi + σi)−〈

γ
(t+1)
i , xi

〉
+ ρ

2|N (i)| ||xi −
1
N ||

2
)

6: w
(t+1)
(i,j) =2γ

(t+1)
i − z(t)

(i,j)− 2ρ

(
x
(t+1)
i

|N (i)| −
1

N |N (i)|

)
7: for all i ∈ V, j ∈ N (i) do . Transmit Variables
8: Nodej ← Nodei(w

(t+1)
(i,j))

9: for all i ∈ V, j ∈ N (i) do . Auxiliary Variables
10: z

(t+1)
(i,j) = (1− α(t))z

(t)
(i,j) + α(t)w

(t+1)
(j,i) .

Again, we consider the performance of this algorithm in
three random networks, each comprised of 100 nodes as well
as the centralized approach for comparison. For each, the
same randomly generated σi and βi were used. The resulting
convergence characteristics are given in Fig. 7 where the step
size ρ was chosen to optimize the convergence rate for each
network. It was found that for this particular problem large step
sizes (on the order of 103) provided much faster convergence

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 12

rates. As with the DS beamformer, ∀t ∈ N, α(t) = 1
2 was

selected. Again, the finite noise floor observed is due to the
finite numerical precision of the simulations.

50 100 150 200 250 300

10
-15

10
-10

10
-5

10
0

20 40 60 80 100

130

140

150

160

170
ER

WS

GR

Centralized

Opt

20 40 60 80 100

10-15

10-10

10-5

100

Fig. 7: An example of channel capacity maximization for a
100 node network via the DMM algorithm. Note that the
initial overshoot in terms of channel capacity stems from the
violation of the constraint functions for these iterations.

We can observe that the algorithm quickly converges, reach-
ing a primal precision of 10−15 in 200-350 iterations. As
with the distributed DS beam-former, the proposed algorithm
exhibits a linear convergence rate. Again, this most likely
stems from the strong convexity and smoothness of each local
problem over the allowed domain βi ≥ xi ≥ 0 ∀i ∈ V
although no proof of this is offered at this time. Finally, we
can also observe that, when compared with the centralized
approach, there is no significant degradation in convergence
rate through the use of the DMM algorithm.

As with our pervious beamforming example, we can also
compare the two algorithms in terms of computational com-
plexity and memory load. In the case of the latter, as the
local objective functions and the number of constraints are
equivalent to those in Section V-C, the total memory loads for
this problem are identical to those as given in Table I. In the
case of computational complexity, again the primal updates
are the most expensive operations for both algorithms as they
require the minimization of the sum of a negative logarithm

and a quadratic term. However, due to the separable nature
of the objective, the centralized x updates can be performed
in parallel. The scalar nature and bounded feasible range of
each subproblem means that they can be solved to machine
precision in O(1) operations. For the centralized approach,
this results in a total complexity of O(N). The x updates of
the DMM algorithm have the same per node complexity as the
separated subproblems in the centralized case and thus incur
a cost of O(1). These values are summarized in Table II.

Type Alg. 2 DMM (network) DMM (per node)
Complexity O (N) O (N) O (1)

Memory Load 3N 2N+6|E| 2 + 3N (i)

TABLE II: Computational complexity and memory load for
Gaussian channel capacity maximization problem.

Again we can note that the computational complexity of
this approach does not scale due to the use of the proposed
lifting while the increase in maximum memory load per node
is bounded based on the connectivity of the network.

E. Portfolio Optimization

As a final example we consider the task of Markowitz
portfolio optimization [55]. While this problem in its stan-
dard form is inherently non-distributed, here we consider a
variant for a collaborative network of investors. In the non-
collaborative case [56, Sec. 4.4.1], the basic premise of this
problem is that each node within the network has a local
portfolio of stocks or assets into which they want to invest
a given local wealth wi while minimizing the risk of the
investment for a certain return ri. The return on the set of
such stocks is modeled by the random vector pi ∈ RMi such
that E [pi] = p̄i ∈ RMi and E

[
(pi − p̄i)

2
]

= Qi ∈ RMi×Mi .
The risk of investment can therefore be modeled as a quadratic
cost. Ultimately, each node i ∈ V wants to solve

min
xi

1

2
xTi Qixi s.t. p̄Ti xi≥ri,1Txi=wi, xi≥0,

where xi denotes the vector of investments made in the stocks
considered and the final set of constraints indicate that we do
not want to considering short positions in our investments.

We consider a variant of this problem where the set of
nodes work together to lower the total risk of the network
by investing in each others portfolios while maintaining their
own individual return ambitions. Additionally we incorporate
local investment constraints which require a certain amount
of each nodes wealth to be invested locally. reflecting a prior
favoritism by an investor. The collaborative variant of the
portfolio optimization problem is given by

min
x

∑
i∈V

1

2
xTi Qixi

s.t.
∑
i∈V

(
p̄Ti xi − ri

)
≥ 0,

∑
i∈V

(
1Txi − wi

)
= 0

xi ≥ 0, 1Txi ≥ ηiwi ∀ i ∈ V.

(20)

Here, the first two constraints ensure that the total return and
total wealth requirements of the network are satisfied in a

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 13

collaborative rather than node based case. The third constraint
is the non-shorting constraint while the final constraint cap-
tures the required local portfolio investment at each node. The
variables ηi ∈ [0, 1] capture the required ratio of local portfolio
investment to local wealth.

Defining the matrices Ai and vector bi as

Ai =

[
p̄Ti 0
0 1T

]
, bi =

[
ri
wi

]
∀i ∈ V,

and by utilizing indicator functions to shift the local constraints
to the objective function, (20) can be rewritten as

min
x

∑
i∈V

(
1

2
xTi Qixi + ιxi≥0 (xi) + ι1Txi≥ηiwi

(xi)

)
s.t

∑
i∈V

(Aixi − bi) I 0, (21)

It follows that (21) is exactly in the form given by (1).
Therefore, applying the DMM algorithm, (20) can be solved
distributedly via Algorithm 5. In Algorithm 5, � is used to
denote the element-wise or Hadamard product of two vectors.

Algorithm 5 Collaborative Markowitz Portfolio Optimization

1: Initialize: z(0) ∈ RME

2: for t=0,..., do
3: for all i ∈ V do . Primal and Dual Updates
4: γ

(t+1)
i = 1

|N (i)|
∑

j∈N (i)

z
(t)
(i,j)

5: x
(t+1)
i = arg min

xi≥0,1Txi≥ηiwi

(
1
2xTi Qixi −〈

Aiγ
(t+1)
i ,xi

〉
+ ρ

2|N (i)|‖Aixi−bi‖2
)

6: w
(t+1)
(i,j) = 2γ

(t+1)
i −z

(t)
(i,j)−2ρ

(
Aix

(t+1)
i

|N (i)| −
bi

|N (i)|

)
7: for all i ∈ V, j ∈ N (i) do . Transmit Variables
8: Nodej ← Nodei(w

(t+1)
(i,j))

9: for all i ∈ V, j ∈ N (i) do . Auxiliary Variables

10: v
(t+1)
(i,j) =w

(t+1)
(j,i) −

[
1
0

]
�min

{
w

(t+1)
(i,j) +w

(t+1)
(j,i) ,0

}
11: z

(t+1)
(i,j) = (1− α(t))z

(t)
(i,j) + α(t)v

(t+1)
(i,j) .

For demonstration purposes we consider an Erdős-Rényi
network comprised of 100 nodes, each with a local portfolio
size of 20 elements. The system parameters (Qi, p̄i, ri, wi, ηi)
were generated randomly and ρ was empirically selected
to optimize convergence rate. The centralized approach was
also applied for comparisons sake. The resulting convergence
characteristics are included in Fig. 8.

As with our other two examples, we can observe the familiar
linear convergence rate of the primal error in addition to
the rapid optimality of the configuration. In particular, within
around 200 iterations the total portfolio risk is within 0.1%
of the optimal configuration. In contrast to the other two
examples however, here we can note a significant degrada-
tion in convergence between the DMM implementation and
the centralized approach. Additionally, the DMM algorithm
required far more iterations to converge in this instance than

Fig. 8: Distributed Markowitz portfolio optimization for a 100
node network with 20 stocks per node solved via the DMM
algorithm. The red line denotes the total risk of the network
without collaboration, the green is the optimal configuration.

for the other examples despite having a comparable network
size. While not as encouraging for the usability of DMM as
the other two examples, this result is more inline with our
expectation for a distributed method, i.e., that shifting to a
distributed context should reduce convergence rate compared
with a centralized approach.

Finally, we can again compare DMM and our centralized
approach in terms of computational complexity and memory
load. In the case of the prior, the most expensive operation
for both algorithms is the primal x update. Due to the
separability of the objective function and the quadratic nature
of the problem, this comes at a cost of O(

∑N
i=1M

3
i) for the

centralized algorithm while for DMM the cost is O
(
M3
i

)
per

node. Both of these costs stem from the need to compute
matrix inverses during these updates. In the case of memory
load, the centralized approach stores 3

∑N
i=1Mi variables in

memory while for DMM each node stores 2 + Mi + 8N (i)
variables resulting in a total of 2N+

∑N
i=1Mi+16|E| variables

across the network. These costs are summarized in Table III.
We can again note that the computational complexity of

the algorithm does not scale when shifting to the distributed
implementation while, in this case, the memory load may be
lower in the distributed case. In particular, for the considered
case of Mi = 20 ∀i ∈ V , if |N (i)| ∈ {1, · · · , 4} ∀i ∈ V then
the total memory requirement of the entire network is lower
for the DMM method than the centralized approach.

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 14

Type Alg. 2 DMM (network) DMM (per node)

Complexity O
(

N∑
i=1

M3
i

)
O
(

N∑
i=1

M3
i

)
O
(
M3

i

)
Memory

Load
3

N∑
i=1

Mi 2N+
N∑
i=1

Mi+

16|E|

2+Mi+8N (i)

TABLE III: Computational complexity and memory load for
the communal portfolio maximization problem.

VI. CONCLUSIONS

In this paper we have presented a novel method for dis-
tributed optimization of separable convex problems. In contrast
to other existing methods within the literature, the prototype
problem of the proposed DMM algorithm is not restricted
based on the topology of the underlying network. This allows
DMM to be used in a much broader range of applications
whilst preserving its distributed operation. Furthermore, the
derivation for this method is based on classical monotone
operator theory with the DMM algorithm itself being based
on a combination of Peaceman-Rachford splitting and Kras-
nosel’skiı̆-Mann iterations, providing an intuitive interpretation
of the approach. The convergence of DMM follows from
the existing results for these methods. The use of DMM
was demonstrated for a range of practical signal processing
problems including beamforming, channel capacity maximiza-
tion and portfolio optimization for a range of network types.
Overall, DMM demonstrates that any separable problem can
be solved in a distributed manner in undirected networks and
thus provides a novel tool for distributed convex optimization.

APPENDIX

A. Proof of Lemma IV.1

From (13), the resolvent of z(t) is defined as

λ(t+1) = JT1,ρ

(
z(t)
)
.

From the definition of T1 (11a), it follows that

λ(t+1) ∈ z(t)−ρ
(
C∂f∗

(
CTλ(t+1)

)
−d+∂ιC2

(
λ(t+1)

))
.

Defining, x∈ ∂f∗
(
CTλ

)
, for a given x(t+1), λ(t+1) can be

computed as

λ(t+1) =arg min
Lλ=0

(
1

2
‖λ−z(t)+ρ

(
Cx(t+1)−d

)
‖2
)

(22)

Given the structure of C and d, L
(
Cx(t+1) − d

)
= 0 by

design. We can therefore perform a change of variables in the
dual update of (22) by defining the additional variable

γ(t+1) = λ(t+1) + ρ
(
Cx(t+1) − d

)
.

From (22), γ(t+1) can be computed as

γ(t+1) = arg min
Lγ=0

(
1

2
‖γ − z(t)‖2

)
= Π

ker(L)
z(t).

Using the definitions of x(t+1) and γ(t+1), it follows that

x(t+1) ∈ ∂f∗
(
CT

(
γ(t+1) − ρ

(
Cx(t+1) − d

)))
,

and thus that the primal updates satisfy the inclusion

∂f
(
x(t+1)

)
3 CT

(
γ(t+1) − ρ

(
Cx(t+1) − d

))
.

The primal updates x(t+1) can therefore be computed as

x(t+1) =arg min
x

(
f (x) +

ρ

2
‖Cx− d‖2 −

〈
CTγ(t+1),x

〉)
.

The definition of the reflected resolvent completes the proof.

B. Proof of Lemma (IV.2)

Define the output of the resolvent operator by the vector

y(t+1) = Jρ,T2

(
w(t+1)

)
.

By the definition of the operator T2 (11b), y(t+1) can be
computed as the minimizer of

min
y

1

2
‖y −w(t+1)‖2 s.t. (I−P) y = 0, Sy∗ ≥ 0. (23)

Equivalently, it can be computed by solving the KKT system
of equations [56] given by

y∗ −w(t+1) − (I−P)µ∗ − Sν∗ = 0, (I−P) y∗ = 0,

Sy∗ ≥ 0, ν∗ ≥ 0, (Sy∗)� ν∗ = 0,

where � denotes the Hadamard product, the element-wise
product of two vectors. The variables µ and ν denote the
dual variables associated with the constraints in (23).

Combining the first two equalities and using the self-inverse
property of P, P2 = I, it follows that

− (I−P)µ∗ =
1

2
(I−P)

(
w(t+1) + Sν∗

)
,

and thus, that

y∗ =
1

2
(I + P)

(
w(t+1) + Sν∗

)
.

For those dual variables corresponding to equality con-
straints, ν plays no role. For the remaining variables, com-
bining the non-negativity of y∗ and ν∗ with the complemen-
tary slackness condition (Sy∗) � ν∗ = 0, it follows that
y∗ = max{ 1

2 (I + P) w(t+1),0} where max{•, •} is an abuse
of notation used to denote element-wise maximization between
two vectors. The vector y(t+1) is therefore given by

y(t+1) =
1

2
(I + P) w(t+1)−min

{1

2
S (I + P) w(t+1),0

}
,

where, similar to max{•, •}, min{•, •} denotes element-
wise minimization. The definition of the reflected resolvent
completes the proof.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] G. Lu and W. H. Zeng, “Cloud computing survey,” in Applied Mechanics
and Materials, vol. 530. Trans. Tech. Publ, 2014, pp. 650–661.

[3] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up machine
learning: Parallel and distributed approaches. Cambridge University
Press, 2011.

[4] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. Tsitsiklis, “On distributed
averaging algorithms and quantization effects,” IEEE Trans. on Auto-
matic Control, vol. 54, no. 11, pp. 2506–2517, 2009.

2373-776X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2019.2901649, IEEE
Transactions on Signal and Information Processing over Networks

TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 15

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Trans. on Networking (TON), vol. 14, no. SI,
pp. 2508–2530, 2006.

[6] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted
gossip: Distributed averaging using non-doubly stochastic matrices,” in
Information theory proceedings (isit), 2010 IEEE Int. symposium on.
IEEE, 2010, pp. 1753–1757.

[7] K. Murphy, Y. Weiss, and M. Jordan, “Loopy belief propagation for
approximate inference: An empirical study,” in Proceedings of the
Fifteenth Conf. on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1999, pp. 467–475.

[8] A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun, “Distributed
message passing for large scale graphical models,” in Computer vision
and pattern recognition (CVPR), 2011 IEEE Conf. on. IEEE, 2011,
pp. 1833–1840.

[9] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Processing Mag., vol. 30, no. 3, pp. 83–98, 2013.

[10] S. Chen, A. Sandryhaila, J. Moura, and J. Kovacevic, “Signal denoising
on graphs via graph filtering,” in Signal and Information Processing
(GlobalSIP), 2014 IEEE Global Conf. on. IEEE, 2014, pp. 872–876.

[11] A. Loukas, A. Simonetto, and G. Leus, “Distributed autoregressive
moving average graph filters,” IEEE Signal Processing Letters, vol. 22,
no. 11, pp. 1931–1935, 2015.

[12] E. Isufi, A. Simonetto, A. Loukas, and G. Leus, “Stochastic graph
filtering on time-varying graphs,” in Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), 2015 IEEE 6th Int. Workshop
on. IEEE, 2015, pp. 89–92.

[13] Z.-Q. Luo and W. Yu, “An introduction to convex optimization for
communications and signal processing,” IEEE Journal on selected areas
in communications, vol. 24, no. 8, pp. 1426–1438, 2006.

[14] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[15] R. Rockafellar, “Network flows and monotropic optimization,” 1984.
[16] ——, Convex analysis. Princeton, NJ: Princeton University Press, 1970.
[17] ——, “Monotone operators and the proximal point algorithm,” SIAM

journal on control and Opt., vol. 14, no. 5, pp. 877–898, 1976.
[18] ——, “On the maximal monotonicity of subdifferential mappings,”

Pacific Journal of Mathematics, vol. 33, no. 1, pp. 209–216, 1970.
[19] J. Tsitsiklis, “Problems in decentralized decision making and computa-

tion.” Massachusetts Inst. of Tech. Cambridge lab for information and
decision systems, Tech. Rep., 1984.

[20] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[21] J. Eckstein, “Splitting methods for monotone operators with applications
to parallel optimization,” Ph.D. dissertation, Massachusetts Institute of
Technology, 1989.

[22] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone op-
erators,” Math. Programming, vol. 55, no. 1-3, pp. 293–318, 1992.

[23] J. Eckstein, “Parallel alternating direction multiplier decomposition of
convex programs,” Journal of Opt. Theory and Applications, vol. 80,
no. 1, pp. 39–62, 1994.

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[25] M. Zhu and S. Martı́nez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Trans. on Automatic Control,
vol. 57, no. 1, pp. 151–164, 2012.

[26] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. on Automatic Control, vol. 54, no. 1,
pp. 48–61, 2009.

[27] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed
methods for constrained nonconvex optimization-part i: Theory.” IEEE
Trans. Signal Processing, vol. 65, no. 8, pp. 1929–1944, 2017.

[28] G. Zhang and R. Heusdens, “Distributed optimization using the primal-
dual method of multipliers,” IEEE Trans. on Signal and Information
Processing over Networks, 2017.

[29] B. Vũ, “A splitting algorithm for dual monotone inclusions involving
cocoercive operators,” Advances in Computational Mathematics, vol. 38,
no. 3, pp. 667–681, 2013.

[30] L. Condat, “A primal-dual splitting method for convex optimization
involving lipschitzian, proximable and linear composite terms,” Journal
of Opt. Theory and Applications, vol. 158, no. 2, pp. 460–479, 2013.

[31] D. Davis and W. Yin, “A three-operator splitting scheme and its
optimization applications,” Set-valued and variational analysis, vol. 25,
no. 4, pp. 829–858, 2017.

[32] P. Bianchi, W. Hachem, and I. Franck, “A stochastic coordinate descent
primal-dual algorithm and applications,” in Machine Learning for Signal
Processing (MLSP), 2014 IEEE Int. Workshop on. IEEE, 2014, pp. 1–6.

[33] P. Latafat and P. Patrinos, “Asymmetric forward-backward-adjoint split-
ting for solving monotone inclusions involving three operators,” Com-
putational Opt. and Applications, pp. 1–37, 2016.

[34] P. Latafat, L. Stella, and P. Patrinos, “New primal-dual proximal al-
gorithm for distributed optimization,” in Decision and Control (CDC),
2016 IEEE 55th Conf. on. IEEE, 2016, pp. 1959–1964.

[35] D. Mosk-Aoyama, T. Roughgarden, and D. Shah, “Fully distributed
algorithms for convex optimization problems,” SIAM Journal on Opt.,
vol. 20, no. 6, pp. 3260–3279, 2010.

[36] A. Simonetto and H. Jamali-Rad, “Primal recovery from consensus-
based dual decomposition for distributed convex optimization,” Journal
of Opt. Theory and Applications, vol. 168, no. 1, pp. 172–197, 2016.

[37] D. Mateos-Núnez and J. Cortés, “Distributed subgradient methods for
saddle-point problems,” in Decision and Control (CDC), 2015 IEEE
54th Annual Conference on. IEEE, 2015, pp. 5462–5467.

[38] T.-H. Chang, A. Nedić, and A. Scaglione, “Distributed constrained op-
timization by consensus-based primal-dual perturbation method,” IEEE
Trans. on Automatic Control, vol. 59, no. 6, pp. 1524–1538, 2014.

[39] T.-H. Chang, “A proximal dual consensus admm method for multi-agent
constrained optimization,” IEEE Trans. on Signal Processing, vol. 64,
no. 14, pp. 3719–3734, 2016.

[40] S. Lee and M. M. Zavlanos, “Distributed primal-dual methods for online
constrained optimization,” in American Control Conference (ACC),
2016. IEEE, 2016, pp. 7171–7176.

[41] I. Notarnicola and G. Notarstefano, “Constraint coupled distributed
optimization: Relaxation and duality approach,” arXiv preprint
arXiv:1711.09221, 2017.

[42] A. Falsone, K. Margellos, S. Garatti, and M. Prandini, “Dual decomposi-
tion for multi-agent distributed optimization with coupling constraints,”
Automatica, vol. 84, pp. 149–158, 2017.

[43] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Modeling & Simulation, vol. 4, no. 4,
pp. 1168–1200, 2005.

[44] V. Berinde, Iterative approximation of fixed points. Springer, 2007, vol.
1912.

[45] T. Sherson, R. Heusdens, and W. B. Kleijn, “Derivation and analysis
of the primal-dual method of multipliers based on monotone operator
theory,” arXiv preprint arXiv:1706.02654, 2018.

[46] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,” Appl.
Comput. Math, vol. 15, no. 1, pp. 3–43, 2016.

[47] R. Rockafellar, “On the maximality of sums of nonlinear monotone
operators,” Trans. of the American Mathematical Society, vol. 149, no. 1,
pp. 75–88, 1970.

[48] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces. New York, NY.: Springer New York,,
2017, vol. 408.

[49] P. Erdös and A. Rényi, “On random graphs, i,” Publicationes Mathe-
maticae (Debrecen), vol. 6, pp. 290–297, 1959.

[50] D. J. Watts and S. H. Strogatz, “Collective dynamics of “Small-World”
networks,” nature, vol. 393, no. 6684, p. 440, 1998.

[51] M. Penrose, Random geometric graphs. Oxford university press, 2003,
no. 5.

[52] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans.
on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[53] H. L. Van Trees, Optimum array processing: Part IV of detection,
estimation, and modulation theory. John Wiley & Sons, 2004.

[54] C. Shannon, “Communication in the presence of noise,” Proceedings of
the IRE, vol. 37, no. 1, pp. 10–21, 1949.

[55] H. Markowitz, “Portfolio selection,” The journal of finance, vol. 7, no. 1,
pp. 77–91, 1952.

[56] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University press, 2004.

